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We calculate the entanglement entropy of a model proton wave function in coordinate space by
integrating out degrees of freedom outside a small circular region Ā of radius L, where L is much smaller
than the size of the proton. The wave function provides a nonperturbative distribution of three valence
quarks. In addition, we include the perturbative emission of a single gluon and calculate the entanglement
entropy of gluons in Ā. For both quarks and gluons, we obtain the same simple result:
SE ¼ −

R
dx
Δx NL2ðxÞ log½Na2ðxÞ�, where a is the UV cutoff in coordinate space and Δx is the longitudinal

resolution scale. Here NSðxÞ is the number of partons (of the appropriate species) with longitudinal
momentum fraction x inside an area S. It is related to the standard parton distribution function by
NSðxÞ ¼ S

Ap
ΔxFðxÞ, where Ap denotes the transverse area of the proton.
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I. INTRODUCTION

Rapid advent of quantum science in recent years
provides strong motivation for asking new types of ques-
tions in many areas of inquiry, including high energy
nuclear and particle physics. In particular, there is an
ongoing vigorous discussion about the relevance of entan-
glement (and the associated entanglement entropy) in the
context of particle production in high energy hadronic
collisions [1–25].
The initial discussion by Kharzeev and Levin [8] is

framed in the context of entanglement of the degrees of
freedom inside a small area of the proton actually probed in
a deep inelastic scattering (DIS) experiment, with the rest of
the degrees of freedom in the proton wave function and, in
particular, with soft modes of the gluon field responsible
for confinement. It was suggested that the entropy of this
entanglement translates into the Boltzmann entropy of
particles produced in the collision. Some model calculations

have been performed to probe this picture [9,12–15], and
it has also been subjected to an experimental test [26].
However, no direct calculation of entanglement entropy in
coordinate space has so far been reported in the literature.
The aim of this manuscript is to fill this gap.
Of course, such a calculation requires knowledge of the

wave function of the proton, and needless to say, the exact
proton wave function is not known. Nevertheless, several
simple model wave functions that provide the distribution
of valence quarks at large x and low resolution Q2 have
been used in QCD phenomenology over the years with
reasonable success, e.g. Refs. [27–30]. These quark wave
functions can be improved by including a perturbative
gluon component, as described in Ref. [31], and used
in Ref. [32] to compute DIS structure functions at
high energy, and in Ref. [22] to study entanglement of
momentum-space degrees of freedom over the whole area
of the proton. In this paper our main goal is to derive
expressions for the density matrix and entropy of a small
“hole” in the proton in such a setup. For numerical
estimates we will use one specific light-cone valence quark
model wave function from Refs. [27,28].
The idea of our calculation is very straightforward. We

divide the transverse area of the proton into a small disk Ā
and its complement A, and integrate out all degrees of
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freedom in A. The result is the reduced density matrix ρĀ
which contains complete information for the calculation of
any observable localized in Ā. We then calculate the von
Neumann entropy of ρĀ.
Even before including the perturbative gluon component,

the result is nontrivial. The entropy in this case is associated
with different numbers of quarks that can reside inside Ā.
Note that the total number of valence quarks in the model
wave function is fixed (three), nevertheless the wave
function carries finite probabilities of finding different
numbers of quarks inside Ā. Integrating over A therefore
generates a reduced density matrix which spans Hilbert
subspaces with different occupation numbers n. The von
Neumann entropy arises precisely due to nonvanishing
eigenvalues of ρĀ in subspaces with different n.
Note that, in the simple case when the total number of

partons is fixed, the reduced density matrix is diagonal in
the particle number basis by fiat. This follows immediately
since in reducing the density matrix we trace over A, and
thus calculate matrix elements between states which have
equal numbers of partons in A. For wave functions that do
not preserve the number of partons we expect, in general,
that ρĀ would not be diagonal in the n basis. Thus,
including a perturbative gluon emission may lead to such
a nondiagonal ρĀ. As it turns out, in the first order of
perturbation theory this does not happen due to the fact that
in the valence part of the wave function the color and spatial
degrees of freedom are not entangled with each other.
We first perform the calculation in the way described

above for the valence wave function that contains three
quarks only. We next include a one gluon state which is
generated by the first order perturbative correction. Here,
for simplicity, we modify our procedure somewhat, i.e. we
trace over the quark degrees of freedom in the whole wave
function, and only then do we generate ρĀ by reducing over
the gluon degrees of freedom in A. We then calculate the
entanglement entropy of the resulting density matrix, which
now has the meaning of entropy of gluons inside Ā.
This paper is structured as follows. In Sec. II we prepare

our tools for performing the calculation in coordinate space
and describe the model wave function for valence quarks.
In Sec. III we calculate the reduced density matrix ρĀ and
the entropy for a small disk Ā in this model. Here “small”
means small relative to the nonperturbative scale which
determines the spatial size of the model wave function. We
discuss the dependence of the entropy on the area of Ā in
this regime. In Sec. IV we include an additional perturba-
tively emitted gluon in the wave function, and again
calculate the reduced density matrix (in the way described
above) and discuss its properties. The entanglement
entropy is also calculated in Sec. V. In both cases (quarks
and gluons) the entanglement entropy can be written in a
very suggestive form in terms of the parton distribution
function (PDF) of the appropriate parton species, Eq. (94).

Finally, in Sec. VI we discuss our results and their possible
relation to the suggestion of Ref. [8].

II. LAYING THE GROUNDWORK

In the following we denote any three vector p as
p ¼ ðpþ; p⃗Þ, where pþ and p⃗ are longitudinal and trans-
verse components of the vector, respectively. We will be
using a mixed representation for the wave function where
coordinate space is used to represent the transverse degrees
of freedom, and momentum space is used for the longi-
tudinal ones.
In this mixed representation we denote a state of the

proton at c.m. position R⃗ ¼ 0 and longitudinal momentum
Pþ by jR⃗ ¼ 0; Pþi. This convoluted notation does not
reference the wave function for the internal degrees of
freedom, i.e. the coordinates, color and spin states of the
constituents, which we will specify in a short while.
The coordinate space proton state vector is related to the

momentum-space state vector through (see e.g. Ref. [33])

jR⃗; Pþi ¼ N
Z
P⃗
eiP⃗·R⃗jP⃗; Pþi; ð1Þ

where P⃗ is the transverse momentum of the proton, and the
integration measure is

Z
P⃗
≡
Z

d2P
ð2πÞ2 : ð2Þ

The normalization factor is determined from the condition
jN j2 RP⃗ ¼ 1. A proton centered at R⃗ ¼ 0 is then

jR⃗ ¼ 0; Pþi ¼ N
Z
P⃗
jP⃗; Pþi: ð3Þ

We employ the standard normalization of the momentum-
space states,

hKjPi ¼ 16π3PþδðPþ − KþÞδ2ðP⃗ − K⃗Þ; ð4Þ

which leads to the following normalization of the mixed
space state vector:

hR⃗ ¼ 0; P0þjR⃗ ¼ 0; Pþi ¼ 4πPþδðPþ − P0þÞ: ð5Þ

The density operator for this state is

ρ̂ ¼ jR⃗ ¼ 0; PþihR⃗ ¼ 0; Pþj: ð6Þ

In the following we will be calculating matrix elements of ρ̂
between states of the partonic (Fock) Hilbert space

ραα0 ¼ hα0jR⃗ ¼ 0; PþihR⃗ ¼ 0; Pþjαi; ð7Þ
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where α denotes a collection of “labels” (such as the light-
cone (LC) momentum fractions xi, coordinates and color
indices) assigned to the basis vectors of the Fock space.

A. The valence quark Fock state

We start with considering states that contain three
valence quarks only. In the model described below the
color and spatial degrees of freedom are not entangled, i.e.
the wave function is a direct product of the color and spatial
state vectors. In this case, for the spatial wave function
α ¼ fxi; r⃗ig refers to the quark LC momentum fractions
and their transverse coordinates.
The state vector jPþ; P⃗i of a proton made of Nc

“valence” quarks is written as

jPi ¼
X
hi

Z
½0;1�Nc

½dxi�
Z

½d2ki�Ψðki; hiÞ
1ffiffiffiffiffiffiffiffi
Nc!

p

×
X

i1…iNc

ϵi1���iNc
jp1; i1; h1; � � � ;pNc

; iNc
; hNc

i; ð8Þ

where

½dxi� ¼ δ

�
1 −

X
i

xi

�Y
i

dxi
2xi

; ð9Þ

½d2ki� ¼ð2πÞ3δ
�X

i

k⃗i

�Y
i

d2ki
ð2πÞ3 : ð10Þ

Here ki ¼ ðkþi ; k⃗iÞ denote the momenta of the ith quark in

the transverse rest frame of the proton, and p⃗i ¼ k⃗i þ xiP⃗.
The space-helicity wave function Ψðki; hiÞ is symmetric

under exchange of any two quarks while the state is
antisymmetric in color space. In what follows we will
mainly focus on the spatial wave function and trace out
spin-flavor and color degrees of freedom.
We can now write the proton state in terms of the quark

Fock space states

jR⃗¼0;Pþi¼N
Z
P⃗

Z
½dxi�

Z
½d2ki�ΨðkiÞjp1;p2;p3i; ð11Þ

where we have omitted the quark (and proton) spins, for
simplicity. Summing up, we integrate over the Galilean-
invariant “internal” quark transverse momenta subject to
the constraint that they add up to zero, and then over the
c.m. transverse momentum P⃗, which is also the momentum
of the proton.
Analogously, the three-quark coordinate space state with

the quarks located at r⃗i and carrying LC momentum
fractions xi is constructed as

jx1; r⃗1; x2; r⃗2; x3; r⃗3i

¼ N
Z
Q

Z
½d2qi�e−i

P
ðq⃗iþxiQ⃗Þ·r⃗i jxi; q⃗i þ xiQ⃗i: ð12Þ

Equation (12) can be extended to four (and more) particles
simply by adding labels for momentum fraction and
transverse position/momentum of the additional particle
to the state vector and including the momentum of the
additional particle in the integration measure Eq. (10).
The overlap of the proton state with the state of three

quarks localized at fixed transverse coordinates is given by

hR⃗ ¼ 0; Pþjxi; r⃗ii ¼ jN j2
Z
P;Q

Z
½dyi�

Z
½d2ki�

Z
½d2qi�e−i

P
ðq⃗iþxiQ⃗Þ·r⃗iΨ�ðyi; k⃗iÞ

Y
i

hyi; k⃗i þ yiP⃗jxi; q⃗i þ xiQ⃗i

¼ jN j2ð2πÞ3δ
�
1 −

X
xi

�
δ

�X
xir⃗i

�Z
½d2qi�e−i

P
q⃗i·r⃗iΨ�ðxi; q⃗iÞ; ð13Þ

where we used Eqs. (4), (9), and (10). Note that the overlap does not vanish only for states with c.m. located at the origin,P
xir⃗i ¼ 0, just as for the proton, c.f. Eq. (11) in [33]; or Ref. [34] for the analogous case of a qq̄ dipole. Also, the LC

momentum fractions of the quarks must sum up to one. Since only such states contribute to the proton density matrix, and
we included the constraints on the longitudinal momentum fractions/the transverse momenta in the integration measure (9)
and (10), a matrix element of the properly normalized density matrix is given by

ραα0 ¼
hR⃗ ¼ 0; Pþjα0i

jN j2ð2πÞ3δð1 −P
x0iÞδð

P
x0ir⃗

0
iÞ

hαjR⃗ ¼ 0; Pþi
jN j2ð2πÞ3δð1 −P

xiÞδð
P

xir⃗iÞ
ð14Þ

¼
Z

½d2qi�ei
P

q⃗i·r⃗i

Z
½d2q0i�e−i

P
q⃗0i·r⃗

0
iΨ�ðx0i; q⃗0iÞΨðxi; q⃗iÞ ð15Þ

¼ Ψ�ðx0i; r⃗0iÞΨðxi; r⃗iÞ; ð16Þ
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where α ¼ fxi; r⃗ij
P

xi ¼ 1;
P

xir⃗i ¼ 0g and α0 ¼
fx0i; r⃗0ij

P
x0i ¼ 1;

P
x0ir⃗

0
i ¼ 0g denote two sets of LC

momentum fractions and transverse quark positions. Here
in the last step we used the definition (B4) of Ref. [33] for
the coordinate space LC wave functions,

Ψðxi; r⃗iÞ ¼
Z

½d2qi�ei
P

q⃗i·r⃗iΨðxi; q⃗iÞ: ð17Þ

The normalization of the coordinate space wave function
will be obtained later in Eq. (31) from the requirement that
the trace of the density matrix tr ρ̂ ¼ 1.
For the model wave function considered here (see below)

the color degrees of freedom of the above density matrix
could be restored simply by multiplying by the normalized
color space matrix 1

3!
ϵi1i2i3ϵi01i02i03 .

B. A model wave function

Our main goal here is to obtain general expressions for
the reduced density matrix in a transverse region Ā of the
proton and to estimate the entropy associated with this
density matrix (which we do in Sec. III B). For this we
require an explicit expression for the three-quark wave
function Ψqqq.
We employ a simple model due to Schlumpf and

Brodsky [27,28],

Ψðxi; k⃗iÞ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

p
e−M

2=2β2 ; M2¼
X k⃗2

i þm2
q

xi
: ð18Þ

Here M2 is the invariant mass squared of the noninteract-
ing three-quark system [35], i.e. the sum of the quark LC
energies multiplied by Pþ. The nonperturbative parameters
mq ¼ 0.26 and β ¼ 0.55 GeV have been fixed in
Refs. [27,28] to match empirical properties of the proton
at low energy and low resolution. Note that β is of order
Nc ¼ 3 times the root-mean-square valence quark trans-
verse momentum in the proton.
This Gaussian wave function can be easily transformed

to position space. One obtains (up to normalization)

Ψðxi; r⃗iÞ ∼ Fðx1; x2; x3Þe−1
2
a13β2r213e−

1
2
a23β2r223ebβ

2 r⃗13·r⃗23 ð19Þ

with

r⃗ij ≡ r⃗i − r⃗j;

Fðx1; x2; x3Þ ¼ ð2πβ2Þ2 ðx1x2x3Þ
3=2

ð2πÞ6 e
−

m2
q

2β2

P
1
xi ;

a23 ¼ x2ð1 − x2Þ;
a13 ¼ x1ð1 − x1Þ;
b ¼ x1x2: ð20Þ

One can easily verify that this is symmetric under the
exchange of any two quarks, ðxi; r⃗iÞ ↔ ðxj; r⃗jÞ; i, j ¼ 1,
2, 3.

III. THE REDUCED DENSITY MATRIX
AND ENTANGLEMENT ENTROPY
OF A THREE-QUARK SYSTEM

We can now construct a reduced density matrix by
tracing over a subset of degrees of freedom. Here we are
interested in the reduced density matrix that determines
observables localized to a small circle in the center of
the proton. To find this density matrix we have to trace over
the region A of the proton which is the outside of the circle
in question. In other words we have to integrate over the
transverse positions and LC momentum fractions of all
quarks located in A.

A. The density matrix for a small disk

First we note that the Hilbert space inside the disk Ā is a
direct sum of Hilbert spaces of zero, one, two and three
particles. In addition, it is obvious that since we are tracing
over A, the reduced density matrix does not contain off
diagonal elements that connect states with different particle
numbers. The reduced density matrix therefore can be
represented as a block diagonal matrix of the form

ρĀ ¼

0
BBB@

ρ0 0 0 0

0 ρ1 0 0

0 0 ρ2 0

0 0 0 ρ3

1
CCCA: ð21Þ

Note that the various blocks along the diagonal are density
matrices over Hilbert spaces of different dimensionality.
To calculate ρ0 we place all quarks in A,

ρ0 ¼
Z

½dxi�
Z

½d2ri�ΘAðr⃗1ÞΘAðr⃗2ÞΘAðr⃗3ÞjΨðxi; r⃗iÞj2:

ð22Þ

Here,

½d2ri� ¼ d2r1d2r2d2r3δ
�X

xir⃗i
�
; ð23Þ

and ΘAðr⃗Þ ¼ 1 if r⃗ ∈ A and 0 otherwise. This is a pure
dimensionless [by the normalization condition in Eq. (31)
below] number giving the probability that in our wave
function no quarks reside in Ā.
The second block ρ1 of (21) is the probability density

that only one of the quarks is localized in Ā while the other
two are localized in A. Tracing over A we have to set r⃗1 ¼
r⃗01 ∈ A and r⃗2 ¼ r⃗02 ∈ A, so by virtue of the c.m. constraint
we also have r⃗3 ¼ r⃗03, with r⃗3 ∈ Ā, so ρ1 is diagonal in
coordinate space,
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ðρ1Þαα¼3

Z
dx1dx2
8x1x2x3

δ
�
1−

X
xi
�

×
Z

d2r1d2r2δ
�X

xir⃗i
�
ΘAðr⃗1ÞΘAðr⃗2ÞjΨðxi; r⃗iÞj2;

ðr⃗3∈ ĀÞ: ð24Þ

The matrix indices here are α ¼ fx3; r⃗3g, defined over the
domain 0 ≤ x3 ≤ 1 and r⃗3 ∈ Ā.
Clearly, the dimensionalities of ρ1 and ρ0 are different.

While ρ0 is dimensionless and has the meaning of prob-
ability, ρ1 has dimension 1=r2 and has the meaning of
probability density. To construct a probability from ρ1 we
would have to multiply it by the “lattice spacing” in the
transverse coordinate space a2 and in fact also by the
elementary length in the longitudinal momentum space Δx.
If we take this route, the integration over the coordinate r⃗3
and the momentum fraction x3 will have to be performed
with the dimensionless measure d2r3=a2 dx3=Δx.
For the discussion of the density matrix itself this is not

crucial since a calculation of the average of any observable
involves integration over x and ri and the minimal area
cancels in the product of the probability density and the
integration measure. However, when we calculate von
Neumann entropies SE this becomes important, since we
need to define a dimensionless probability in order to take
its logarithm. In fact it is also crucial to work with a
dimensionless density matrix when we calculate the trace
of any nontrivial (not first) power of ρ. Since the index on
ρ1 is continuous, the density matrix is infinitely dimen-
sional. We therefore expect its individual matrix elements
to vanish in the strict continuum limit (for vanishing a2 and
Δx) as the first power of a2Δx. When calculating trρ1 this
smallness of the matrix elements is compensated by the
integration over r⃗3; x3. However, when we calculate trρN1 ,
the diagonal matrix elements now vanish as ða2ΔxÞN , while
there is still only a single integral over r⃗3; x3 involved in
calculating the trace. Therefore trρN1 →a;Δx→0ða2ΔxÞN−1,
and it is imperative to keep the lattice spacing finite in order
to obtain any physical information about trρN1 beyond the
trivial fact that it vanishes in the continuum limit. We will
therefore introduce the lattice spacing in the definition of
the density matrix and will forthwith work with

ðρ1Þαα ¼ 3Δxa2
Z

dx1dx2
8x1x2x3

δ
�
1−

X
xi
�

×
Z

d2r1d2r2δ
�X

xir⃗i
�
ΘAðr⃗1ÞΘAðr⃗2ÞjΨðxi; r⃗iÞj2;

ðr⃗3 ∈ ĀÞ; ð25Þ

with the understanding that the trace is taken with respect to

the measure d2r3
a2

dx3
Δx ΘĀðr⃗3Þ. Furthermore, we included the

x3-dependent part of the integration measure (9), i.e. the
factor 1=x3, in the definition of ρ1 so that the trace is given

by the x3-independent integration measure dx3
Δx. One can

easily understand why this is necessary by considering the
classical Shannon entropy of a probability density distri-
bution, see Appendix A.
The third block ρ2 corresponds to the configuration

where two of the quarks are located in Ā while the third one
is located in A,

ðρ2Þαα0 ¼ 3ða2ΔxÞ2 Ψ
�ðα0; x3; r⃗3Þ

x3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8x01x

0
2x3

p Ψðα; x3; r⃗3Þ
x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8x1x2x3

p ; ð26Þ

with α ¼ fx1; r⃗1; x2; r⃗2g and α0 ¼ fx01; r⃗01; x02; r⃗02g. Note that
there is no integral over the coordinate of the third quark in
this equation. This is due to the fact that the c.m. constraint
rigidly determines r⃗3; x3 for given coordinates and longi-
tudinal momenta of the first two quarks as

x3 ¼ 1 − x1 − x2 ¼ 1 − x01 − x02;

r⃗3 ¼ −ðx1r⃗1 þ x2r⃗2Þ=x3 ¼ −ðx1r⃗01 þ x2r⃗02Þ=x3: ð27Þ

The matrix indices α; α0 are defined over the domain
where these relations are satisfied with 0 ≤ x3 ≤ 1 and
r⃗1; r⃗2; r⃗01; r⃗

0
2 ∈ Ā, r⃗3 ∈ A. We have again introduced the

lattice spacing into the definition of a matrix element of ρ2
to make it dimensionless. The factor 3 in (26) arises since
either one of the three quarks can reside in A.
The trace of ρ2 on the subspace with two particles is

defined as

trρ2 ¼
Z

dx1
Δx

dx2
Δx

Z
d2r1
a2

d2r2
a2

ΘĀðr⃗1ÞΘĀðr⃗2ÞΘðx3Þ

× ΘAðr⃗3Þðρ2Þαα
¼ 3

Z
½dxi�

Z
½d2ri�ΘAðr⃗3ÞΘĀðr⃗1ÞΘĀðr⃗2ÞjΨðxi; r⃗iÞj2;

ð28Þ

where the lattice spacing cancels between the matrix
element and the integration measure. Once again, the trace
operation does not involve any Jacobians which depend on
x1 and x2.
Finally, the fourth block corresponds to all three quarks

in Ā,

ðρ3Þαα0 ¼
ða2ΔxÞ2

x03
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8x01x

0
2x

0
3

p 1

x3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8x1x2x3

p Ψ�ðx0i; r⃗0iÞΨðxi; r⃗iÞ:

ð29Þ

Here α ¼ fx1; r⃗1; x2; r⃗2g and similarly for α0. These indices
are defined over the domain 0 ≤ x1; x2; x01; x

0
2 ≤ 1 with

0 ≤ x3 ¼ 1 − x1 − x2 ≤ 1, 0 ≤ x03 ¼ 1 − x01 − x02 ≤ 1; and
r⃗1; r⃗01; r⃗2; r⃗

0
2; r⃗3; r⃗

0
3 ∈ Ā, with r⃗3 ¼ −ðx1r⃗1 þ x2r⃗2Þ=x3,

r⃗03 ¼ −ðx01r⃗01 þ x02r⃗
0
2Þ=x03. We have again introduced the
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lattice spacing in this definition so that the elements of ρ3
are dimensionless, although these factors cancel in the trace
of an arbitrary power of ρ3. To take the trace in this block
we calculate

trρ3 ¼
Z

dx1
Δx

dx2
Δx

Z
d2r1
a2

dr2
a2

Θðx3ÞΘĀðr⃗1ÞΘĀðr⃗2Þ

× ΘĀðr⃗3Þðρ3Þαα
¼

Z
½dxi�½d2ri�jΨðxi; r⃗iÞj2

Y
ΘĀðr⃗iÞ: ð30Þ

Putting this all together we obtain that the total trace of the
density matrix is1

trρĀ ¼ ρ0 þ trρ1 þ trρ2 þ trρ3

¼
Z

½dxi�½d2ri�jΨðxi; r⃗iÞj2 ¼ 1: ð31Þ

The normalization of the coordinate space wave function is
determined from this relation.
In Appendix B we present expressions for calculating

traces of powers of ρ which illustrate explicitly the need to
introduce the lattice spacing in our calculation.

B. Entanglement entropy

We now discuss the von Neumann entropy associated
with tracing the pure state jR⃗ ¼ 0; PþihR⃗ ¼ 0; Pþj over the
area A,

SvN ¼ −lim
ϵ→0

trðρĀÞ1þϵ − 1

ϵ
: ð32Þ

Because we performed a partial trace over a pure state, this
entropy represents a measure for the entanglement of the
degrees of freedom remaining in Ā with those from region
A, which have been traced out. We discuss the nature of
entanglement in more detail in the following Sec. III C.
Using the expressions from Appendix B for N ¼ 1þ ϵ

and expanding to linear order in ϵ this gives

−SvN ¼ ρ0 log ρ0 þ trρ3 log trρ3 þ 3

Z
½dxi�½d2ri�ΘĀðr⃗3ÞΘAðr⃗1ÞΘAðr⃗2ÞjΨðxi; r⃗iÞj2

× log

�
3Δxa2

Z
½dyi�½d2si�δðs⃗3 − r⃗3Þδðx3 − y3ÞΘAðs⃗1ÞΘAðs⃗2ÞjΨðyi; s⃗iÞj2

�

þ 3

Z
½dxi�½d2ri�ΘAðr⃗3ÞΘĀðr⃗1ÞΘĀðr⃗2ÞjΨðxi; r⃗iÞj2

× log

�
3Δxa2

Z
½dyi�½d2si�δðs⃗3 − r⃗3Þδðx3 − y3ÞΘĀðs⃗1ÞΘĀðs⃗2ÞjΨðyi; s⃗iÞj2

�
; ð33Þ

where we used trρĀ ¼ 1.
This is a rather formal expression, and to understand

some of its properties we will consider the dependence of
the entropy on the area Ā of the cutout.
When the region Ā shrinks to a point we, of course,

expect the entropy to vanish.2 Indeed, all the terms in
Eq. (33) vanish, except ρ0 which approaches 1: for vanish-
ingly small area the probability to find zero particles inside
is unity. Taking the area as small but nonvanishing, for a
circular cutout with radius L, we have

∂Sð0ÞvN

∂L
¼ −

∂ρ0
∂L

¼ 2πL
Z

dxIðxÞ ðfor L → 0Þ ð34Þ

IðxÞ ¼ 3

Z
½dyi�δðy3 − xÞ

Z
d2r1d2r2δðx1r⃗1 þ x2r⃗2Þ

× jΨðy1; r⃗1; y2; r⃗2; y3; 0⃗Þj2: ð35Þ

For the model wave function from Sec. II B we obtain the
numerical estimate

1

β

∂Sð0ÞvN

∂L
¼ 2πLβ · 0.534ð1Þ: ð36Þ

There is an additional contribution of order ∼L2 to the
entropy. It is due to the third term in Eq. (33) which
originates from ρ1. Again, for a circular cutout Ā of radius
L centered at the origin, we have

1Note that on account of the permutation symmetry of
the wave function, the following equality holds when multiplied
by jΨðr⃗1; r⃗2; r⃗3Þj2 under the integral: ΘAðr⃗1ÞΘAðr⃗2ÞΘAðr⃗3Þþ
3ΘAðr⃗1ÞΘAðr⃗2ÞΘĀðr⃗3Þþ3ΘAðr⃗1ÞΘĀðr⃗2ÞΘĀðr⃗3ÞþΘĀðr⃗1ÞΘĀðr⃗2Þ
ΘĀðr⃗3Þ¼1.

2The same is true if Ā encompasses the entire transverse
space.
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∂Sð1ÞvN

∂L
¼ 2πL

Z
dxIðxÞ log 1

a2ðΔxÞIðxÞ ; ðfor L→ 0Þ: ð37Þ

For small lattice spacing a the logarithm in this expression
is large, and this is in fact the dominant contribution to the
derivative of the entropy with respect to L. For example, for
the model wave function from Sec. II B, and for a fairly
coarse resolution of transverse position and longitudinal
momentum, ΔxðaβÞ2 ¼ 0.1, we obtain the numerical
estimate

1

β

∂Sð1ÞvN

∂L
¼ 2πLβ · 1.21ð1Þ: ð38Þ

Thus, for small L2 the leading contribution to the entropy is

Sð1ÞvN ¼ −πL2

Z
dx IðxÞ log½a2ðΔxÞIðxÞ�: ð39Þ

This can be rewritten in a more transparent way if we notice
that IðxÞ as defined in (35) is nothing but the density of
quarks with longitudinal momentum x in the proton
IðxÞ ¼ FðxÞ=Ap, where Ap is the transverse area of the
proton and FðxÞ is the quark PDF. We then have

Sð1ÞvN ¼ −
πL2

Ap

Z
dxFðxÞ log

�
a2

Ap
ðΔxÞFðxÞ

�
: ð40Þ

The dependence of the entropy on the lattice spacing is
easily understood. Since ρ1 is a matrix with continuous
index, we expect its eigenvalues to be small, i.e. of order a2,
while the number of nonvanishing eigenvalues is large
Oð1=a2Þ. For such a matrix with a large number of small
eigenvalues, the entropy is indeed proportional to the
logarithm of the inverse eigenvalue, and this is what we
see in (37). The area scaling of the entropy is also quite
natural, since at small L the number of degrees of freedom
in the reduced density matrix is proportional to the area of
the cutout.

C. What is entangled here?

We would now like to comment on the nature of
entanglement that produces the entanglement entropy that
we calculated. It is somewhat different from the naive picture
of entanglement we are used to in a vacuum state of a
quantum field theory (QFT). In the QFT setting one divides
space into two regions A and Ā and considers the wave
function of local field degrees of freedom in the two regions
Φðx ∈ ĀÞ and Φðy ∈ AÞ. The entanglement is then under-
stood in terms of nonfactorizability of the wave function
Ψ½ΦðxÞ;ΦðyÞ� ≠ Ψ1½ΦðxÞ�Ψ2½ΦðyÞ�, and the entanglement
entropy is associated with this nonfactorizability.
In our case the nature of entanglement is somewhat

different. It is not that some internal degree of freedom of

quarks in A, like color or helicity, is entangled with quarks
in Ā. In fact, we do not have to consider several quarks with
internal degrees of freedom at all to understand our result.
Let us imagine having just one quark in the proton area.
This quark can be either in A or in Ā. We can write the total
wave function of the quark in terms of the basis states in the
Hilbert spaces HA and HĀ. For simplicity, we will even
forget about different transverse coordinates in A and Ā.
The wave function of our quark can then be written as

Ψ ¼ aj0iA × j1iĀ þ bj1iA × j0iĀ; ð41Þ

where jaj2 is the probability that the quark is in Ā and jbj2 ¼
1 − jaj2 is the probability that it is in A. Tracing over A
removes the relative phase of a and b and we generate the
reduced density operator ρ̂Ā ¼ ½jaj2j1ih1j þ jbj2j0ih0j�Ā.
This is a mixed state over Ā and carries the entanglement
entropy. Thus, the entanglement in our calculation is
between the quark being (or not being) in A and the same
quark being (or not being) in Ā. These states are maximally
entangled since the total number of quarks is fixed to be
exactly one. This is a quantum mechanical rather than QFT
type entanglement, very similar to the “Schrödinger cat”
thought experiment [36,37], where one should read one
quark in A as “the cat is alive” and no quark in Ā as
“radioactive nucleus intact”; also no quark in A should be
read as “the cat is dead” and the quark is in Ā as “radioactive
nucleus decayed.”

IV. INCLUDING THE jqqqgi FOCK STATE

We now add the jqqqgi Fock states into our calculation.
In perturbation theory, such states have nonvanishing
probability at order g2. We write the proton state sche-
matically in the form

jPi ∼ Ψqqqϵi1i2i3 jqi1qi2qi3i þΨqqqg½ðtaÞji1ϵi1i2i3 jqjqi2qi3gai
− ði1 ↔ i2Þ − ði1 ↔ i3Þ�: ð42Þ

In the leading perturbative order the three-quark wave
function Ψqqq includes the Oðg2Þ virtual corrections, and
Ψqqqg is the (3 quarks þ 1 gluon) spatial wave function at
order OðgÞ.
In the two components the quarks are in different

representations of color SU(3): they are in the color singlet
in the jqqqi state and in the color octet in jqqqgi.
In the following we will calculate the entanglement

entropy for the same geometry as in the previous section.
To simplify the calculations, however, we will trace the
density matrix over the colors of the quarks. The pure state
(42) is described by a density operator which, in principle,
contains off diagonal matrix elements in the particle
number basis
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jPihPj ∼Ψqqqϵi1i2i3Ψ
�
qqqϵii0

2
i0
3
jqi1qi2qi3ihqi01qi02qi03 j

þ ΨqqqgðtaÞji1ϵi1i2i3Ψ�
qqqgðta0 Þi0

1
j0ϵi01i02i03 jqjqi2qi3gaihqj0qi02qi03ga0 j

þ Ψqqqϵi1i2i3Ψ
�
qqqgðta0 Þi0

1
j0ϵi01i02i03 jqi1qi2qi3ihqj0qi02qi03ga0 j

þ ΨqqqgðtaÞji1ϵi1i2i3Ψ�
qqqϵi0

1
i0
2
i0
3
jqjqi2qi3gaihqi01qi02qi03 j: ð43Þ

However, the off diagonal matrix elements vanish after
tracing over quark colors precisely due to the fact that the
three quarks are in the color singlet state in Ψqqq and in the
color octet state in Ψqqqg. The reduced (over the quark
color) density operator is diagonal in particle number and
has the form

trqqq−colorsρ̂ ∼ 3!ΨqqqΨ�
qqqjqqqihqqqj

þ δaa
0ΨqqqgΨ�

qqqgjqqqgihqqqgj: ð44Þ

A. Ψqqqg at order g and Ψqqq at order g2

Our first order of business is to calculate the perturbative
wave function. For simplicity, we restrict ourselves to the
soft gluon approximation, i.e. we assume that the gluon
longitudinal momentum is much smaller than the typical
longitudinal momentum of a quark.
Let us begin with Ψqqqg. The emission of a gluon from

one of the quarks generates the following OðgÞ correction3
to the momentum-space proton state jPi:

jPþ; P⃗iOðgÞ ¼ g
Z

½dxi�
Z

½d2ki�ΨqqqðkiÞ
1ffiffiffi
6

p
X
j1j2j3

ϵj1j2j3

Z
Δx

dxg
2xg

d2kg
ð2πÞ3

X
σma

×

�
ðtaÞmj1

Θðx1 − xgÞ
x1 − xg

ψ̂q→qgðp1;p1 − kg; kgÞjm;p1 − kg; j2; p2; j3; p3i

þ ðtaÞmj2

Θðx2 − xgÞ
x2 − xg

ψ̂q→qgðp2;p2 − kg; kgÞjj1; p1;m;p2 − kg; j3; p3i

þðtaÞmj3

Θðx3 − xgÞ
x3 − xg

ψ̂q→qgðp3;p3 − kg; kgÞjj1; p1; j2; p2;m;p3 − kgi
�
⊗ ja; kg; xg; σi: ð45Þ

The integration measures here, ½dxi� and ½d2ki�, pertain to
coordinates of the parent quarks. We have cut off the
integration over the light-cone momentum fraction of the
gluon xg by Δx to regularize the soft singularity in QCD.
That is, we prohibit gluon emission into the lowest “bin” of
xg.
The light-cone gauge Fock space amplitude for the qg

state of a quark in the soft gluon approximation in D ¼ 4
dimensions is

ψ̂q→qgðp; kq; kgÞ ¼ 2
xp

k2g þ Δ2
k⃗g · ϵ⃗�σ; ð46Þ

where xp ¼ pþ=Pþ, and Δ2 is a regulator for the collinear
singularity. Physically, the regularization is provided by the
finite size of the color singlet state which the emitter is a
part of. Thus the magnitude of the regulator Δ is of order
ΛQCD or, in our case, of the order of the inverse size of the
model proton wave function set by the parameter β. It is
much smaller that the inverse radius squared of the
cutout Ā.
Projecting on the Fock space state jαi, where α denotes a

set of four momentum fractions xi, transverse positions r⃗i
and colors i1; i2; i3; a, we obtain

hαjPþ; R⃗ ¼ 0iOðgÞ ¼ 2g
jN j2
ð2πÞ2 ð2πÞ

3δ

�
1 −

X
xi

�
δ

�X
xir⃗i

�
1ffiffiffi
6

p
Z

½d2ki�ei
P

k⃗i·r⃗i
k⃗g · ϵ⃗�σ
k2g þ Δ2

×
X
j

½ϵji2i3ðtaÞi1jΨqqqðk1 þ kg; k2; k3Þ þ ϵi1ji3ðtaÞi2jΨqqqðk1; k2 þ kg; k3Þ

þ ϵi1i2jðtaÞi3jΨqqqðk1; k2; k3 þ kgÞ�: ð47Þ

3We are following the notation and expressions from Refs. [22,31].
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To properly account for probability conservation we also
need to include theOðg2Þ virtual corrections to Ψqqq. There
are two types of such corrections. The first one arises due to
emission and reabsorption of a gluon by one of the quarks
and amounts to multiplying the momentum-space quark
state vectors in Eq. (11) by the wave function renormaliza-
tion factor

ðZqðx1ÞZqðx2ÞZqðx3ÞÞ1=2

¼ 1 −
1

2
ðCqðx1Þ þ Cqðx2Þ þ Cqðx3ÞÞ; ð48Þ

with

Cqðx1Þ ¼
g2CF

4π2

Z
1

Δx=x1

dz
z
A0ðΔ2Þ;

A0ðΔ2Þ ¼ 4π

Z
d2n
ð2πÞ2

1

n⃗2 þ Δ2
: ð49Þ

Again, a cutoff Δx on the momentum fraction of the gluon
was introduced here. We regulate A0ðΔ2Þ in the UV by a
Pauli-Villars type regulator

Areg
0 ðΛ2=Δ2Þ ¼ A0ðΔ2Þ − A0ðΛ2Þ

¼ 4π

Z
d2n
ð2πÞ2

�
1

n⃗2 þ Δ2
−

1

n⃗2 þ Λ2

�

¼ log
Λ2

Δ2
; ð50Þ

where Λ2 is a UV cutoff. Then,

Creg
q ðx1Þ ¼

g2CF

4π2
log

x1
Δx

log
Λ2

Δ2
: ð51Þ

We were forced to introduce the momentum UV regulator
in the present calculation in order to regulate gluon
emissions at short transverse distances. Recall that earlier
we had to introduce a similar (coordinate space) regulator a
in order to define probabilities and entropy for a continuous
system, e.g. in (25). The two regulators, of course, should
not be considered independent. In the following we take
them to be related as Λ2 ¼ 1=a2, in the same way as we
took the regulator of the soft divergence to be equal to the
lattice spacing in the longitudinal momentum space Δx.
The second virtual correction to Ψqqq is due to the

exchange of a gluon between any pair of quarks. Let quark
1 emit and quark 2 absorb the gluon in jPi; we then have
(again for xg → 0)

jPþ; P⃗i12Oðg2Þ ¼
Z

½dxi�
Z

½d2ki�Ψqqqðk1; k2; k3Þ
1ffiffiffi
6

p
X
j1j2j3

ϵj1j2j3

× g2
X

σ;a;n;m

ðtaÞmj1ðtaÞnj2
Z
Δx

dxg
2xg

d2kg
ð2πÞ3

1

x1
ψ̂q→qgðp1;p1 − kg; kgÞ

×
1

x2
ψ̂qg→qðp2; kg;p2 þ kgÞjm;p1 − kg; n; p2 þ kg; j3; p3i: ð52Þ

Here, the amplitude for the absorption of a gluon by a quark is

ψ̂qg→qðkq; kg;pÞ ¼ −2xp
k⃗g · ϵ⃗σ
k2g þ Δ2

: ð53Þ

We can now sum over gluon polarizations,
P

σ k⃗g · ϵ⃗σ
�k⃗g · ϵ⃗σ ¼ k2g. Changing variables, k⃗1 → k⃗1 þ k⃗g and k⃗2 → k⃗2 − k⃗g,

we obtain

jPþ; P⃗i12Oðg2Þ ¼ −4g2
Z

½dxi�
Z

½d2ki�
1ffiffiffi
6

p
X
j1j2j3

ϵj1j2j3
X
a;n;m

ðtaÞmj1ðtaÞnj2

×
Z
x

dxg
2xg

d2kg
ð2πÞ3Ψqqqðk1 þ kg; k2 − kg; k3Þ

k2g
ðk2g þ Δ2Þ2 jm;p1; n; p2; j3; p3i: ð54Þ
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Adding analogous contributions corresponding to gluon exchanges between quarks 1, 3, and 2, 3 we finally have

jPþ; R⃗ ¼ 0iOðg2Þ ¼ −4g2
Z

½dxi�
Z

½d2ri�
1ffiffiffi
6

p
X
j1j2j3

ϵj1j2j3

Z
Δx

dxg
2xg

d2kg
ð2πÞ3

k2g
ðk2g þ Δ2Þ2

Z
½d2ki�ei

P
k⃗i·r⃗i

X
a;n;m

× ½ðtaÞmj1ðtaÞnj2Ψqqqðk1 þ kg; k2 − kg; k3Þjm; x1; r⃗1; n; x2; r⃗2; j3; x3; r⃗3i
þ ðtaÞmj1ðtaÞnj3Ψqqqðk1 þ kg; k2; k3 − kgÞjm; x1; r⃗1; j2; x2; r⃗2;n; x3; r⃗3i
þ ðtaÞmj2

ðtaÞnj3Ψqqqðk1; k2 þ kg; k3 − kgÞjj1; x1; r⃗1;m; x2; r⃗2; n; x3; r⃗3i�: ð55Þ

Projecting this onto the three-quark Fock state hji; xi; r⃗ij gives

hji; xi; r⃗ijPþ; R⃗ ¼ 0iOðg2Þ ¼ −4g2
jN j2
ð2πÞ2 δ

�
1 −

X
xi
�
ð2πÞ3δ

�X
xir⃗i

�Z
½d2qi�ei

P
q⃗i·r⃗i

Z
Δx

dxg
2xg

d2kg
ð2πÞ3

k2g
ðk2g þ Δ2Þ2

×
X
i1i2i3

�
1ffiffiffi
6

p ϵi1i2j3ðtaÞj1i1ðtaÞj2i2Ψqqqðx1; q⃗1 þ k⃗g; x2; q⃗2 − k⃗g; x3; q⃗3Þ

þ 1ffiffiffi
6

p ϵi1j2i3ðtaÞj1i1ðtaÞj3i3Ψqqqðx1; q⃗1 þ k⃗g; x2; q⃗2; x3; q⃗3 − k⃗gÞ

þ 1ffiffiffi
6

p ϵj1i2i3ðtaÞj2i2ðtaÞj3i3Ψqqqðx1; q⃗1; x2; q⃗2 þ k⃗g; x3; q⃗3 − k⃗gÞ
�
: ð56Þ

Alternatively, in terms of the position space wave function,

hji; xi; r⃗ijPþ; R⃗ ¼ 0iOðg2Þ ¼ −4g2
jN j2
ð2πÞ2 δ

�
1 −

X
xi
�
ð2πÞ3δ

�X
xir⃗i

�
Ψqqqðxi; r⃗iÞ

Z
Δx

dxg
2xg

d2kg
ð2πÞ3

k2g
ðk2g þ Δ2Þ2

×
X
i1i2i3

�
1ffiffiffi
6

p ϵi1i2j3ðtaÞj1i1ðtaÞj2i2e−ik⃗g·ðr⃗1−r⃗2Þ þ
1ffiffiffi
6

p ϵi1j2i3ðtaÞj1i1ðtaÞj3i3e−ik⃗g·ðr⃗1−r⃗3Þ

þ 1ffiffiffi
6

p ϵj1i2i3ðtaÞj2i2ðtaÞj3i3e−ik⃗g·ðr⃗2−r⃗3Þ
�
: ð57Þ

B. First perturbative correction to the density matrix

We are now in a position to calculate the perturbative
correction to the density matrix.
As already mentioned at the beginning of this section,

Eq. (44), after tracing over the colors of the quarks the
density matrix takes the form

ρ ¼
�
ρqqq 0

0 ρqqqg

�
: ð58Þ

Note that since ρqqq and ρqqqg are probability densities
on subspaces with different numbers of particles, they
have different dimensions. The trace operations over the
two entries are given by dx1=ð2x1Þdx2=ð2x2Þdx3=ð2x3Þ
δð1−P

i xiÞd2r1d2r2d2r3δð
P

xir⃗iÞ and dx1=ð2x1Þdx2=

ð2x2Þdx3=ð2x3Þδð1 −
P

i xiÞdxg=ð2xgÞd2r1d2r2d2r32πd2rg
δðP xir⃗iÞ, for ρqqq and ρqqqg, respectively. Hence, if one is
interested in probabilities given by ρ (or its purity, entropy,
etc.) one must multiply ρqqqg by 2πa2Δx=2xg, as we did in
the previous sections.
Let us now compute the matrix (58). We begin with ρqqq

which gives the probability density on the three-quark state
Hilbert space and includes Oðg2Þ virtual corrections. The
first correction is to multiply the Oð1Þ nonperturbative
density matrix from Eq. (14) by six wave function
renormalization factors,

Q
Z1=2ðxiÞ ¼ 1 −

P
Creg
q ðxiÞ=2.

Second,we add a term similar to Eq. (14)wherewe replace
one of the three-quark states of the proton by the Oðg2Þ
virtual correction due to the exchange of a gluon by two
quarks, Eq. (56). We also trace over the quark colors. In all,
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ρqqqαα0 ¼
�
1 −

1

2
ðCreg

q ðx1Þ þ Creg
q ðx2Þ þ Creg

q ðx3Þ þ Creg
q ðx01Þ þ Creg

q ðx02Þ þ Creg
q ðx03ÞÞ

�
Ψ�

qqqðx0i; r⃗0iÞΨqqqðxi; r⃗iÞ

þ 2g2CF

Z
½d2qi�

Z
Δx

dxg
2xg

d2kg
ð2πÞ3

k2g
ðk2g þ Δ2Þ2

n
ei
P

q⃗i·r⃗iΨ�
qqqðx0i; r⃗0iÞ

h
Ψqqq

�
x1; q⃗1 þ k⃗g; x2; q⃗2 − k⃗g; x3; q⃗3

�

þΨqqq

�
x1; q⃗1 þ k⃗g; x2; q⃗2; x3; q⃗3 − k⃗g

�
þΨqqq

�
x1; q⃗1; x2; q⃗2 þ k⃗g; x3; q⃗3 − k⃗g

�i

þ e−i
P

q⃗i·r⃗0iΨqqqðxi; r⃗iÞ
h
Ψ�

qqq

�
x01; q⃗1 þ k⃗g; x02; q⃗2 − k⃗g; x03; q⃗3

�
þ Ψ�

qqq

�
x01; q⃗1 þ k⃗g; x02; q⃗2; x

0
3; q⃗3 − k⃗g

�

þΨ�
qqq

�
x01; q⃗1; x

0
2; q⃗2 þ k⃗g; x03; q⃗3 − k⃗g

�io
: ð59Þ

¼
�
1 −

1

2
ðCreg

q ðx1Þ þ Creg
q ðx2Þ þ Creg

q ðx3Þ þ Creg
q ðx01Þ þ Creg

q ðx02Þ þ Creg
q ðx03ÞÞ

�
Ψ�

qqqðx0i; r⃗0iÞΨqqqðxi; r⃗iÞ

þ 2g2CFΨ�
qqqðx0i; r⃗0iÞΨqqqðxi; r⃗iÞ

Z
Δx

dxg
2xg

d2kg
ð2πÞ3

k2g
ðk2g þ Δ2Þ2

×
h
e−ik⃗g·ðr⃗1−r⃗2Þ þ e−ik⃗g·ðr⃗1−r⃗3Þ þ e−ik⃗g·ðr⃗2−r⃗3Þ þ eik⃗g·ðr⃗01−r⃗02Þ þ eik⃗g·ðr⃗01−r⃗03Þ þ eik⃗g·ðr⃗02−r⃗03Þ

i
: ð60Þ

Here, as in Eq. (16),α ¼ fxi; r⃗ij
P

xi ¼ 1;
P

xir⃗i ¼ 0g andα0 ¼ fx0i; r⃗0ij
P

x0i ¼ 1;
P

x0ir⃗
0
i ¼ 0g denote two sets of quarkLC

momentum fractions and transverse positions.
Now we proceed to ρqqqg. We trace it over quark and gluon colors, and, in addition, for simplicity over the gluon

polarizations. Using Eq. (47) in the definition (14) we obtain

ρqqqgαα0 ¼ 2g2CF

Z
½d2ki�½d2k0i�ei

P
k⃗i·r⃗i−i

P
k⃗0i·r⃗0i

k⃗g · k⃗
0
g

ðk2g þ Δ2Þðk02g þ Δ2Þ
× f2ðΨ�

qqqðk01 þ k0g; k02; k
0
3ÞΨqqqðk1 þ kg; k2; k3Þ þΨ�

qqqðk01; k02 þ k0g; k03ÞΨqqqðk1; k2 þ kg; k3Þ
þ Ψ�

qqqðk01; k02; k03 þ k0gÞΨqqqðk1; k2; k3 þ kgÞÞ −Ψqqqðk1 þ kg; k2; k3ÞΨ�
qqqðk01; k02 þ k0g; k03Þ

−Ψqqqðk1 þ kg; k2; k3ÞΨ�
qqqðk01; k02; k03 þ k0gÞ −Ψqqqðk1; k2 þ kg; k3ÞΨ�

qqqðk01 þ k0g; k02; k
0
3Þ

−Ψqqqðk1; k2 þ kg; k3ÞΨ�
qqqðk01; k02; k03 þ k0gÞ −Ψqqqðk1; k2; k3 þ kgÞΨ�

qqqðk01 þ k0g; k02; k
0
3Þ

−Ψqqqðk1; k2; k3 þ kgÞΨ�
qqqðk01; k02 þ k0g; k03Þg: ð61Þ

Here, α ¼ fxi; r⃗ij
P

xi ¼ 1;
P

xir⃗i ¼ 0g and α0 ¼
fx0i; r⃗0ij

P
x0i ¼ 1;

P
x0ir⃗

0
i ¼ 0g denote two sets of quark

and gluon momentum fractions and transverse positions.
In Appendix C we show that the density matrix is indeed

properly normalized.

V. ENTANGLEMENT ENTROPY OF THE
PERTURBATIVE DENSITY MATRIX

In this section we calculate the entanglement entropy of
the density matrix which includes one perturbatively
emitted gluon. We will change our strategy somewhat to
simplify the calculation. Integrating all degrees of freedom
in A and calculating the entanglement entropy turns out to
be rather awkward as there are many degrees of freedom in
Ā. Instead we choose to reduce the density matrix to a
partial set of degrees of freedom in the whole proton wave
function, and only then do we integrate over A. We will
follow two different routes.

In Sec. VAwe reduce the density matrix calculated above
by tracing over the gluon degrees of freedom in the whole
space. The resulting quark density matrix is then traced over
A and the associated entanglement entropy is calculated.
Note that already after integrating over the gluon degrees of
freedom the quark density matrix does not describe a pure
state and therefore in all probability carries a nonvanishing
entropy (which we do not calculate here). Thus the entropy
we calculate is not exactly the entanglement entropy
between the two spatial regions A and Ā, but instead
measures entanglement of quarks in Ā with the rest of the
proton wave function4 (quarks in A and gluon anywhere).

4Quantum correlations of regions A and Ā could be analyzed
using entanglement measures other than the von Neumann
entropy, which apply also to mixed states. One such example
is entanglement negativity [38,39] which has been used recently
to study two-quark azimuthal correlations in the light-cone wave
function of the proton [23].
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In Sec. V B we perform a complementary procedure: we
integrate over the quark degrees of freedom in the whole
space, and then reduce the resulting gluon density matrix
over A and calculate the entanglement entropy. Again, this
entropy measures entanglement of gluons in Ā with the rest
of the proton wave function.

A. Entanglement entropy of quarks

Let us construct the three-quark density matrix by tracing
out the gluon degrees of freedom in the whole space.
Integrating over the gluon leads to the density matrix

ρ ¼ ρqqq þ trgρqqqg: ð62Þ

The first term ρqqq is given in Eq. (60). To trace ρqqqgαα0 over
the gluon we set r⃗0g ¼ r⃗g in Eq. (61) and integrate with the
measure dxg=ð2xgÞ2πd2rg. In principle, the upper limit of
xg in each term of (61) is different. However, in the small-xg
approximation which we are employing here, only the
leading log 1=x contribution is important and we may
replace the upper limits by a typical quark momentum
fraction hxqi. We then obtain

trgρ
qqqg
αα0 ¼ 2g2CF

Z
Δx

dxg
2xg

Z
d2kg
ð2πÞ3

1

k2g þ Δ2

Z
½d2ki�½d2k0i�ei

P
k⃗i·r⃗i−i

P
k⃗0i·r⃗0iΨ�

qqqðk0iÞΨqqqðkiÞ

×
n
2ðe−ik⃗g·ðr⃗1−r⃗01Þ þ e−ik⃗g·ðr⃗2−r⃗02Þ þ e−ik⃗g·ðr⃗3−r⃗

0
3
ÞÞ − e−ik⃗g·ðr⃗1−r⃗02Þ − e−ik⃗g·ðr⃗1−r⃗

0
3
Þ

− e−ik⃗g·ðr⃗2−r⃗01Þ − e−ik⃗g·ðr⃗2−r⃗03Þ − e−ik⃗g·ðr⃗3−r⃗01Þ − e−ik⃗g·ðr⃗3−r⃗02Þ
o
: ð63Þ

This can be written in terms of the position space wave functions (17),

trgρ
qqqg
αα0 ¼ 2g2CFΨ�

qqqðx0i; r⃗0iÞΨqqqðxi; r⃗iÞ
Z
Δx

dxg
2xg

Z
d2kg
ð2πÞ3

	�
1

k2g þΔ2
−

1

k2g þΛ2

�
2
�
e−ik⃗g·ðr⃗1−r⃗01Þ þ e−ik⃗g·ðr⃗2−r⃗02Þ þ e−ik⃗g·ðr⃗3−r⃗03Þ

�

−
1

k2g þΔ2

h
e−ik⃗g·ðr⃗1−r⃗02Þ þ e−ik⃗g·ðr⃗1−r⃗03Þ þ e−ik⃗g·ðr⃗2−r⃗01Þ þ e−ik⃗g·ðr⃗2−r⃗03Þ þ e−ik⃗g·ðr⃗3−r⃗01Þ þ e−ik⃗g·ðr⃗3−r⃗02Þ

i

; ð64Þ

where we have reinstated the UV regulator Λ.5

Let us now discuss the entropy of the density matrix (62). Both terms in (62) are proportional to the leading order (LO)
density matrix ρLOαα0 ¼ Ψ�

qqqðx0i; r⃗0iÞΨqqqðxi; r⃗iÞ discussed in Sec. II A,

ρqqqαα0 ¼ Fðα;α0ÞρLOαα0 ; trgρ
qqqg
αα0 ¼ Gðα; α0ÞρLOαα0 ; ð65Þ

with

Fðα; α0Þ ¼ 1 − 3Creg
q ðhxqiÞ þ 2g2CF

Z
Δx

dxg
2xg

Z
d2kg
ð2πÞ3

1

k2g þ Δ2

×
n
e−ik⃗g·ðr⃗1−r⃗2Þ þ e−ik⃗g·ðr⃗1−r⃗3Þ þ e−ik⃗g·ðr⃗2−r⃗3Þ þ eik⃗g·ðr⃗01−r⃗02Þ þ eik⃗g·ðr⃗

0
1
−r⃗0

3
Þ þ eik⃗g·ðr⃗

0
2
−r⃗0

3
Þ
o

¼ 1 − 3Creg
q ðhxqiÞ þ

2g2CF

4π2

Z
Δx

dxg
2xg

fK0ðjr⃗1 − r⃗2jΔÞ þ K0ðjr⃗1 − r⃗3jΔÞ þ K0ðjr⃗2 − r⃗3jΔÞ

þK0ðjr⃗01 − r⃗02jΔÞ þ K0ðjr⃗01 − r⃗03jΔÞ þ K0ðjr⃗02 − r⃗03jΔÞg

Gðα; α0Þ ¼ 2g2CF

Z
Δx

dxg
2xg

Z
d2kg
ð2πÞ3

	�
1

k2g þ Δ2
−

1

k2g þ Λ2

�
2ðe−ik⃗g·ðr⃗1−r⃗01Þ þ e−ik⃗g·ðr⃗2−r⃗02Þ þ e−ik⃗g·ðr⃗3−r⃗03ÞÞ

−
1

k2g þ Δ2
½e−ik⃗g·ðr⃗1−r⃗02Þ þ e−ik⃗g·ðr⃗1−r⃗

0
3
Þ þ e−ik⃗g·ðr⃗2−r⃗01Þ þ e−ik⃗g·ðr⃗2−r⃗

0
3
Þ þ e−ik⃗g·ðr⃗3−r⃗01Þ þ e−ik⃗g·ðr⃗3−r⃗02Þ�




5The dependence on the IR cutoffs Δx and Δ2, and on the UV regulator Λ2, cancels when Eq. (62) is traced over the quark degrees of
freedom, as shown in Appendix C.
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¼ 2g2CF

4π2

Z
Δx

dxg
2xg

f2½K0ðjr⃗1 − r⃗01jΔÞ − K0ðjr⃗1 − r⃗01jΛÞ� þ 2½K0ðjr⃗2 − r⃗02jΔÞ − K0ðjr⃗2 − r⃗02jΛÞ�

þ 2½K0ðjr⃗3 − r⃗03jΔÞ − K0ðjr⃗3 − r⃗03jΛÞ�−K0ðjr⃗1 − r⃗02jΔÞ − K0ðjr⃗1 − r⃗03jΔÞ − K0ðjr⃗2 − r⃗01jΔÞ
−K0ðjr⃗2 − r⃗03jΔÞ − K0ðjr⃗3 − r⃗01jΔÞ − K0ðjr⃗3 − r⃗02jΔÞg: ð66Þ

Interestingly, the diagonal matrix elements are unaffected by the presence of the gluon in the wave function, since Fðα; αÞ þ
Gðα; αÞ ¼ 1 due to real-virtual cancellations. Also note that integration over the gluon reinstates the center of mass
constraint for the coordinates of the three quarks.
After tracing over region A both terms become block diagonal in the quark number basis, since the integration over the

gluon results in a reduced density matrix with fixed number of particles. The sub-blocks correspond to 0, 1, 2, 3 quarks in Ā,
like in Sec. III,

trA ρqqq ¼

0
BBBBBB@

ρðFÞ0 0 0 0

0 ρðFÞ1 0 0

0 0 ρðFÞ2 0

0 0 0 ρðFÞ3

1
CCCCCCA
; trA trg ρqqqg ¼

0
BBBBBB@

ρðGÞ0 0 0 0

0 ρðGÞ1 0 0

0 0 ρðGÞ2 0

0 0 0 ρðGÞ3

1
CCCCCCA
: ð67Þ

Recall from Sec. III that the ρ2 and ρ3 matrices are not diagonal in coordinate space [and their off diagonal elements do get
modified at Oðg2Þ] but that ρ1 is, due to the c.m. constraint. In the limit of small L, ρ0, and ρ1 give the leading contribution
∼L2 to the entropy.
For ρ0 all quarks are in the region A that we trace over, so r⃗i ¼ r⃗0i and only the diagonal matrix elements of the density

matrix (62) contribute. Since Fðα; αÞ þ Gðα; αÞ ¼ 1, the constant ρ0 remains equal to its value at LO, for any L. Hence, the
derivative of Sð0Þ for L → 0 remains ∂Sð0Þ=∂L ∼ L with the same numerical coefficient as in Eq. (36).
Now we consider ρ1. Since this block is diagonal in the quark indices, we only need to consider

ðρ1Þαα ¼ 3Δxa2
Z

dx1dx2
8x1x2x3

δ
�
1 −

X
xi
�Z

d2r1d2r2δ
�X

xir⃗i
�
ΘAðr⃗1ÞΘAðr⃗2Þ½Fðr⃗iÞ þ Gðr⃗iÞ�jΨðxi; r⃗iÞj2: ð68Þ

Here α ¼ fx3; r⃗3 ∈ Āg. The perturbative correction again cancels as the sum Fðr⃗iÞ þGðr⃗iÞ ¼ 1, and we return to the
expression from Sec. III. The trace [

R ðdx3=ΔxÞðd2r3=a2ÞΘĀðr⃗3Þ] vanishes at L ¼ 0 so there is no contribution to SðL ¼ 0Þ.
For L > 0,

Sð1Þ ¼ −3
Z

½dxi�½d2ri�ΘĀðr⃗3ÞΘAðr⃗1ÞΘAðr⃗2Þ½Fðr⃗iÞ þ Gðr⃗iÞ�jΨðxi; r⃗iÞj2

× log

�
3Δx a2

Z
½dyi�½d2si�δðs⃗3 − r⃗3Þδðx3 − y3ÞΘAðs⃗1ÞΘAðs⃗2ÞjΨðyi; s⃗iÞj2

�
: ð69Þ

The derivative of Sð1Þ with respect to L for L → 0 is
proportional to L with the coefficient given in Eq. (38).
To summarize, we find that, due to real-virtual cancel-

lations in gluon emission, the leading (at small L) term in
the entanglement entropy of quarks is identical to that for
the initial nonperturbative three-quark wave function.
Let us now take a look at ρ2 (two quarks inside the circle

separated by a typical distance of order L). It is given by the
LO expression, Eq. (26), times Fðr⃗1; r⃗2; r⃗3; r⃗01; r⃗02; r⃗3Þþ
Gðr⃗1; r⃗2; r⃗3; r⃗01; r⃗02; r⃗3Þ. Due to the c.m. constraint x1r⃗1 þ
x2r⃗2¼x01r⃗

0
1þx02r⃗

0
2¼−x3r⃗3, and x1þx2¼x01þx02¼1−x3,

so that there is in fact no integral over the coordinates
of the quark in A (r⃗3 or x3) as those are completely
determined by the coordinates and momentum fractions of
the two quarks in Ā.
We need F þ G for r⃗3 ¼ r⃗03, and we shall use the position

space (Bessel function) form of these functions from
Eq. (66). In the limit r⃗03 → r⃗3 we have that 2K0ðjr⃗3− r⃗ 03jΔÞ−
2K0ðjr⃗3− r⃗ 03jΛÞ→ logΛ2

Δ2. Furthermore, we consider
K0ðjr⃗1 − r⃗ 01jΛÞ and K0ðjr⃗2 − r⃗02jΛÞ to be exponentially
small since generically jr⃗1 − r⃗ 01j; jr⃗2 − r⃗ 02j ∼ L and
LΛ ≫ 1. With that, and noting that LΔ ≪ 1, we can write
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F þ G ≃ 1 −
2g2CF

4π2
log

xq
Δx

log
Λ2

Δ2
þ g2CF

8π2

Z
Δx

dxg
xg

�
log

1

ðr⃗1 − r⃗2Þ2Δ2
þ log

1

ðr⃗01 − r⃗02Þ2Δ2
þ 2 log

1

ðr⃗1 − r⃗01Þ2Δ2

þ2 log
1

ðr⃗2 − r⃗02Þ2Δ2
− log

1

ðr⃗1 − r⃗02Þ2Δ2
− log

1

ðr⃗2 − r⃗01Þ2Δ2

�
ð70Þ

≃1 −
2g2CF

4π2
log

xq
Δx

logL2Λ2 þ g2CF

8π2
log

xq
Δx

log
ðr⃗1 − r⃗02Þ2ðr⃗2 − r⃗01Þ2
ðr⃗1 − r⃗2Þ2ðr⃗01 − r⃗02Þ2

ð71Þ

≃1 −
2g2CF

4π2
log

xq
Δx

logL2Λ2: ð72Þ

The equality here is valid with leading logarithmic accuracy, since in the second step, log 1
ðr⃗1−r⃗01Þ2Δ2 and log 1

ðr⃗2−r⃗02Þ2Δ2 were

replaced by log 1
L2Δ2; and in the last step an Oð1Þ (nonlogarithmic) term was dropped.

With these simplifications F þG is just a number, i.e. it does not modify the matrix structure of ρ2 relative to the leading
order, but only multiplies the entire matrix by a numerical prefactor. Its contribution to the entropy Sð2Þ is given by the last
term in Eq. (33) with the substitution jΨðxi; r⃗iÞj2 → ðF þGÞjΨðxi; r⃗iÞj2,

Sð2Þ ¼ −3
�
1 −

2g2CF

4π2
log

xq
Δx

logL2Λ2

�Z
½dxi�½d2ri�ΘAðr⃗3ÞΘĀðr⃗1ÞΘĀðr⃗2ÞjΨðxi; r⃗iÞj2

× log

�
3Δxa2

Z
½dyi�½d2si�δðs⃗3 − r⃗3Þδðx3 − y3ÞΘĀðs⃗1ÞΘĀðs⃗2ÞjΨðyi; s⃗iÞj2

�
: ð73Þ

Here, with leading logarithmic accuracy we have omitted
the factor F þG under the logarithm.
Note that, as opposed to the entropy associated with ρ1,

this contribution to the entropy does receive corrections
from gluon emission. This arises because the two quarks
may be at different positions in the amplitude (1, 2) and the
conjugate amplitude (1’, 2’). The mismatch between these
positions is generically of order L, cf. Fig. 1. For such
configurations the contribution of the “real” diagrams, i.e.
the diagrams where a quark exchanges a gluon with itself
across the cut, is proportional to log 1

L2Δ2 rather than log Λ2

Δ2

as is the case for the “virtual” diagrams (where the gluon is
exchanged in the amplitude or the complex conjugate
amplitude). Thus the real-virtual cancellation is incomplete

and leads to the logarithmic correction in (73). The real-
virtual cancellation essentially only occurs when the gluon
is emitted outside Ā but not inside Ā. Also note that the
perturbative correction to Sð2Þ is negative, suggesting
stronger correlations between quarks when perturbative
gluon emission is included.
We note again that Sð2Þ is subleading for small L2 and

thus only provides a small correction to the quark entan-
glement entropy.

B. Entanglement entropy of the gluon

We now integrate over the quark degrees of freedom in
the whole space. The resulting density matrix for the gluon
has the general structure

FIG. 1. Left (virtual correction): the transverse position of the gluon emitting and gluon absorbing quark is the same; hence here the
gluon transverse momentum is integrated up to Λ, and we obtain a contribution ∼ log Λ2

Δ2. Right (real emission): here there is a mismatch
of order L in the transverse positions of quarks 1, 1’ across the cut, and the diagram is only ∼ log 1

L2Δ2.
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ρ ¼
�
trqqqρqqq 0

0 ρg

�
: ð74Þ

The first block is just a number which is equal to the probability that no gluons are present in the wave function. It is given
by the integral of the diagonal of Eq. (60) over ½dxi� and ½d2ri�,

trqqqρqqq ¼ 1 − 3Creg
q ðhxqiÞ þ 4g2CF

Z
½dxi�

Z
½d2ri�jΨqqqðxi; r⃗iÞj2

Z
Δx

dxg
2xg

Z
d2kg
ð2πÞ3

1

k2g þ Δ2

×
h
cos k⃗g · ðr⃗1 − r⃗2Þ þ cos k⃗g · ðr⃗1 − r⃗3Þ þ cos k⃗g · ðr⃗2 − r⃗3Þ

i
: ð75Þ

For the second block we return to Eq. (61) and integrate the diagonal in the three-quark space (x0i ¼ xi and r⃗0i ¼ r⃗i for the
three quarks) over ½dxi� and ½d2ri�.6 Note that since we have traced out the quarks in the whole space, the c.m. constraint
forces r⃗g ¼ r⃗0g, and the gluon density matrix is diagonal,

ρgαα ¼ 2g2CF

Z
d2kg
ð2πÞ3

Z
d2k0g
ð2πÞ3

k⃗g · k⃗
0
g

ðk2g þ Δ2Þðk02g þ Δ2Þ e
ik⃗g·r⃗g−ik⃗

0
g·r⃗g

Z
½dxi�½d2ri�jΨqqqðxi; r⃗iÞj2

×
n
2
�
eiðk⃗

0
g−k⃗gÞ·r⃗1 þ eiðk⃗

0
g−k⃗gÞ·r⃗2 þ eiðk⃗

0
g−k⃗gÞ·r⃗3

�
− eik⃗

0
g·r⃗2−ik⃗g·r⃗1 − eik⃗

0
g·r⃗3−ik⃗g·r⃗1 − eik⃗

0
g·r⃗1−ik⃗g·r⃗2 − eik⃗

0
g·r⃗3−ik⃗g·r⃗2

− eik⃗
0
g·r⃗1−ik⃗g·r⃗3 − eik⃗

0
g·r⃗2−ik⃗g·r⃗3

o
: ð76Þ

Here, α ¼ fxg; r⃗gg and α0 ¼ fx0g; r⃗0g0g. As before, the gluon “propagators” have to be regularized in the UV by the Pauli-
Villars regulator. This entails substituting 1

k2gþΔ2 → 1
k2gþΔ2 − 1

k2gþΛ2 and the same for k0g. We can simplify the resulting

expression somewhat, noting that the UV divergence only resides in the first term in the curly brackets in (76), since in the
second term both integrations, over k⃗g and k⃗0g, are already regulated by the phase factors, while in the first term the phase
factors only regulate the integration over kg − k0g. Also, it is sufficient to regulate only one of the propagators in the product
to eliminate the UV divergence, but this regularization has to be done symmetrically between k⃗g and k⃗

0
g. Thus, we substitute

1

ðk2g þ Δ2Þðk02g þ Δ2Þ →
1

ðk2g þ Δ2Þðk02g þ Δ2Þ −
1

2

�
1

ðk2g þ Δ2Þðk02g þ Λ2Þ þ
1

ðk2g þ Λ2Þðk02g þ Δ2Þ
�

ð77Þ

in the first term in the curly brackets of (76). We also use the symmetry of the quark wave function and the integration
measure to rename coordinates in some terms. The resulting UV regular density matrix then is

ρgαα ¼ 12g2CF

Z
d2kg
ð2πÞ3

Z
d2k0g
ð2πÞ3

k⃗g · k⃗
0
g

ðk2g þ Δ2Þðk02g þ Δ2Þ
Z

½dxi�½d2ri�jΨqqqðxi; r⃗iÞj2
n
eiðk⃗

0
g−k⃗gÞ·ðr⃗1−r⃗gÞ − eiðk⃗g−k⃗

0
gÞ·r⃗gþik⃗0g·r⃗2−ik⃗g·r⃗1

o

− 6g2CF

Z
d2kg
ð2πÞ3

Z
d2k0g
ð2πÞ3

�
k⃗g · k⃗

0
g

ðk2g þ Δ2Þðk02g þ Λ2Þ þ
k⃗g · k⃗

0
g

ðk2g þ Λ2Þðk02g þ Δ2Þ
� Z

½dxi�½d2ri�jΨqqqðxi; r⃗iÞj2eiðk⃗
0
g−k⃗gÞ·ðr⃗1−r⃗gÞ:

ð78Þ

Note that, when calculating trace of ρ, the regulator simply adds the term

−12g2CF

Z
d2kg
ð2πÞ3

1

k⃗2g þ Λ2
; ð79Þ

6In principle, these are integrations over the LC momentum fractions and transverse coordinates of the three quarks with c.m.
constraints which include the gluon, since the density matrix in Eq. (61) was defined over the domain

P
4
i¼1 xi ¼ 1,

P
4
i¼1 xir⃗i ¼ 0.

However, when xg is very small, the presence of the gluon will not significantly restrict the integrations over quark xi; r⃗i, and we can
approximate xg ≈ 0 in the δ-functions for the c.m. constraints.
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which (up to powers ofΔ2=Λ2) cancels the similar term that
arises from the regulator in Creg

q in (75). Thus, our Pauli-
Villars regularization preserves the trace of the density
matrix.
On the other hand, trρg by itself has the meaning of the

probability to find one gluon in the proton wave function.
The trace [2π

R
d2rg

R
dxg=ð2xgÞ] is given by

trρg ¼ 6g2CF

8π2
log

hxqi
Δx

�
log

Λ2

Δ2
− 2

×
Z

½dxi�½d2ri�jΨqqqðxi; r⃗iÞj2K0ðjr⃗2 − r⃗1jΔÞ
�
; ð80Þ

whereΔx as before is the IR cutoff on possible longitudinal
momenta and the integral over xg is cut off at hxqi
consistently with the soft gluon approximation. In the
second term the integral is dominated by jr⃗2 − r⃗1j of order
of the collinear regulator Δ−1, so the second term is
negligible.
Equation (80) can be related to the gluon PDF of the

proton. To leading order in perturbation theory [see for
example Eq. (65a) in Kovchegov and Mueller [40]],

αsCF

π

1

l2
¼ ∂

∂l2
xGqðx;l2Þ ð81Þ

is the gluon PDF of a quark. Thus, for a proton consisting of
three quarks we identify the gluon PDF as

3g2CF

4π2

Z
dk2

�
1

k2 þ Δ2
−

1

k2 þ Λ2

�

¼ 3g2CF

4π2
log

Λ2

Δ2
→ xGðx;Λ2Þ: ð82Þ

Hence, we have

trρg ¼
Z
Δx

dxg
xg

xgGðxg;Λ2Þ ¼
Z
Δx

dxgGðxg;Λ2Þ: ð83Þ

Indeed this is just the total number of gluons at the
resolution scale of the UV cutoff Λ. The fact that the
UV cutoff appears in this quantity is not surprising, since
here we are dealing with the density matrix of the entire
proton wave function rather than the part of it probed by a
DIS probe. If we were to calculate the density matrix of
only those degrees of freedom that participate in a DIS
process, we expect that the UV cutoff would be substituted
by the external resolution scale Λ2 → Q2 provided by the
virtual photon.
Let us now construct the reduced density matrix after

tracing over A. It is of the form

ρ ¼
�
I þ ρg0 0

0 ρg1

�
; ð84Þ

where I ≡ trqqqρqqq for brevity. The first entry is the
probability that there are no gluons in Ā and is, of course,
a pure number,

ρg0 ¼
Z
Δx

dxg
2xg

2π

Z
d2rgΘAðr⃗gÞρgαα: ð85Þ

The lower block is a diagonal (in coordinate space)
matrix

ρg1ðr⃗Þ ¼ ρgðr⃗ÞΘĀðr⃗Þ; ð86Þ

with ρg from Eq. (78). Like for quarks, we need to scale ρg1
with the transverse-longitudinal lattice spacing and with the
factor 2π=2xg that accompanies the integration measure
dxgd2rg. Wewill not do it explicitly here, but instead restore
these factors directly in the expression for the entropy.
For L ¼ 0, as already mentioned, I þ ρg0 ¼ 1. We are

interested in the nontrivial small-L regime, Δ−1 ≫ L ≫
Λ−1 or LΔ ≪ 1 ≪ ΛL. In this regime we expect
I þ ρg0 ∼ 1 −OðŁ2Þ. The contribution to the entropy asso-
ciated with this single eigenvalue of the density matrix
should be Sð0Þ ∼OðL2Þ. The matrix ρg1 on the other hand,
has small eigenvalues, for the same reason discussed
previously. All the eigenvalues should be of order
ðΔxÞa2Δ2, due to the dimensionality of ρg1. Thus, we
expect the contribution from ρg1 to the entropy to contain
an additional enhancement by a logarithm of ðΔxÞa2,

Sð1Þ ¼ −
Z
Δx

dxg
2xg

2π

Z
d2rgΘĀðr⃗gÞðρgÞαα

× log

�
2πa2

Δx
2xg

ðρgÞαα
�
: ð87Þ

This therefore is the leading contribution to the entropy and
we will calculate it first.
Let us examine ðρgÞαα for jr⃗gj < L ≪ Δ−1. The first term

in (78) is

12g2CF

Z
d2kg
ð2πÞ3

Z
d2q
ð2πÞ3

�
1

ðk⃗g þ q⃗Þ2 þ Δ2

þ k⃗g · q⃗

ðk⃗2g þ Δ2Þððk⃗g þ q⃗Þ2 þ Δ2Þ

�
e−iq⃗·r⃗g

×
Z

½dxi�½d2ri�jΨqqqðxi; r⃗iÞj2feiq⃗·r⃗1 − eik⃗g·ðr⃗2−r⃗1Þþiq⃗·r⃗2g:

ð88Þ
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The integrals over the quark positions basically result
in a “smeared δ-function” in q⃗ with width Δ, so jq⃗j ∼ Δ.
That means that the phase e−iq⃗·r⃗g ∼ 1 since LΔ ≪ 1.
Furthermore, the denominator of the second rational factor
is essentially constant (independent of the direction of q⃗)
both for small and large k⃗g; hence, it gives zero after
integration over the directions of q⃗. Finally, the second
phase factor in the curly braces would restrict jk⃗gj ∼ Δ
which results in a subleading contribution. In all, we
simplify the above to

12g2CF

Z
d2kg
ð2πÞ3

1

k⃗2g þ Δ2

Z
d2q
ð2πÞ3

×
Z

½dxi�½d2ri�jΨqqqðxi; r⃗iÞj2eiq⃗·r⃗1

≃ 12g2CF
Δ2

π

Z
d2kg
ð2πÞ4

1

k⃗2g þ Δ2
: ð89Þ

We have assumed in these estimates that the nonperturbative
scale entering the gluon propagator (Δ2) and the non-
perturbative scale appearing in the quark wave function
(the average quark transverse momentum squared ∼β2) are
of the same order.
The second term in (78) gives a similar expression, but

with Δ replaced by Λ, and with the opposite sign. In all, for
jr⃗gj < L,

ðρgÞαα ≃
12g2CF

ð2πÞ4 Δ2 log
Λ2

Δ2
: ð90Þ

This has a simple interpretation. We are calculating the
probability density of a gluon to be emitted at point r⃗ inside
Ā. Since the region inside Ā is small compared to the proton
(L ≪ 1=Δ) the emission probability does not depend on r⃗.
It is given (with the appropriate prefactor) by the integral of
the intensity of the Weizsäcker-Williams field of a quark,
integrated over the coordinate of the quark weighted with
the square of the quark wave function. With logarithmic
accuracy this is simply

R
Λ−2<r2<Δ−2 d2r 1

r2, which is precisely
the logarithm in (90).
Using this in Eq. (87) we obtain

Sð1Þ ¼ −L2Δ2

Z
Δx

dxgGðxg;Λ2=Δ2Þ

× log

�
a2Δ2

π
ðΔxÞGðxg;Λ2=Δ2Þ

�

¼ −L2Δ2

Z
Δx

dxgGðxg;Λ2=Δ2Þ

× log

�
Δ2

πΛ2
ðΔxÞGðxg;Λ2=Δ2Þ

�
: ð91Þ

Once again, ðΔ2=πÞGðxg;Λ2=Δ2Þ is the density of gluons
per unit transverse area.
Since the density matrix (84) is normalized, we infer

from (90)

I þ ρg0 ¼ 1 −
3g2CF

4π2
L2Δ2

Z
Δx

dxg
xg

logΛ2=Δ2; ð92Þ

and the associated entropy is

Sð0Þ ¼ 3g2CF

4π2
L2Δ2

Z
Δx

dxg
xg

logΛ2=Δ2

¼ L2Δ2

Z
Δx

dxgGðxg;Λ2=Δ2Þ: ð93Þ

This is the gluon density per unit transverse area multiplied
by the area of the cutout. As expected, this is a subleading
correction to (91) and can be neglected.
Thus our final result for the gluon entanglement entropy

in the limit of small area of the cutout is given in Eq. (91).

VI. DISCUSSION

To summarize, we calculated the entanglement entropy
of subsets (in several variations) of partonic modes in the
model proton wave function inside a small disk of radius L
by integrating all the other modes in the rest of the wave
function. The area was taken small relative to the total area
of the proton (a soft, nonperturbative scale) L2 ≪ π=Δ2,
but greater than the inverse UV cutoff L2 ≫ 1=Λ2.
We now want to comment on these results. Let us

consider the two expressions (40) and (91). Equation (40)
gives the entanglement entropy of quarks at leading order
in the model wave function, while Eq. (91) is the
entanglement entropy of gluons at next to leading order.
They have almost identical structure and are reminiscent of
the form of Boltzmann entropy of a system of noninter-
acting particles. The PDFs that enter (40) and (91) (F in the
former and G in the latter) are the total numbers of quarks
and gluons in the proton. Defining the number of partons
(at a given x) inside an area S, in the longitudinal
momentum interval Δx, as NSðxÞ ¼ S

Ap
ðΔxÞFðxÞ for

quarks and NSðxÞ ¼ ðSΔ2=πÞðΔxÞGðxÞ for gluons, both
equations can be written as

SE ¼ −
Z

dx
Δx

NL2ðxÞ log½Na2ðxÞ�: ð94Þ

This expression is quite natural. For small a2 and Δx, one
can only have either one or no partons inside the
elementary cell a2Δx. The average number of partons
Na2ðxÞ is then just the probability that the cell contains a
single parton. Equation (94) then is just (the leading term
of) the Shannon entropy of this distribution multiplied by
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the total area (or rather L2=a2—the number of independent
elementary cells in the area of the cutout) and integrated
over x with the appropriate measure. The fact that the
entropy is proportional to the area L2 is a trademark
property of an extensive quantity. Of course, the entangle-
ment entropy is not, strictly speaking, extensive—the
proportionality to area only holds when the area of the
cutout is small. Were we to take the area of the cutout to be
equal to the area of the proton we would have to obtain
vanishing entropy as we would not be integrating out any
degrees of freedom. So, the dependence of entropy on area
should follow some sort of a Page curve which could be
obtained numerically from Eq. (33), for example.
The one significant difference between Eqs. (40)

and (91) is that in the latter the number of particles is
defined with the resolution scale Λ2, as is appropriate in the
QCD improved parton model, while in the former there is
no need to specify a resolution scale.
Does the entropy calculated here have direct physical

meaning? One should remember, of course, that the
calculation presented here does not refer to any particular
physical process, but rather to the properties of the proton
wave function per se. As such, it is not observable directly.
We can try, however, to interpret this result from the point
of view of a DIS or jet production process. In this type of
process there is a physical resolution scale, the momentum
transfer Q2 to the electron or the transverse momentum of a
produced jet. A naive physical picture is then that this scale
should determine the size of the area of the proton measured
by the probe, as well as the resolution with which one
measures the parton number. Taking L2 ∼ a2 ∼ 1=Q2, Δ2 ¼
πΛ2

QCD and fixing the value of x as appropriate for DIS,
we then may hope to define a more physical quantity. For
gluons that would be

SEðQ2; xÞ ¼ −NQ−2ðxÞ log½NQ−2ðxÞ�

¼ −
Λ2
QCD

Q2
ðΔxÞGðx;Q2Þ

× log

�Λ2
QCD

Q2
ðΔxÞGðx;Q2Þ

�
: ð95Þ

It is not entirely clear to us what should be taken as the
“longitudinal resolution scale” Δx. The inclusive DIS cross
section does not provide for a scale of this sort. However, if
one measures the spectrum of produced particles, perhaps
Δx should be related to the width of the rapidity bin in
which the particles are measured.
Finally, it would be interesting to compare our results

with those of Ref. [8]. This may not be entirely straight-
forward for the following reason. Our expressions apply
to the “dilute regime” when the entropy is dominated by

states with one parton within the cutout area,
Λ2
QCD

Q2 ðΔxÞ
Gðx;Q2Þ ≪ 1. On the other hand, Ref. [8] focused on the

saturation regime where the number of particles in the
cutout is assumed to beOð1=αsÞ. Still, the actual derivation
of Ref. [8] only requires that the rapidity is large enough so
that the exponential growth of the gluon density in rapidity
has taken hold. This in itself does not imply saturation, but
rather the presaturation Balitsky-Fadin-Kuraev-Lipatov-like
regime, so that the gluon density is still small but low-x
evolution already has to be resummed.
At any rate, one expects the same elements to appear in

the expression for entropy both in Ref. [8] and in our
calculation. Indeed, the parton density is the basic physical
quantity that appears, and in this respect the two results are
similar. However, there are some significant differences
between the two. In particular, according to Ref. [8] the
entropy is given by the logarithm of xGðxÞ. This is
somewhat perplexing since xGðxÞ has the meaning of
the longitudinal momentum carried by the partons and not
the parton number. Equation (95), on the other hand,

contains
Λ2
QCD

Q2 ðΔxÞGðx;Q2Þ which is precisely the number

of partons in the area of the cutout (and in the rapidity
interval Δx), which appears to be the natural basic element
for quantifying the entropy. Whether the number of partons
at high energy is somehow supplanted by the longitudinal
momentum fraction carried by the partons is an interesting
question which should be answered by an explicit
calculation.
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APPENDIX A: SHANNON ENTROPY
OF A PROBABILITY DENSITY FUNCTION

FOR A CONTINUOUS DEGREE OF FREEDOM

In this appendix we review the definition of the entropy
associated with a classical probability density function over
a continuous degree of freedom. We discuss the extension
to a quantum mechanical density matrix at the end.
First, recall the expression for the classical Shannon

entropy for a set of discrete outcomes of a random draw,
with probabilities Pi,
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HðfPigÞ ¼ −
X
i

Pi logPi: ðA1Þ

If the set of possible outcomes is continuous, e.g. x ∈ Rþ,
their distribution is given by a normalized, integrable
(including possibly the δ-function measure) probability
density function pðxÞ > 0,

Z
dxpðxÞ ¼ 1: ðA2Þ

Note that if x is dimensional then dimðpÞ ¼ ½dimðxÞ�−1.
Also, that the integration measure does not involve any
x-dependent Jacobians, all of which must be absorbed into
pðxÞ for it to be a valid probability density with respect to
the integration measure dx.
To apply Shannon’s formula here, we first discretize the

continuous set of outcomes by introducing (equal size) bins
Δx > 0. An outcome x falls into bin i ¼ bx=Δxc. The
probability Pi for an event in bin i is

Pi ¼
Zðiþ1ÞΔx

iΔx

dx pðxÞ≡ piΔx; ði ∈ N0Þ: ðA3Þ

In the last step we defined the binned density pi as the
average of the probability density pðxÞ over bin i.
We now have

H½p� ¼ −
X
i

Zðiþ1ÞΔx

iΔx

dxpðxÞ logðpiΔxÞ: ðA4Þ

If pðxÞ is a continuous function then

H½p� ¼ −
Z

dxpðxÞ logðpðxÞΔxÞ; ðA5Þ

and the entropy does not have a finite Δx → 0 limit. (Even
so, the relative entropy for two such probability densities
does converge.) If, on the other hand, pðxÞ is given by a
sum of Dirac δ-functions then Eq. (A4) does converge since
this basically recovers the case of discrete outcomes.
Along similar lines, let ρxx0 denote a density matrix

describing a continuous degree of freedom. By postulate,
its trace is normalized,

trρ ¼
Z

dx ρxx ¼
Z

dx
Δx

ðΔxÞ ρxx ¼ 1: ðA6Þ

Once again we stress that the trace measure must be dx,
with any x-dependent Jacobians absorbed into ρ. The von
Neumann entropy S is given by the Shannon entropy of the
vector of dimensionless eigenvalues of ðΔxÞρ. Upon
binning the eigenvalue distribution, it is given by

S ¼ −
X
i

Zðiþ1ÞΔλ

iΔλ

dλpðλÞ logðpiΔλÞ: ðA7Þ

APPENDIX B: CALCULATING TRACES
OF POWERS OF ρ

Gearing up for the calculation of the von Neumann
entropy, we write expressions for the trace of powers of the
density matrix, trðρĀÞN (which, if desired can be used to
determine the Rényi entropy).
Since our density matrix is block diagonal in the particle

number basis, the different blocks do not talk to each other
and can be considered separately.
In the zero particle subspace ρ0 is a number and thus

trρN0 ¼ ρN0 : ðB1Þ

It is easy to see that in the three particle subspace we
simply have

trρN3 ¼ ðtr ρ3ÞN ¼
�Z

½dxi�½d2ri�ΘĀðr⃗1ÞΘĀðr⃗2ÞΘĀðr⃗3ÞjΨðxi; r⃗iÞj2
�
N
: ðB2Þ

Note that in both (B1) and (B2) the lattice spacing a does not appear.
Consider now the single particle subspace,

ðρ21Þαα ¼ ðρ1Þααðρ1Þαα
¼ 3Δxa2

Z
dx1dx2
8x1x2x3

δð1− x1 − x2 − x3Þ
Z

d2r1d2r2δðx1r⃗1 þ x2r⃗2 þ x3r⃗3ÞΘAðr⃗1ÞΘAðr⃗2ÞjΨðx1; r⃗1;x2; r⃗2;x3; r⃗3Þj2

× 3Δxa2
Z

dy1dy2
8y1y2x3

δð1− y1 − y2 − x3Þ
Z

d2s1 d2s2 δðy1s⃗1 þ y2s⃗2 þ x3r⃗3ÞΘAðs⃗1ÞΘAðs⃗2ÞjΨðy1; s⃗1;y2; s⃗2;x3; r⃗3Þj2:

ðB3Þ
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Taking the trace,

trρ21 ¼
Z

dx3
Δx

Z
d2r3
a2

ΘĀðr⃗3Þ

× 3Δxa2
Z

dx1dx2
8x1x2x3

δð1 − x1 − x2 − x3Þ
Z

d2r1d2r2δðx1r⃗1 þ x2r⃗2 þ x3r⃗3ÞΘAðr⃗1ÞΘAðr⃗2ÞjΨðx1; r⃗1; x2; r⃗2; x3; r⃗3Þj2

× 3Δxa2
Z

dy1dy2
8y1y2x3

δð1 − y1 − y2 − x3Þ
Z

d2s1d2s2δðy1s⃗1 þ y2s⃗2 þ x3r⃗3ÞΘAðs⃗1ÞΘAðs⃗2ÞjΨðy1; s⃗1; y2; s⃗2; x3; r⃗3Þj2

¼
Z

dx3
Δx

Z
d2r3
a2

ΘĀðr⃗3Þ
�
3Δxa2

Z
½dyi�δðy3 − x3Þ

Z
½d2si�δðs⃗3 − r⃗3ÞΘAðs⃗1ÞΘAðs⃗2ÞjΨðyi; s⃗iÞj2

�
2

: ðB4Þ

For an arbitrary N we obtain

trρN1 ¼
Z

dx3
Δx

Z
d2r3
a2

ΘĀðr⃗3Þ
�
3Δx a2

Z
½dyi�δðy3 − x3Þ

Z
½d2si�δðs⃗3 − r⃗3ÞΘAðs⃗1ÞΘAðs⃗2ÞjΨðxi; s⃗iÞj2

�
N
: ðB5Þ

As noted in the main text of this paper, the lattice spacing does not cancel in this expression, and formally this expression
vanishes, for N > 1, in the “continuum limit” Δx; a → 0.
Now consider traces of powers of ρ2. We have

ðρ22Þαα0 ¼ 9ðΔx a2Þ3
Z

½dyi�½d2si�ΘĀðs⃗1ÞΘĀðs⃗2Þδðx3 − y3Þδðs⃗3 − r⃗3ÞjΨðyi; s⃗iÞj2
Ψðxi; r⃗iÞ
x3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

p Ψ�ðx0i; r⃗0iÞ
x3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x01x

0
2x3

p : ðB6Þ

In this expression r⃗3 ¼ −ðx1r⃗1 þ x2r⃗2Þ=x3 ¼ r⃗03 ¼ −ðx01r⃗01 þ x02r⃗
0
2Þ=x03, while x3 ¼ 1 − x1 − x2 ¼ x03 ¼ 1 − x01 − x02.

Recall, also, that here the indices α ¼ fx1; r⃗1; x2; r⃗2g, α0 ¼ fx01; r⃗01; x02; r⃗02g, are defined over the domain r⃗1; r⃗2;
r⃗01; r⃗

0
2 ∈ Ā, r⃗3 ∈ A.

The trace, defined with the measure dx1dx2d2r1d2r2Θðx3ÞΘAðr⃗3ÞΘĀðr⃗1ÞΘĀðr⃗2Þ=ða2ΔxÞ2, is

trρ22 ¼ 3

Z
½dxi�½d2ri�ΘAðr⃗3ÞΘĀðr⃗1ÞΘĀðr⃗2ÞjΨðxi; r⃗iÞj2

× 3Δxa2
Z

½dyi�½d2si�ΘĀðs⃗1ÞΘĀðs⃗2Þδðx3 − y3Þδðs⃗3 − r⃗3ÞjΨðyi; s⃗iÞj2: ðB7Þ

Note that this is actually identical to Eq. (B4) for trρ21 with A ↔ Ā, as it should be.
For general power N,

trρN2 ¼
Z

dx3
Δx

Z
d2r3
a2

ΘAðr⃗3Þ
�
3Δxa2

Z
½dyi�½d2si�δðx3 − y3Þδðs⃗3 − r⃗3ÞΘĀðs⃗1ÞΘĀðs⃗2ÞjΨðyi; s⃗iÞj2

�
N
: ðB8Þ

Again we see that the lattice spacing does not disappear in this expression and formally leads to its vanishing for a → 0
and N > 1.

APPENDIX C: CHECKING TRACES

Here we check the normalization of the density matrix (58).
First let us take the trace of ρqqq, which amounts to setting x0i ¼ xi, r⃗0i ¼ r⃗i and integrating over ½dxi� and ½d2ri�. The first

line gives

Z
½dxi�½d2ri�ð1 − 3Creg

q ðx1ÞÞjΨqqqðxi; r⃗iÞj2 ¼ 1 − 3

Z
½dxi�½d2ri�Creg

q ðx1ÞjΨqqqðxi; r⃗iÞj2; ðC1Þ

where we used the normalization condition (31) for the three-quark wave function. From the rest of Eq. (59) we get
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2g2CF

Z
½dxi�½d2ri�

Z
Δx

dxg
2xg

d2kg
ð2πÞ3

k2g
ðk2g þΔ2Þ2 jΨqqqðxi; r⃗iÞj2

×
h
e−ik⃗g·ðr⃗1−r⃗2Þ þ e−ik⃗g·ðr⃗1−r⃗3Þ þ e−ik⃗g·ðr⃗2−r⃗3Þ þ c:c:

i
: ðC2Þ

Now let us take the trace of the matrix (61). To do this set
x0i ¼ xi, r⃗0i ¼ r⃗i, and integrate over all degrees of freedom,
including the momentum fraction of the gluon with the
measure dxg=2xg, and its transverse position with the
measure 2πd2rg. This is done by performing the following
steps: (i) extract the integrations over dxg=2xg, d2kg=ð2πÞ3,
and d2k0g=ð2πÞ3 from ½dxi�, ½d2ki�, and ½d2k0i�; (ii) perform
the integration over d2rg which produces a ð2πÞ2δðk⃗g − k⃗0gÞ;
and (iii) shift the quark momenta (as needed) by −k⃗g so
that the arguments of the Ψqqq functions no longer involve

k⃗g; note that this also changes δðk⃗1 þ k⃗2 þ k⃗3 þ k⃗gÞ →
δðk⃗1 þ k⃗2 þ k⃗3Þ, and similar for the primed momenta. The
first three terms of Eq. (61) then give (takingΔ2 → 0where
possible)

3 · 4g2CF

Z
½dxi�½d2ri�jΨqqqðxi; r⃗iÞj2

Z
x1

Δx

dxg
2xg

×
Z

d2kg
ð2πÞ3

1

k2g þ Δ2
: ðC3Þ

This cancels against the Oðg2Þ correction in Eq. (C1), after
regularization of the UV divergence, ðk2g þ Δ2Þ−1 →
ðk2g þ Δ2Þ−1 − ðk2g þ Λ2Þ−1.
The remaining terms of (61) give

−2g2CF

Z
½dxi�½d2ri�jΨqqqðxi; r⃗iÞj2

Z
Δx

dxg
2xg

d2kg
ð2πÞ3

k2g
ðk2gþΔ2Þ2

×
h
e−ik⃗g·ðr⃗1−r⃗2Þ þe−ik⃗g·ðr⃗1−r⃗3Þ þe−ik⃗g·ðr⃗2−r⃗3Þ þc:c:

i
: ðC4Þ

This cancels against (C2). The cancellations of the pertur-
bative corrections in the trace ensure that it remains ¼ 1,
and independent of the coupling g2 and the IR (collinear
and soft) and UV cutoffs.
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