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We present the resummed predictions consisting of both soft-virtual (SV) as well as next-to-SV
(NSV) threshold logarithms to all orders in perturbative QCD for the rapidity distribution of Higgs
boson up to next-to-next-to-leading order plus next-to-next-to-leading-logarithmic ðNNLOþ NNLLÞ
accuracy at LHC. Using our recent formalism, the resummation is carried out in the double Mellin space
by restricting the NSV contributions only from diagonal gg channel. We perform the inverse Mellin
transformation using the minimal prescription procedure and match it with the corresponding fixed-
order results. We do a detailed analysis of the numerical impact of the resummed result. The K-factor
values at different logarithmic accuracy suggest that the prediction for the rapidity distribution
converges and becomes more reliable at NNLOþ NNLL order. Further, we observe that the inclusion
of resummed NSV contribution improves the renormalization scale uncertainty at every order in
perturbation theory. However, the uncertainty due to factorization scale increases by the addition of
resummed SVþ NSV predictions to the fixed-order rapidity distribution.
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I. INTRODUCTION

There have been plethora of data available on accurate
measurements of observables from LHC at CERN in recent
times. This, combined with the precise theoretical predic-
tions from various state-of-the-art computations, has facili-
tated establishing the Standard Model (SM) as being
extremely successful in describing the physics of elemen-
tary particles. It has also helped in probing physics beyond
the SM (BSM) scenarios in a very clear environment. In the
next few years, the high-luminosity LHC will come into
effect, which will not only increase the chances to see rare
processes, but will also improve the precision of measure-
ments. One of the most important processes at LHC is
the Higgs boson production, which helps in probing the
electroweak symmetry breaking and the coupling of the
Higgs boson with other SM particles. The dominant
channel in Higgs production is the gluon fusion process
due to the large flux of gluons present in the protons at
these energies. The other alternate channel is through the
bottom quark annihilation, which has gained the attention
of theoretical physicists in recent times due to the free-
dom it provides in treating the initial state bottom quarks.

The Drell-Yan (DY) production of a pair of leptons
through the decay of virtual photons, Z and W bosons,
at LHC is also an effective process as it helps in probing
the structure of hadrons.
The measurements of inclusive and differential

rates [1,2], like transverse momentum and rapidity dis-
tributions of the Higgs boson production, are very useful
in understanding the symmetry breaking mechanism and
Higgs boson coupling with other SM particles. Likewise,
measurements [3–5] pertaining to Drell-Yan production
for inclusive as well as differential rates provide pivotal
information related to BSM scenarios, namely, R-parity
violating supersymmetric models [6], models with Z0 or
with contact interactions, and large extra-dimension
models [7,8]. The rapidity distributions of Drell-Yan
production have also been used for a long time to calibrate
the detectors and to obtain the parton distribution func-
tions (PDFs) [9–13]. The next-to-next-to-leading order
(NNLO) QCD predictions for inclusive and rapidity
distribution for both Drell-Yan and Higgs boson produc-
tion in gluon-gluon fusion have been known for a long
time. In recent years, the next-to-next-to-next-to-leading
order (N3LO) result for the Drell-Yan [14,15] as well as
Higgs production through gluon fusion [16–18] and
through bottom quark annihilation [19,20] have become
available for both of these observables.
The fixed-order QCD predictions for both inclusive and

differential cross sections have limitations in applicability
due to the presence of various logarithms that become large
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in a certain kinematic region, called the threshold region.
These dominant contributions in the form of logarithms that
result from the emission of soft gluons spoil the reliability
of the perturbative results due to the truncation of the series.
A viable solution to this problem is to systematically resum
these large logarithms to all orders in perturbation theory
and then supplement it with the fixed-order results, which
can cover the entire kinematic region of the phase space.
There are several approaches in the literature to achieve this
for both inclusive and differential cross sections [21–27].
Sterman [21] and Catani and Trentadue [22] did extensive
studies to achieve the resummation of these threshold
large logarithms, also called soft-virtual (SV) logarithms,
through the reorganization of the perturbative series. They
performed the threshold resummation in the Mellin space
for the inclusive case, whereas for the rapidity distribution,
the formalism was extended using double Mellin moments.
Using factorization properties and renormalization group
(RG) invariance, one of the authors of this paper developed
an all-order z space formalism to capture the threshold-
enhanced contribution in the context of inclusive [27,28]
as well as differential cross sections [29] of any colorless
particle. This formalism was further used for Z and W�
case [30] using two scaling variables. It was also applied
to Drell-Yan and Higgs boson production at N3LO level
[20,31] and at next-to-next-to-leading order plus next-to-
next-to-leading logarithmic (NNLOþ NNLL) accuracy
[32,33]. The threshold resummation technique has also
been achieved using the soft-collinear effective theory
(SCET) in momentum space for inclusive [34] as well
as transverse momentum distribution [35]. The resumma-
tion for rapidity distribution using SCET formalism has
been carried out in Refs. [36–38].
The threshold resummation technique that we have

followed in this paper is based on Refs. [22,29,30].
Here, the resummation for the rapidity distribution is done
in the two-dimensional Mellin space as the convolutions
become normal products in the N space. The double Mellin
variables N1 and N2 correspond to z1 and z2 in z space;
hence the resummation of large logarithms becomes
proportional to logðNiÞ in the limit Ni → ∞ (zi → 1 in z
space) with i ¼ 1, 2. In the large N limit, the logðNiÞ
combined with the strong coupling constant αs gives order
1 terms and, therefore, truncating the series at a particular
order of αs is not possible. This difficulty is overcome
by using the factorization properties, universality of the
infrared (IR) contributions and the RG invariance to
systematically resum these order 1 terms to all orders in
perturbation theory. In this paper, we not only deal with the
SV logarithms, but have included the resummed subleading
threshold logarithms known as next-to-soft-virtual (NSV)
logarithms as well. The importance of these collinear
NSV logarithms was understood long ago and several
attempts have been made so far to understand the structure
of these corrections for certain inclusive [14,16,19,39] and

differential [40] observables. Unlike the SV distributions,
these NSV logarithms are also present in the off-diagonal
channels. The understanding of their all-order structure is
still an open problem [41–53]. Recently, we have devel-
oped a formalism to systematically resum the NSV loga-
rithms coming from diagonal channels for inclusive cross
sections of various processes at LHC [54–57]. It was later
extended for the case of rapidity distribution of a pair of
leptons in Drell-Yan and a Higgs boson in gluon fusion as
well as in bottom quark annihilation [58]. We have
achieved the resummation of these NSV logarithms to
all orders in perturbation theory in z as well as in the Mellin
N space.
In this paper, we discuss the phenomenological impor-

tance of the resummed NSV logarithms for the production
of Higgs boson via gluon fusion at LHC. We first review
the theoretical framework of the formalism developed to
study these logarithms along with the relevant theoretical
predictions. This is followed by the comprehensive study
on the numerical impact of resumming the NSV contri-
butions at various orders in perturbation theory. Finally,
we conclude the paper by providing a short discussion on
our main findings.

II. THEORETICAL FRAMEWORK

We begin by considering a generic hadronic collision
between two hadrons H1;ð2Þ having momentum P1;ð2Þ that
produce a colorless final state denoted as FðqÞwith q being
its momentum,

H1ðP1Þ þH2ðP2Þ → FðqÞ þ X: ð1Þ

Here, the quantity X represents an inclusive hadronic state.
The rapidity of this final colorless state F is defined through

y≡ 1

2
ln

�
P2 · q
P1 · q

�
: ð2Þ

In a QCD improved parton model, the differential
distribution with respect to rapidity for the colorless state
F at a hadronic level for Higgs boson production through
gluon fusion can be expressed as

dσg

dy
¼ σ̃gBðτ; q2Þ

X
a;b¼q;q̄;g

Z
1

x0
1

dz1
z1

Z
1

x0
2

dz2
z2

fa

�
x01
z1

; μ2F

�

× fb

�
x02
z2

; μ2F

�
Δg

d;abðz1; z2; q2; μ2F; μ2RÞ; ð3Þ

where σ̃B is the product of the Born cross section computed
in full theory with finite quark masses and the square of the
Wilson coefficient CH in the Higgs effective field theory
[59,60]. Here, we have included the Wilson coefficient CH
computed in Ref. [59] as given below,
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CHðasÞ ¼ −
4as
3

�
1þ asð11Þ þ a2s

��
2777

18
þ 19 log

�
μ2R
m2

t

��
þ nf

�
−
67

6
þ 16

3
log

�
μ2R
m2

t

���

þ a3s

�
−
2892659

648
þ 3466

9
log

�
μ2R
m2

t

�
þ 209log2

�
μ2R
m2

t

�
þ 897943

144
ζ3

þ nf

�
40291

324
þ 1760

27
log

�
μ2R
m2

t

�
þ 46log2

�
μ2R
m2

t

�
−
110779

216
ζ3

�

þ n2f

�
−
6865

486
þ 77

27
log

�
μ2R
m2

t

�
−
32

9
log2

�
μ2R
m2

t

����
; ð4Þ

where as ¼ αs
4π, nf is the number of light quark flavors and

ζ3 is the Riemann zeta function. In (3), σ̃B explicitly
depends on the masses of both the Higgs boson (mH) and
the top quark (mt) and is renormalized at the renormal-
ization scale μR. The dimensionless variable z is defined

as z ¼ q2

ŝ , where ŝ is the square of the partonic center of
mass energy and τ is defined as τ ¼ q2=S, where S is
the square of the hadronic center of mass energy. The
nonperturbative functions fcðxl; μ2FÞ are the parton dis-
tribution functions of the colliding partons a, b with
momentum fractions xl (l ¼ 1, 2). These PDFs are
renormalized at the factorization scale μF. The other
scale appearing in the above equation is the renormaliza-
tion scale μR used for the evolution of the strong coupling
constant αs. Here, we limit our computation to the region
of threshold limit or soft limit, i.e., z → 1, and the
corresponding contribution to the differential rapidity
distribution is referred to as SVþ NSV contributions. In
order to define the threshold limit at the partonic level for
the rapidity distribution, we choose to work with a set of
symmetric scaling variables x0

1ð2Þ instead of y and τ, which
are related through

y≡ 1

2
ln

�
x01
x02

�
and τ≡ x01x

0
2: ð5Þ

In (3), Δg
d;ab are calculated perturbatively in powers

of strong coupling constant as and are referred to as
coefficient functions (CFs). Beyond leading order, the
CFs contain ultraviolet and infrared divergences at the
intermediate stages. The UV divergences are often
removed in the MS renormalization scheme at a renorm-
alization scale μR. The UV finite partonic cross sections
are then left with two categories of IR divergences,
namely, soft and collinear divergences. The soft diver-
gences associated with the soft gluons get canceled
between the virtual and real emission diagrams in
infrared safe observables. The collinear singularities
related to the collinear partons are removed by summing
over degenerate final states and by mass factorization
at a factorization scale μF. The fixed-order perturbative

results are therefore often sensitive to scales μR and μF.
The CFs contain various logarithmic structures and are
represented as

Δg
d;abðz1; z2; q2; μ2F; μ2RÞ

¼
X∞
i¼0

aisðμ2RÞΔðiÞ;g
d;abðz1; z2; q2; μ2F; μ2RÞ; ð6Þ

where

ΔðiÞ;g
d;abðz1; z2; q2;μ2F;μ2RÞ
¼ΔðiÞ;g

d;ab;δδδð1− z1Þδð1− z2Þ
þ
X

ΔðiÞ;g
d;ab;δDj

δð1− z2ÞDjþ
X

ΔðiÞ;g
d;ab;δD̄j

δð1− z1ÞD̄j

þ
X

ΔðiÞ;g
d;ab;DjD̄k

DjD̄k þΔðiÞ;g
d;ab;Rðz1; z2Þ; ð7Þ

with Di ¼
�
lnið1 − z1Þ
ð1 − z1Þ

�
þ
; D̄i ¼

�
lnið1 − z2Þ
ð1 − z2Þ

�
þ
: ð8Þ

The distributions Di and D̄i along with δð1 − z1Þ
and δð1 − z2Þ are called the SV contributions to the infrared
safe observable. These terms come from only diagonal
channels. The leading contributions of the regular part

ΔðiÞ;g
d;ab;Rðz1; z2Þ near the threshold region zl ¼ 1 consist of

terms of the form DiðzlÞlnkð1−zjÞ and δð1−zlÞ lnkð1−zjÞ
with (l; j ¼ 1; 2), (i; k ¼ 0; 1;…). These are called the
NSV contributions, which come from diagonal as well
as nondiagonal channels. The SV terms have been studied
in great detail by one of the authors of this paper in
Ref. [29]. In the next section, we explore the NSV
contributions to the partonic CFs.

A. Next to SV in z space

The subleading NSV contributions present in the regular
part of the partonic CFs play an important role in the
precise prediction of the differential distributions. They
also help in understanding the structure of beyond SV terms
in the threshold expansion at higher orders. The regular part
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of the CFs containing beyond SV terms is expanded around
z ¼ 1 in the following way:

ΔðiÞ;g
d;ab;Rðz1; z2Þ ¼

Y
j¼1;2

X2i−1
k¼0

X∞
l¼0

Δreg;ðiÞ;g
d;ab;l;k ð1 − zjÞl lnkð1 − zjÞ:

ð9Þ

The NSV logarithms also demonstrate perturbative behav-
ior like SV logarithms and therefore can be expressed in the
powers of strong coupling constant as,

Δg;NSV
d;ab ðz1; z2Þ ¼

X∞
i¼0

aisðμ2RÞΔg;NSV;ðiÞ
d;ab ðz1; z2Þ: ð10Þ

In the threshold region near z ¼ 1, Δg;NSV;ðiÞ
d;ab ðz1; z2Þ is

defined by setting l ¼ 0 in (9) as

Δg;NSV;ðiÞ
d;ab ðz1; z2Þ ¼

Y
j¼1;2

X2i−1
k¼0

Δreg;ðiÞ;g
d;ab;0;k ln

kð1 − zjÞ: ð11Þ

These NSV contributions are sometimes also called next-to-
leading power contributions. We have recently developed a
formalism in Ref. [58] to study the all-order behavior of
NSV terms in rapidity distributions of any colorless particle
produced in hadron colliders. Our formalism systematically
includes the NSV contributions coming from only the
diagonal channel. We have determined the complete NSV
contributions to third order in strong coupling constant for
the rapidity distributions of the Drell-Yan process and also
for Higgs boson production via gluon fusion, as well as
bottom quark annihilation in Ref. [58]. The all-order z space
result is presented in a compact form through an integral
representation. This z space integral representation is then
used to resum order 1 terms in the two-dimensional Mellin
space to get a reliable theoretical prediction.
The formalism uses RG invariance and the factorization

properties to show that the diagonal CFs containing both
SV and NSV contributions exponentiate as

ΔSVþ NSV
d;g ¼ C expðΨg

dðμ2R; μ2F; z̄1; z̄2; εÞÞjε¼0; ð12Þ

where the function Ψg
d is given by

Ψg
dðμ2R; μ2F; z̄1; z̄2; εÞ ¼ ðlnðZUV;gðâs; μ2; μ2R; εÞÞ2 þ ln jF̂gðâs; μ2;−m2

H; εÞj2Þδðz̄1Þδðz̄2Þ þ 2Φg
dðâs; μ2; m2

H; z̄1; z̄2; εÞ
− C lnΓggðâs; μ2; μ2F; z̄1; εÞδðz̄2Þ − C lnΓggðâs; μ2; μ2F; z̄2; εÞδðz̄1Þ: ð13Þ

The function Ψg
d is computed in 4þ ϵ space-time dimen-

sions in perturbative QCD and the scaling variables are
shifted to z̄1 ¼ 1 − z1 and z̄2 ¼ 1 − z2. The symbol C
refers to the convolution and its action on any exponential
of a function can be found in Ref. [54]. In Ref. [29], it has
been demonstrated thatΨg

d can be decomposed in terms of
form factor Fg, soft-collinear distribution Φg

d, and the
diagonal Altarelli-Parisi kernels Γgg. The function ZUV;g

is the overall renormalization constant. The different
terms in Ψg

d are UV and IR divergent. However, when
these terms are combined, the divergences cancel among
each other making Ψg

d finite and regular in the variable ϵ.

The soft-collinear distribution Φg
d containing only the SV

contribution associated with the real emission has been
discussed in great detail in Ref. [29]. In Ref. [58], we
have presented the soft-collinear distribution Φg

d taking
into account both SV and NSV contributions. The
divergent part of the NSV contribution to Φg

d cancels
against the collinear singularities from Altarelli-Parisi
(AP) kernels Γgg [61]. Using the NSV incorporated
soft-collinear distribution Φg

d, we get the integral repre-
sentation of the finite function Ψg

d, which contains the all-
order information of the mass-factorized differential
distribution,

Ψg
d ¼

δðz̄1Þ
2

�Z
q2 z̄2

μ2F

dλ2

λ2
Pgðasðλ2Þ; z̄2Þ þQg

d

�
asðq22Þ; z̄2

	�
þ
þ 1

4

�
1

z̄1

�
Pg

�
asðq212Þ; z̄2

	
þ 2Lg

�
asðq212Þ; z̄2

	

þ q2
d
dq2

�
Qg

d

�
asðq212Þ; z̄2

	
þ 2φf

d;g

�
asðq212Þ; z̄2

		��
þ
þ 1

2
δðz̄1Þδðz̄2Þ ln

�
ggd;0

�
asðμ2FÞ

		
þ z̄1 ↔ z̄2; ð14Þ

where Pgðas;z̄lÞ¼Pgðas;z̄lÞ−2BgðasÞδðz̄lÞ, q2l ¼q2ð1−zlÞ,
and q212 ¼ q2z̄1z̄2. The subscript þ indicates standard plus
distribution. We consider only the diagonal parts of the AP

splitting function Pgðas; z̄lÞ, as nondiagonal splitting func-
tions upon convolutions give only beyond NSV terms. The
diagonal AP splitting function near z ¼ 1 is given as
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Pggðzj; asðμ2FÞÞ ¼ 2
h
Bgðasðμ2FÞÞδð1 − zjÞ

þ Agðasðμ2FÞÞD0ðzjÞ þ Lgðasðμ2FÞ; zjÞ
i
;

ð15Þ

where Ag and Bg are the cusp and collinear anomalous
dimensions, respectively, and

Lgðasðμ2FÞ; zjÞ≡ Cgðasðμ2FÞÞ lnð1 − zjÞ þDgðasðμ2FÞÞ:
ð16Þ

The cusp, the collinear anomalous dimensions, and the
constants Cg and Dg are available in [57,62–64] up to third
order. The constant ggd;0 present in Eq. (14) encapsulates the
finite part of the virtual contributions and pure δðz̄lÞ terms
of Φg

d.
The function Qg

d present in Eq. (14) is expressed as

Qg
dðas; z̄lÞ ¼

2

z̄l
Dg

dðasÞ þ 2φf
d;gðas; z̄lÞ: ð17Þ

The functional form of the SV coefficient Dg
d is given in

Eq. (7) of Ref. [32] where it is expanded in powers of
strong coupling constant as in the limit ϵ → 0 and
presented up to third order. The function φd;g is the finite

part of the NSV contribution φðiÞ
d;g to the soft-collinear

distribution given in Eq. (3) of [58] and is parametrized in
terms of lnkð1 − zjÞ as

φf
d;gðasðλ2Þ; z̄lÞ ¼

X∞
i¼1

X∞
k¼0

âis

�
λ2

μ2

�
iϵ
2

Siϵφ
ði;kÞ
d;g ðϵÞ lnk z̄l

¼
X∞
i¼1

Xi

k¼0

aisðλ2Þφg;ðkÞ
d;i lnk z̄l; ð18Þ

where Sϵ ¼ expðϵ
2
½γE − lnð4πÞ�Þ with γE being the Euler-

Mascheroni constant. The upper limit on the sum over k is
controlled by the dimensionally regularized Feynman
integrals that contribute to order ais. The coefficients

φg;ðkÞ
d;i given in the above equation are known up to third

order and listed below,

φg;ð0Þ
d;1 ¼ 2CA; φg;ð1Þ

d;1 ¼ 0; φg;ð0Þ
d;2 ¼ CAnf

�
−
136

27
þ 8

3
ζ2

�
þ C2

A

�
904

27
− 28ζ3 −

104

3
ζ2

�
;

φg;ð1Þ
d;2 ¼ CAnf

�
−
2

3

�
þ C2

A

�
2

3

�
; φg;ð2Þ

d;2 ¼ C2
Að−4Þ;

φg;ð0Þ
d;3 ¼ CAn2f

�
−
232

729
þ 32

27
ζ3 −

176

27
ζ2

�
þ C2

Anf

�
−
80860

729
þ 704

9
ζ3 þ

11960

81
ζ2 −

24

5
ζ22

�
þ C3

A

�
423704

729
þ 192ζ5

−
18188

27
ζ3 −

55448

81
ζ2 þ

176

3
ζ2ζ3 þ

1384

15
ζ22

�
þ CFCAnf

�
−
2158

27
þ 472

9
ζ3 þ

16

3
ζ2 þ

32

5
ζ22

�
;

φg;ð1Þ
d;3 ¼ CAn2f

�
56

27

�
þ C2

Anf

�
1528

81
− 8ζ3 −

152

9
ζ2

�
þ C3

A

�
−
18988

81
þ 448

3
ζ3 þ

752

9
ζ2

�
þ CFCAnf

�
4 −

8

3
ζ2

�
;

φg;ð2Þ
d;3 ¼ CAn2f

�
8

27

�
þ C2

Anf

�
164

27
þ 2

3
ζ2

�
þ C3

A

�
−
1432

27
þ 40

3
ζ2

�
;

φg;ð3Þ
d;3 ¼ C2

Anf

�
32

27

�
þ C3

A

�
−
176

27

�
: ð19Þ

The color factorsCA ¼ Nc andCF ¼ ðN2
c − 1Þ=2Nc for the

SUðNcÞ gauge group. Here, nf is the number of active
flavors and ζi are the Riemann zeta functions. The next task
is to systematically resum these SV and NSV logarithms
illustrated above in the threshold region zl → 1, where they
become numerically large.

B. Resummation

We have derived the analytical expression of the
resummed partonic coefficient function in Ref. [58] in
the double Mellin space where zl → 1 translates to large Nl

limit with l ¼ 1, 2. Using the all-order integral representa-
tion ofΨg

d in Eq. (14) and the RG equation of as, the Mellin
moment of Δg

d is expressed as

Δg
d;N1;N2

¼ g̃gd;0 expðΨg
d;N1;N2

Þ; ð20Þ

whereΨg
d;N⃗

is the double Mellin moment of the functionΨg
d

and g̃gd;0 ¼
P∞

i¼0 a
i
sg̃

g
d;0;i are the N-independent constants.

Section 2.2 of [41] and Appendix A.5 of [54] contain the
results required for the computation of Mellin moments of
distributions as well as the regular terms in the large Nl

RESUMMED NEXT-TO-SOFT CORRECTIONS TO RAPIDITY … PHYS. REV. D 108, 014012 (2023)

014012-5



limit for inclusive cross section, which we have extended
for the rapidity distribution case. Using these results, we
computed the resummed result for Ψg

d;N⃗
and it takes the

following form:

Ψg
d;N1;N2

¼ ggd;1ðωÞ lnN1

þ
X∞
i¼0

ais

�
1

2
ggd;iþ2ðωÞ þ

1

N1

ḡgd;iþ1ðωÞ
�

þ 1

N1

�
hgd;0ðω; N1Þ þ

X∞
i¼1

aish
g
d;iðω;ω1; N1Þ

�

þ ðN1 ↔ N2;ω1 ↔ ω2Þ; ð21Þ

where

hgd;0ðω; NlÞ ¼ hgd;00ðωÞ þ hgd;01ðωÞ lnNl;

hgd;iðω;ωl; NlÞ ¼
Xi−1
k¼0

hgd;ikðωÞ lnk Nl þ h̃gd;iiðω;ωlÞ lnk Nl:

ð22Þ

Here ω ¼ asβ0 lnN1N2, ωl ¼ asβ0 lnNl for l ¼ 1; 2 and
hgd;01ðωÞ ¼ 0.
The expressions in (21) and (22) are slightly different

from those in Eqs. (12) and (13) of [58], due to the explicit
wl dependence in the diagonal terms h̃gd;ii, which needs
an explanation. We notice that the diagonal terms hgd;ii for
i ≥ 2 (or, in general, hcd;ii for c ¼ q, g, b, which represent the
Drell-Yan process, Higgs production in gluon fusion, and
bottom quark annihilation, respectively) involve only the
previous order information and hence can be included in
the earlier order. Taking this fact into account, we redefine
the diagonal terms at each order in the following way:

h̃gd;11ðω;ωlÞ ¼ hgd;11ðωÞ þ
ωl

β0
hgd;22;

h̃gd;iiðω;ωlÞ ¼
ωl

β0
hgd;iþ1;iþ1; ∀ i ≥ 2: ð23Þ

The results of hgd;ii remain the same as in [58]. We emphasize
that both the definitions correctly predict the higher-order
resummed terms at every logarithmic accuracy and the only
difference comes in how much lower-order information is
required for predicting the higher-order terms.
Working in the Mellin space has facilitated the entire

exponent in Eq. (20) to be written in a compact form through
the functions ggd;i, ḡ

g
d;i, and h

g
d;i, containing both SVand NSV

logarithmic contributions to all orders. Also, the use of
resummed as allowed us to organize the series in such a way
that ω is treated as order 1 at every order in perturbation
theory. The integral representation in z space (14) and the
resummed result in Mellin space contain exactly the same
information regarding SV and NSV contributions, with the
only difference being that there is no compact-looking
structure in the former case. The N-independent constants
g̃gd;0 and the SV resummation exponents ggd;i have been
discussed in great detail in Refs. [32,58,65,66]. Also, the
explicit expressions for g̃gd;0 and ggd;i can be found in the
Supplemental Material of Ref. [58]. Here, we focus on
the NSV resummation exponents, namely, ḡgd;i and hgd;i. The

coefficients hgd;i depend on the NSV coefficients φf
d;c, as well

as on Cg and Dg from Pg. It contains a double series
expansion in asðμ2RÞ and lnNl and the explicit lnNl comes
from the explicit lnð1 − zlÞ terms in the expansion of φf

d;g.
The coefficient hgd;01 being proportional to Cg

1 is identically
zero. Hence, at order a0s, there is no ð1=NlÞ lnðNlÞ term. The
results for the coefficients ḡgd;i and hgd;i are provided in
Appendixes A and B, respectively.
The entire all-order information is embedded systemati-

cally in the resummation exponents g̃gd0;i; g
g
d;iðωÞ; ḡgd;iðωÞ,

and hgd;iðω;ωl; NlÞ, which can be used to predict SV and
NSV terms to all orders. We present Tables I and II below to
demonstrate this predictive feature for the SV and NSV
terms inΔg

d;N1;N2
at a given logarithmic accuracy. In Table I,

we list the predictions for the SV logarithms. The
resummed exponents fg̃gd:0;0; ggd;1g given in the first row
can predict the leading SV terms ais lnl N1 lnk N2 with
lþ k ¼ 2i (l; k ≥ 0) for all i > 1, which form the tower of

TABLE I. The set of resummed exponents fg̃gd;0;n; ggd;ng that is required to predict the tower of SV logarithms in Δg;ðnÞ
d;N1;N2

at a given
logarithmic accuracy in the Mellin N space. Here, i, j ≥ 0 and Li

l ¼ lni Nl with l ¼ 1, 2.

Given Predictions: SV logarithms

Logarithmic accuracyResummed exponents Δg;ð2Þ
d;N1;N2

Δg;ð3Þ
d;N1;N2

Δg;ð4Þ
d;N1;N2 � � � Δg;ðnÞ

d;N1;N2

g̃gd;0;0; g
g
d;1

n
Li
1L

j
2

o



iþj¼4

n
Li
1L

j
2

o



iþj¼6

n
Li
1L

j
2

o



iþj¼8

� � � n
Li
1L

j
2

o



iþj¼2n

LL

g̃gd;0;1; g
g
d;2

n
Li
1L

j
2

o



iþj¼5;4

n
Li
1L

j
2

o



iþj¼7;6

� � � n
Li
1L

j
2

o



iþj¼2n−1;2n−2

NLL

g̃gd;0;2; g
g
d;3

n
Li
1L

j
2

o



iþj¼5;4

� � � n
Li
1L

j
2

o



iþj¼2n−3;2n−4

NNLL
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SV leading logarithms (LLs) and this contributes to the
SV-LL resummation. When we include the functions
fg̃gd;0;1; ggd;2g given in the second row in the exponent
Ψg

d;N1;N2
along with the first set, we get two towers of

next-to-leading logarithmic (NLL) SV terms ais lnl N1 lnk N2

with lþ k ¼ 2i − 1; 2i − 2 for all i > 2. By using the first
and second row resummed exponents, we get the logarithms
that constitute the SV-NLL resummation. In general, the
resummed result with exponents fg̃gd;0;n; ggd;nþ1g along with
the previous sets can predict the term ais lnl N1 lnk N2 with
lþ k ¼ 2nþ 1; 2n for all i > nþ 1, where n ¼ 0; 1; 2 � � �
and constitutes the SV-NnLL resummation.
Table II gives the predictions for NSV logarithms present

in Δg
d;N1;N2

by including the resummed exponents
fḡgd;i; hgd;ig together with the SV resummed exponents.
For instance, using the first set of resummed exponents
fg̃gd;0;0; ggd;1; ḡgd;1; hgd;0g, we can predict the leading towers

of NSV logarithms fais ln
lN1

N1
lnkN2; ais

lnlN2

N2
lnkN1g with

lþ k ¼ 2i − 1 for all i > 1. These leading towers con-
stitute the NSV-LL resummation. The second set of
resummed exponents fg̃gd;0;1; ggd;2; ḡgd;2; hgd;1g in addition
to the first set gives the towers of next-to-leading NSV

terms fais ln
lN1

N1
lnkN2; ais

lnlN2

N2
lnkN1g with lþ k ¼ 2i − 2

for all i > 2 and these towers contribute to the NSV-
NLL resummation. In general, using the nth set
fg̃qd;0;n; gqd;nþ1; ḡ

q
d;nþ1; h

q
d;ng in addition to the previous sets,

we get to predict the highest (nþ 1) towers of NSV
logarithms in Nl with l ¼ 1, 2, which constitute the
NnLL resummation, at every order in ais for all i > nþ 1.

C. All-order prediction

In the previous section, we have shown that, using a
particular set of resummed exponents at each logarithmic
accuracy, we can predict certain SVand NSV logarithms in

Δg;ðnÞ
d;N1;N2

at each order in the perturbation theory in the
Mellin N space as depicted in Tables I and II. Here, we
present the resulting predictions for the NSV logarithms up
to fourth order in perturbation theory using the set of
resummed exponents belonging to LL, NLL, and NNLL
resummation as shown in Table II. Our results do not have
renormalization and factorization scales explicitly, as we
have set μR ¼ μF ¼ mH. The SVþ NSV resummed result
at the leading logarithmic (LL) accuracy is given by

Δg;LL
d;N1;N2

¼ g̃gd;0;0 exp

�
lnN1g

g
d;1ðωÞ þ

1

N1

�
ḡgd;1ðωÞ þ hgd;0ðω; N1Þ

	�
þ ðN1 ↔ N2Þ: ð24Þ

The resummed exponents present in the above
equation depend on one-loop anomalous dimensions
and process-dependent finite coefficients obtained from
fixed-order NLO results. Thus, the above equation
provides leading SV and NSV logarithms at every
order in perturbation theory using only one-loop infor-
mation. Below, we present the predictions for the
leading NSV logarithms at a2sðNNLOÞ, a3sðN3LOÞ,
and a4sðN4LOÞ level resulting from the LL resummation
expression. In the expressions given below, Li;j

N1;2
¼

lni N1

N1
lnj N2, Lk

Nl
¼ lnk Nl

Nl
, and Lk

l ¼ lnNl with l ¼ 1, 2,

and γE is the Euler-Mascheroni constant. At a2s
(NNLO), we get

Δg;ð2Þ
d;N1;N2





SVþNSV−LL

¼ Δg;ð2Þ
d;N1;N2





SV−LL

þ L3
N1
f4C2

Ag
þ L2;1

N1;2
f12C2

Ag þ L1;2
N1;2

f12C2
Ag

þ L3
2

N1

f4C2
Ag þ ðN1 ↔ N2Þ: ð25Þ

By putting N1 ¼ N2 ¼ N in the above prediction
and taking the Mellin inverse of the resulting expression,

TABLE II. The set of resummed exponents fg̃gd;0;n; ggd;n; ḡgd;n; hgd;ng that is required to predict the tower of NSV logarithms inΔg;ðnÞ
d;N1;N2

at

a given logarithmic accuracy in the Mellin N space. Here, i, j ≥ 0, Li;j
N1;2

¼ lni N1

N1
lnj N2 and Li;j

N2;1
¼ lni N2

N2
lnj N1.

Given Predictions: NSV logarithms

Logarithmic
accuracy

Resummed
exponents Δg;ð2Þ

d;N1;N2
Δg;ð3Þ

d;N1;N2
Δg;ð4Þ

d;N1;N2 � � � Δg;ðnÞ
d;N1;N2

g̃gd;0;0; g
g
d;1; ḡ

g
d;1; h

g
d;0

n
Li;j
N1;2

; Li;j
N2;1

o



iþj¼3

n
Li;j
N1;2

; Li;j
N2;1

o



iþj¼5

n
Li;j
N1;2

; Li;j
N2;1

o



iþj¼7

� � � n
Li;j
N1;2

; Li;j
N2;1

o



iþj¼2n−1

LL

g̃gd;0;1; g
g
d;2; ḡ

g
d;2; h

g
d;1

n
Li;j
N1;2

; Li;j
N2;1

o



iþj¼4

n
Li;j
N1;2

; Li;j
N2;1

o



iþj¼6

� � � n
Li;j
N1;2

; Li;j
N2;1

o



iþj¼2n−2

NLL

g̃gd;0;2; g
g
d;3; ḡ

g
d;3; h

g
d;2

n
Li;j
N1;2

; Li;j
N2;1

o



iþj¼5

� � � n
Li;j
N1;2

; Li;j
N2;1

o



iþj¼2n−3

NNLL
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we obtain the result for the inclusive cross section in z
space as

Δg;ð2Þ
Mellin−Inverse;z





SVþNSV−LL

¼ D3f128C2
Ag − ln3ð1 − zÞf128C2

Ag: ð26Þ

The above terms are in agreement with the explicit result
given in the Appendix of Ref. [67] in the threshold
domain (in the limit z → 1) for μ ¼ m.
At a3s (N3LO), we obtain

Δg;ð3Þ
d;N1;N2





SVþNSV−LL

¼ Δg;ð3Þ
d;N1;N2





SV−LL

þ L5
N1
f4C3

Ag þ L4;1
N1;2

f20C3
Ag

þ L3;2
N1;2

f40C3
Ag þ L2;3

N1;2
f40C3

Ag

þ L1;4
N1;2

f20C3
Ag þ

L5
2

N1

f4C3
Ag þ ðN1 ↔ N2Þ: ð27Þ

Now, following the same method that we applied on the
prediction at a2s order, the inclusive results in z space are
given by

Δg;ð3Þ
Mellin−Inverse;z





SVþNSV−LL

¼ D5f512C3
Ag − ln5ð1 − zÞf512C3

Ag: ð28Þ

The above terms in z space are in agreement with the
explicit computation in Ref. [68] in the threshold domain
(in the limit z → 1). We have also verified the agreement of
the above SV and NSV terms with the results obtained in
Refs. [24,50], respectively.

Expanding Eq. (24) up to a4s (N4LO), we obtain

Δg;ð4Þ
d;N1;N2





SVþNSV−LL

¼ Δg;ð4Þ
d;N1;N2





SV−LL

þ L7
N1

�
8

3
C4
A

�
þ L6;1

N1;2

�
56

3
C4
A

�

þ L5;2
N1;2

f56C4
Ag þ L4;3

N1;2

�
280

3
C4
A

�
þ L3;4

N1;2

�
280

3
C4
A

�

þ L2;5
N1;2

f56C4
Ag þ L1;6

N1

�
56

3
C4
A

�
þ L7

2

N1

�
8

3
C4
A

�

þ ðN1 ↔ N2Þ: ð29Þ

If we put N1 ¼ N2 ¼ N in the above expression and do
the Mellin inverse transformation on the resulting expres-
sion, it takes the following form in z space for the inclusive
cross section at fourth order:

Δg;ð4Þ
Mellin−Inverse;z





SVþNSV−LL

¼ D7

�
4096

3
C4
A

�
− ln7ð1 − zÞ

�
4096

3
C4
A

�
: ð30Þ

Here, the distribution part D7 is already computed in
Ref. [28], whereas the NSV part ln7ð1 − zÞ is in agreement
with the prediction obtained using the physical kernel
approach in Ref. [50].
We next look at the expression for the SVþ NSV

resummed result at next-to-leading logarithmic (NLL)
accuracy given below,

Δg;NLL
d;N1;N2

¼ ðg̃gd;0;0 þ asg̃
g
d;0;1Þ exp

h
lnN1g

g
d;1ðωÞ þ ggd;2ðωÞ þ

1

N1

�
ḡgd;1ðωÞ þ asḡ

g
d;2ðωÞ þ hgd;0ðω; N1Þ

þ ash
g
d;1ðω;ω1; N1Þ

	i
þ ðN1 ↔ N2;ω1 ↔ ω2Þ: ð31Þ

At NLL accuracy, the resummed exponents depend on the anomalous dimensions expanded up to two loops and the finite
process-dependent SV and NSV coefficients obtained from fixed-order results at NNLO accuracy. The above equation
provides next-to-leading SV and NSV logarithms at every order in perturbation theory using the information embedded in
two-loop results. The next-to-leading NSV logarithms at a3s (N3LO) are given as

Δg;ð3Þ
d;N1;N2






SVþNSV−NLL

¼ Δg;ð3Þ
d;N1;N2






SVþNSV−LL

þ Δg;ð3Þ
d;N1;N2






SV−NLL

þ L4
N1

��
326

9
þ 40γE

�
C3
A −

20

9
C2
Anf

�

þ L3;1
N1;2

��
1160

9
þ 160γE

�
C3
A −

80

9
C2
Anf

�
þ L2;2

N1;2

��
484

3
þ 240γE

�
C3
A −

40

3
C2
Anf

�

þ L1;3
N1;2

��
728

9
þ 160γE

�
C3
A −

80

9
C2
Anf

�
þ L4

2

N1

��
110

9
þ 40γE

�
C3
A −

20

9
C2
Anf

�
þ ðN1 ↔ N2Þ.

ð32Þ

RAVINDRAN, SANKAR, and TIWARI PHYS. REV. D 108, 014012 (2023)

014012-8



Now, by putting N1 ¼ N2 ¼ N in the above expression and taking the Mellin inverse, we obtain the results for the inclusive
cross section in z space as

Δg;ð3Þ
Mellin−Inverse;z





SVþNSV−NLL

¼ Δg;ð3Þ
Mellin−Inverse;z





SVþNSV−LL

þD4

�
1280

9
C2
Anf −

7040

9
C3
A

�
þD3

��
59200

27
− 3584ζ2

�
C3
A

þ 256

27
CAn2f −

10496

27
C2
Anf

�
þ ln4ð1 − zÞ

�
22592

9
C3
A −

1280

9
C2
Anf

�
: ð33Þ

We compare the above terms in z space with the explicit results computed in Ref. [68], and they are in agreement in the
threshold domain (in the limit z → 1). Further, the above SVand NSV terms are also in agreement with the results presented
in Refs. [24,50], respectively. At a4s (N4LO), we find

Δg;ð4Þ
d;N1;N2





SVþNSV−NLL

¼ Δg;ð4Þ
d;N1;N2





SVþNSV−LL

þΔg;ð4Þ
d;N1;N2





SV−NLL

þ L6
N1

��
370

9
þ 112

3
γE

�
C4
A −

28

9
C3
Anf

�

þ L5;1
N1;2

��
692

3
þ 224γE

�
C4
A −

56

3
C3
Anf

�
þ L4;2

N1;2

��
1586

3
þ 560γE

�
C4
A −

140

3
C3
Anf

�

þ L3;3
N1;2

��
5672

9
þ 2240

3
γE

�
C4
A −

560

9
C3
Anf

�
þ L2;4

N1;2

��
1226

3
þ 560γE

�
C4
A −

140

3
C3
Anf

�

þ L1;5
N1;2

��
404

3
þ 224γE

�
C4
A −

56

3
C3
Anf

�
þ L6

2

N1

�
154

9
C4
A −

28

9
C3
Anf þ

112

3
γEC4

A

�
þ ðN1 ↔ N2Þ:

ð34Þ

Now, the inclusive result corresponding to the above expression in z space is as follows:

Δg;ð4Þ
Mellin−Inverse;z





SVþNSV−NLL

¼ Δg;ð4Þ
Mellin−Inverse;z





SVþNSV−LL

þD6

�
7168

9
C3
Anf −

39424

9
C4
A

�

þD5

�
4096

27
C2
An

2
f −

91136

27
C3
Anf þ

�
432640

7
− 23552ζ2

�
C4
A

�

þ ln6ð1 − zÞ
�
98560

9
C4
A −

7168

9
C3
Anf

�
: ð35Þ

Here, we have reproduced the distribution part fD6;D5g as given in Ref. [28], while the NSV part ln6ð1 − zÞ is in
agreement with the prediction obtained using the physical kernel approach in Ref. [50].
At last, we provide the predictions resulting from the NNLL resummation. The expression used to obtain the results at

this logarithmic accuracy is given as

Δg;NNLL
d;N1;N2

¼ ðg̃gd;0;0 þ asg̃
g
d;0;1 þ a2s g̃

g
d;0;2Þ exp

h
lnN1g

g
d;1ðωÞ þ ggd;2ðωÞ þ asg

g
d;3ðωÞ

þ 1

N1

�
ḡgd;1ðωÞ þ asḡ

g
d;2ðωÞ þ a2s ḡ

g
d;3ðωÞ þ hgd;0ðω; N1Þ þ ash

g
d;1ðω;ω1; N1Þ þ a2sh

g
d;2ðω;ω1; N1Þ

	i

þ ðN1 ↔ N2;ω1 ↔ ω2Þ: ð36Þ

We note that the NNLL resummation requires the three-loop information coming from anomalous dimensions at third
order in the strong coupling constant and also from the third-order SV and NSV finite coefficients obtained from N3LO
results. We provide the prediction for the next-to-next-to-leading NSV logarithms at a4s as given below,
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Δg;ð4Þ
d;N1;N2





SVþNSV−NNLL

¼ Δg;ð4Þ
d;N1;N2





SVþNSV−NLL

þ Δg;ð4Þ
d;N1;N2





SV−NNLL

þ L5
N1

�
32

27
C2
An

2
f −

�
1172

27
þ 112

3
γE

�
C3
Anf þ

�
2024

9
þ 1432

3
γE þ 224γ2E þ 40ζ2

�
C4
A

�

þ L4;1
N1;2

�
160

27
C2
An

2
f −

�
5608

27
þ 560

3
γE

�
C3
Anf þ

�
9604

9
þ 6632

3
γE þ 1120γ2E þ 200ζ2

�
C4
A

�

þ L3;2
N1;2

�
320

27
C2
An

2
f −

�
10568

27
þ 1120

3
γE

�
C3
Anf þ

�
17912

9
þ 12016

3
γE þ 2240γ2E þ 400ζ2

�
C4
A

�

þ L2;3
N1;2

�
320

27
C2
An

2
f −

�
9712

27
þ 1120

3
γE

�
C3
Anf þ

�
48704

27
þ 10576

3
γE þ 2240γ2E þ 400ζ2

�
C4
A

�

þ L1;4
N1;2

�
160

27
C2
An

2
f −

�
4292

27
þ 560

3
γE

�
C3
Anf þ

�
21088

27
þ 4472

3
γE þ 1120γ2E þ 200ζ2

�
C4
A

�

þ L5
2

N1

�
32

27
C2
An

2
f −

�
712

27
þ 112

3
γE

�
C3
Anf þ

�
3380

27
þ 712

3
γE þ 224γ2E þ 40ζ2

�
C4
A

�
: ð37Þ

Further, the inclusive result corresponding to the above expression in z space reads as

Δg;ð4Þ
Mellin−Inverse;z





SVþNSV−NNLL

¼ Δg;ð4Þ
Mellin−Inverse;z





SVþNSV−NLL

þD4

�
256

7
CAn3f −

17024

27
C2
An

2
f þ

1280

3
C2
ACfnf

þ
�
26048

3
−
94720

9
ζ2

�
C3
Anf þ

�
−838112

27
þ 313600

3
ζ3 þ

520960

9
ζ2

�
C4
A

�

þD3

�
−
2560

81
CAn3f þ

640

9
CACfn2f þ

�
308608

243
−
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þ
�
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�
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�
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ζ3 þ
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9
ζ2

�
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þ
�
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243
−
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3
ζ3 −

1107584

9
ζ2 −
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5
ζ22

�
C4
A

�

þ ln5ð1 − zÞ
��

−
298240

9
þ 23552ζ2

�
C4
A þ 174208

27
C3
Anf −

4096

27
C2
An

2
f

�
: ð38Þ

We have reproduced the distribution part fD4;D3g as
presented in Ref. [28], and the NSV logarithm ln5ð1 − zÞ
is found to be in agreement with the prediction obtained
using the physical kernel approach in Ref. [50].We have also
checked the inclusive predictions that result from the
expansion of the NNLL expression given in Eq. (36) upon
putting N1 ¼ N2 ¼ N and taking the Mellin inversion up to
a3s . It has been found that the expansion of NNLL yields the
complete SV [δð1 − zÞ andDj with j ¼ 0, 1, 2, 3] and NSV
[lnkð1 − zÞ with k ¼ 0, 1, 2, 3] terms present in the inclusive
results in the threshold domain up to a2s as given in Ref. [28].
At a3s , the NNLL expression yields all the plus distributions
exceptD0 and the NSV logarithms lnkð1 − zÞ for k ¼ 3, 4, 5
as computed in Ref. [68] in the threshold limit.

III. PHENOMENOLOGY

This section presents a detailed study on the numerical
impact of resummed SVþ NSV corrections to NNLL

accuracy for the rapidity distribution of the Higgs boson
production in gluon fusion at the LHC. To distinguish
between the SVand SVþ NSV resummed results, the NSV
included resummed results have been denoted by NnLL for
the nth level logarithmic accuracy. We do the analysis for
center of mass energy

ffiffiffi
S

p ¼ 13 TeV with the Higgs mass
mH ¼ 125 GeV, top quark pole mass mt ¼ 173.3 GeV,
and Fermi constant GF ¼ 4541.63 pb. The numerical
values for the aforementioned parameters are taken from
the Particle Data Group 2020 [69]. The fixed-order rapidity
distributions have been obtained using a publicly available
code FEHiP [70]. An in-house FORTRAN code has been used
to perform the double Mellin inversion for the resummed
contributions. We have used minimal prescription [71] to
deal with the Landau pole in the Mellin inversion routines.
The PDFs used are taken from the LHAPDF [72] routine
using the MMHT2014(68cl) [10] parton distribution set.
The strong coupling constant as is provided using the
LHAPDF interface with nf ¼ 5 active massless quark
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flavors throughout. The Mellin space PDFs (fi;N) can be obtained by using QCD-PEGASUS [73]. However, we follow the
technique given in [22,74] to directly deal with PDFs in the z space. The resummed results are matched to the fixed-order
result in order to avoid any double counting of threshold logarithms and is given as

dσg;N
nLOþNnLL

dy
¼ dσg;N

nLO

dy
þ σ̃gB

Z
c1þi∞

c1−i∞

dN1

2πi

Z
c2þi∞

c2−i∞

dN2

2πi
ðτÞ−N1−N2δabfa;N1

ðμ2FÞfb;N2
ðμ2FÞ

×
�
Δg

d;N1;N2





NnLL

− Δg
d;N1;N2





trNnLO

	
: ð39Þ

Here, σ̃gB is the product of the Born cross section
computed in full theory with finite quark masses and the
square of the Wilson coefficient in the Higgs effective field
theory. The contour ci in the Mellin inversion can be chosen
according to minimal prescription [71] procedure. The first
term in Eq. (39) encapsulates the fixed-order contributions
up to NnLO accuracy and the second term corresponds to the
resummed result at NnLL accuracy obtained by taking the
difference between the resummed result and the same
truncated at order ans. Therefore, the second term contains
the SVþ NSV resummed contributions to all orders in
perturbation theory starting from anþ1

s onward.
We have calculated the percentage contribution of SV

distributions and NSV logarithms to the Born cross section
at various orders in Table 2 of Ref. [57] at the central scale
μR ¼ μF ¼ mH for the inclusive cross section of Higgs
boson production in gluon fusion. Similar percentages have
been computed for the Drell-Yan process, as well in
Ref. [56] at the central scale μR ¼ μF ¼ 200 GeV. Our
analysis showed that, for both the cases, the phenomeno-
logical relevance of NSV contributions increase with each
order in the perturbation theory. In the case of Higgs boson
production, the gg channel being the dominant contributor
gives us an additional motivation to study NSV logarithms,
as our formalism resums these collinear logarithms coming
from the diagonal channel only. Recently, we carried out
the phenomenological study for the rapidity distribution of
the Drell-Yan process [75] and demonstrated that the NSV
contribution plays an important role for rapidity distribu-
tion as well. Similarly, we expect the same trends to follow
for the rapidity distribution of Higgs boson production
through gluon fusion. Now, we ask the following questions
to understand the importance of NSV terms and also to
shed some light on the role of beyond NSV terms in the
rapidity distribution of Higgs boson production.

(i) How is the behavior of fixed-order rapidity distri-
bution altered with the inclusion of SVþ NSV
resummed terms?

(ii) What is the change in the sensitivity of the result on
unphysical scales μR and μF when NSV logarithms
from the dominant gg channel are included?

(iii) How much is the impact of SVþ NSV resummed
results on the rapidity distribution in comparison to
the well established SV predictions?

We will explore the above questions in the subsequent
sections. We have done all the analysis for the central scale
μR ¼ μF ¼ mH=2 at 13 TeV LHC. The resummation
scheme chosen for the phenomenological discussion in
this section is N exponentiation. Note that in Appendixes A
and B, we have provided the expressions for ḡgd;i and h

g
d;i in

the N exponentiation scheme, which can be converted to
the N̄ exponentiation scheme by setting all the γE terms to
zero and replacing all the lnN1N2 terms by ln N̄1N̄2,
as well as all the ωðωlÞ terms by ω̄ ¼ asβ0 ln N̄1N̄2

(ω̄l ¼ asβ0 ln N̄l). Here, N̄l¼ expðγEÞNl for l ¼ 1, 2 and
γE is the Euler-Mascheroni constant. The N-independent
constants g̃gd;0 given in Eq. (12) can be obtained in N̄
exponentiation from their counterparts in the standard N
exponentiation approach by simply putting the γE terms
equal to zero. This choice of central scale and resummation
scheme is inspired by the analysis done in Ref. [57] for the
inclusive cross section of the Higgs boson production
through gluon fusion. Also, the fixed-order results contain
contributions from all the channels, whereas the resummed
results contain distributions and logarithms coming from
the diagonal gg channel only. The NSV logarithms result-
ing from the off-diagonal qg channel are not included in our
formalism. Let us start the next section by analyzing the
effect of the SVþ NSV resummed result on the fixed-order
predictions for the rapidity distribution.

A. Fixed-order vs resummed results

This section presents the detailed study on the numerical
relevance of SVþ NSV resummed contributions at LL,
NLL, and NNLL matched with the corresponding fixed-
order results for the rapidity distribution using Eq. (39). We
investigate the enhancement of the SVþ NSV resummed
matched result with the fixed-order counterpart. We also
demonstrate the impact of resummation of NSV logarithms
in the diagonal channel on the sensitivity of the fixed-order
result with respect to the unphysical scales μR and μF.
We begin by studying the quantitative impact of the

SVþ NSV resummed rapidity distribution through the K
factors defined as

K ¼
dσ
dy ðμR ¼ μF ¼ mH=2Þ

dσLO
dy ðμR ¼ μF ¼ mH=2Þ

; ð40Þ
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where the renormalization (μR) and factorization (μF)
scales have been set at mH=2 ¼ 62.5 GeV. We provide
Table III to present K-factor values of fixed-order as well as
SVþ NSV resummed results for benchmark rapidity
values. We find that there is an enhancement of 77.5%
and 4.04% when the resummed SVþ NSV logarithms at
LL and NLL are added to LO and NLO, respectively, at the
central rapidity region. However, the rapidity distribution
decreases by 2.96% when we include NNLL to NNLO at
the central rapidity region. This suggests better perturbative
convergence at the NNLOþ NNLL level. We further
observe that the percentage enhancement in the rapidity
distribution at NNLOþ NNLL over NLOþ NLL is less
than the enhancement when we go from NLO to NNLO
accuracy for a wide range of rapidity values. This indicates
that the inclusion of resummed SVþ NSV logarithms
makes the perturbative predictions more reliable. The
above analysis based on the K-factor values demonstrates

that the SVþ NSV resummed results bring substantial
percentage correction to the fixed-order results and also
improve the perturbative convergence and reliability of
the predictions. Now, we proceed to see the dependence
of resummed results on the renormalization and factori-
zation scales.

1. Seven-point scale variation of the resummed result

The truncation of the perturbative series to a certain order
of accuracy plagues the fixed-order as well as resummed
predictions with the dependence on unphysical scales,
namely, renormalization (μR) and factorization (μR) scales.
Here, we assess the change in uncertainty with respect to
these unphysical scales when the SVþ NSV resummed
contributions are added to the fixed-order results. We use
the standard canonical seven-point variation approach
where fμR; μFg is varied in the range fmH=4; mHg, keep-
ing the ratio μR

μF
not larger than 2 and smaller than 1=2.

Figure 1 shows the bin-integrated rapidity distribution of
the Higgs boson for fixed-order as well as SVþ NSV
resummed predictions at various orders in perturbation
theory. We plot the seven-point scale uncertainties of the
fixed-order result up to NNLO in the left panel and for the
SVþ NSV resummed predictions up to NNLO+ NNLL in
the right panel around the central scale μR ¼ μF ¼ mH=2
for 13 TeV LHC. We observe that there is a significant
enhancement of 77.51% and 4.05% at LO and NLO
accuracy by the addition of LL and NLL contributions
at the central rapidity region. However, the inclusion of

FIG. 1. Comparison of seven-point scale variation between fixed-order and SVþ NSV resummed results for 13 TeV LHC. The
dashed lines refer to the corresponding central scale values at each order.

TABLE III. K-factor values of fixed-order and resummed
results at the central scale μR ¼ μF ¼ mH=2.

y KLOþLL KNLO KNLOþNLL KNNLO KNNLOþNNLL

0–0.4 1.775 1.782 1.854 2.092 2.030
0.4–0.8 1.776 1.755 1.828 2.079 2.019
0.8–1.2 1.796 1.725 1.804 2.031 1.973
1.2–1.6 1.812 1.679 1.763 1.959 1.904
1.6–2.0 1.853 1.616 1.711 1.897 1.849
2.0–2.4 1.891 1.535 1.640 1.794 1.752
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NNLL result decreases the rapidity distribution at NNLO
level by 2.99% at the central rapidity region. This hints
toward better perturbative convergence and improved
reliability of the perturbative series as suggested before
by K-factor analysis.
We now compare the seven-point uncertainties of

SVþ NSV resummed results with the fixed-order results
for the rapidity distribution at various orders. From
Table IV, we find that the combined uncertainty due to
μR and μF varies between þ11.09% and −9.48% at NNLO
accuracy, which is a substantial reduction as compared to
the uncertainty of (þ29.63%;−20.55%) at LO for the
central rapidity region, which is as expected. Figure 1
shows that the uncertainty bands for the resummed results
are visibly wider in comparison to the corresponding fixed-
order predictions up to NLO accuracy. The uncertainty
varies between þ29.63% and −20.55% for LO, whereas it
lies between þ41.23% and −25.63% for LOþ LL for the
central rapidity region. Similarly, the combined scale
uncertainty ranges between þ32% and −18.48% for
NLOþ NLL, which is higher than ðþ23.54%;−17.36%Þ
for NLO accuracy around y ¼ 0. On the contrary, at NNLO
accuracy, we notice that the uncertainty bands become
comparable for fixed-order and SVþ NSV resummed
predictions. For instance, the seven-point scale uncertainty
lies in the range (þ11.09%, −9.48%) at NNLO accuracy,
which is closer to the range (þ13.36%, −7.89%) for
NNLOþ NNLL level at the central rapidity region. This
observation, along with earlier noticed improvement in
perturbative convergence and reliability by the inclusion of
NNLL contribution, makes a strong case for the relevance
of SVþ NSV resummed predictions. In addition, there is a
systematic decrease in the scale uncertainty when we go
from LOþ LL to NNLOþ NNLL accuracy. Also, the
higher-order uncertainty bands are completely included
within the lower-order uncertainty bands for the resummed
predictions. This again indicates that the inclusion of the
resummed result makes the perturbative expansion of the
rapidity distribution more convergent. Table IV provides
the fixed-order as well as SVþ NSV resummed results at
the central scale μR ¼ μF ¼ mH=2 for different benchmark

rapidity values at various perturbative orders. It also gives
the maximum increments and decrements for the corre-
sponding fixed-order and resummed results in the rapidity
distribution from the value at the central scale by varying
fμR; μFg in the range f1=4; 1gmH.
The above analysis presents compelling arguments to

establish the significance of SVþ NSV resummed con-
tributions. Now, in order to understand the behavior of the
resummed result with respect to μR and μF scales in a better
way, we study the impact of each scale individually by
keeping the other fixed.

2. Uncertainties of the resummed result
with respect to μR and μF

Here, we demonstrate the individual effect of renorm-
alization and factorization scales on the fixed-order and
resummed results by keeping one of the scales fixed.
We start with Fig. 2 where the fixed-order (left panel)
and SVþ NSV resummed (right panel) results for the
rapidity distribution are plotted as a function of the rapidity
ywhile keeping the factorization scale fixed at μF ¼ mH=2.
The bands are obtained by varying the renormalization
scale μR in the range f1=4; 1gmH around the central scale.
We find that, from NLO accuracy onward, the addition
of the resummed contribution to the rapidity distribution
decreases the μR dependency of the result. For instance, the
uncertainty due to the μR scale lies in the range (þ23.54%,
−17.36%) for NLOwhich reduces to (þ17.96%, −14.91%)
for NLOþ NLL accuracy. Likewise, the uncertainty ranges
between þ7.56% and −7.89% for NNLOþ NNLL, which
is an improvement over (þ9.48%, −9.48%) for NNLO
order. Additionally, we observe that there is a considerable
reduction in the μR uncertainty while going from LOþ LL
to NNLOþ NNLL and the higher-order uncertainty bands
are included within lower-order uncertainty bands. The
above observations are different from what we had seen in
Fig. 1 for the seven-point scale variation, where the
combined uncertainty bands due to μR and μF were wider
for resummed predictions. This suggests that SVþ NSV
resummed results have considerable dependence on fac-
torization scale μF. To explore these observations in detail,

TABLE IV. Values of resummed rapidity distribution at various orders in comparison to the fixed-order results in picobarn at the
central scale μR ¼ μF ¼ mH=2 for 13 TeV LHC.

y LO LOþ LL NLO NLOþ NLL NNLO NNLO þ NNLL

0–0.4 5.2987þ1.57
−1.089 9.406þ3.878

−2.411 9.4432þ2.223
−1.639 9.8252þ3.144

−1.816 11.0873þ1.230
−1.051 10.7559þ1.437

−0.849

0.4–0.8 5.1408þ1.509
−1.054 9.1303þ3.752

−2.338 9.0205þ2.121
−1.563 9.3991þ3.023

−1.739 10.6907þ1.011
−1.068 10.3777þ1.361

−0.872

0.8–1.2 4.7667þ1.407
−0.988 8.561þ3.548

−2.211 8.2239þ1.925
−1.422 8.601þ2.815

−1.608 9.6837þ0.855
−0.969 9.407þ1.222

−0.783

1.2–1.6 4.2089þ1.248
−0.864 7.626þ3.179

−1.967 7.0677þ1.645
−1.217 7.4229þ2.457

−1.393 8.2437þ0.836
−0.736 8.0143þ1.170

−0.594
1.6–2.0 3.5278þ1.035

−0.725 6.537þ2.749
−1.70 5.6996þ1.316

−0.976 6.036þ2.074
−1.159 6.6937þ0.689

−0.681 6.524þ0.937
−0.537

2.0–2.4 2.7461þ0.817
−0.564 5.1918þ2.213

−1.358 4.2150þ0.963
−0.717 4.5031þ1.592

−0.878 4.9262þ0.453
−0.505 4.8123þ0.677

−0.390
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we next study the sensitivity of resummed predictions on
factorization scale.
Figure 3 depicts the variation of the fixed-order and

SVþ NSV resummed predictions with respect to the

factorization (μF) scale. The bin-integrated rapidity distri-
bution at various perturbative orders has been plotted
against the rapidity y keeping the renormalization scale
fixed at μR ¼ mH=2. The uncertainty bands are obtained by

FIG. 3. Comparison of μF scale variation between SVand SVþ NSV resummed results with the scale μR ¼ mH=2. The dashed lines
refer to the corresponding central scale values at each order.

FIG. 2. Comparison of μR scale variation between fixed-order and SVþ NSV resummed results with the scale μF ¼ mH=2. The
dashed lines refer to the corresponding central scale values at each order.
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varying μF in the range f1=4; 1gmH around the central
scale μR ¼ μF ¼ mH=2. We first look at the behavior of
fixed-order results (left panel). Interestingly, we see that the
uncertainty bands for the fixed-order predictions are very
thin, indicating negligible dependence on the factorization
scale μF. This feature is also evident when we look at the
seven-point scale variation (Fig. 1) and μR scale variation
(Fig. 2) plots of fixed-order results. The similarity between
these two plots indicates that the width of the uncertainty
band in Fig. 1 is mainly due to the variations in the μR scale.
On the contrary, the plot for the resummed rapidity
distribution (right panel) shows significant dependence
on the μF scale. The uncertainty due to μF variation lies
between þ6.42% and −8.93% for LOþ LL which esca-
lates to (þ32%, −18.48%) for NLOþ NLL accuracy for
the central rapidity region. It comes down to (þ13.36%,
−6.22%) for NNLOþ NNLL level around y ¼ 0. If we
compare the seven-point variation plot (Fig. 1) and the μF
variation plot (Fig. 3) for resummed predictions of the
rapidity distribution, we find that, from NLO+ NLL level
onward, the scale uncertainty is mainly driven by the
variation in μF.
To summarize, we did a comparative study between

fixed-order and SVþ NSV resummed predictions for the
rapidity distribution. Through the K-factor analysis, we
find that the inclusion of resummed results enhances the
fixed-order predictions up to NLO accuracy. At NNLO
level, the contributions coming from NNLL reduce the
fixed-order NNLO prediction, leading to better perturbative
convergence and a more reliable result. The study of the
behavior of resummed results with respect to the variations
in the μR scale showed that there is a substantial reduction
in the scale dependency as compared to the fixed-order
results. However, with respect to the factorization scale, the
fixed-order results show negligible dependence, while the
addition of resummed contributions increases the sensitiv-
ity of the rapidity distribution. The μF scale variation is
more at NLOþ NLL level as compared to NNLOþ NNLL
accuracy. This behavior of the resummed result with
respect to the μF variation could be naively attributed
to the absence of NSV logarithms coming from the
off-diagonal channel. We know that, under the μF scale
variation, the partonic channels get mixed due to the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution of

the parton distribution functions and compensates among
each other to reduce the μF dependency. Hence, the lack
of off-diagonal resummed NSV logarithms could be the
reason for the increased sensitivity of the SVþ NSV
resummed result. This is not correct because, for Higgs
boson production through gluon fusion, the off-diagonal qg
channel has a minuscule contribution. To understand the
reason behind this, we study the behavior of the SV
resummed result in comparison to the SVþ NSV
resummed result in the next section.

B. SV vs SV +NSV resummed rapidity distribution

In this section, we investigate the impact of inclusion of
resummed NSV logarithms by comparing it with the well-
established SV resummed results. The analysis in our
previous section showed that μR scale uncertainty gets
improved by adding the SVþ NSV resummed contribution
to the fixed-order result. Contrary to this, there is a
significant increase in the μF scale uncertainty by the
inclusion of resummed results. Here, we try to understand
which part of the SVþ NSV resummed result is respon-
sible for the exhibited behavior with respect to the
variations in μR and μF scales.
We first look at the K-factor values given in Table V for

SV and SVþ NSV resummed results at various perturba-
tive orders for benchmark rapidity values. We find that the
inclusion of resummed NSV contributions enhances the
rapidity distribution by 7.17% when we go from NLL to
NLL accuracy at the central rapidity region. On the other
hand, there is a slight reduction of 0.49% in the rapidity
distribution when we go from NNLL to NNLL accuracy.
We also observe that the K-factor values for NLOþ NLL
and NNLOþ NNLL are closer to each other as compared
to the corresponding values at NLOþ NLL and
NNLOþ NNLL. The above observations suggest that
the incorporation of resummed NSV contribution to the
threshold SV resummed result improves the perturbative
convergence of the predictions.
We move on to investigate the uncertainties related to μR

and μF scales arising from the NSV logarithms. We start
with the canonical seven-point scale variation plot shown
in Fig. 4 for the bin-integrated rapidity distribution of
the Higgs boson for SV (left panel) and SVþ NSV (right
panel) resummed predictions at various perturbative orders.

TABLE V. K-factor values of fixed-order and resummed results at the central scale μR ¼ μF ¼ mH=2.

y KLOþLL KLOþLL KNLOþNLL KNLOþNLL KNNLOþNNLL KNNLOþNNLL

0–0.4 1.453 1.775 1.730 1.854 2.04 2.030
0.4–0.8 1.455 1.776 1.704 1.828 2.028 2.019
0.8–1.2 1.471 1.796 1.679 1.804 1.981 1.973
1.2–1.6 1.484 1.812 1.636 1.763 1.910 1.904
1.6–2.0 1.518 1.853 1.581 1.711 1.851 1.849
2.0–2.4 1.546 1.891 1.508 1.640 1.751 1.752
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The scales fμR; μFg are varied in the range fmH=4; mHg,
keeping the ratio μR

μF
not larger than 2 and smaller than 1=2

around the central scale value μR ¼ μF ¼ mH=2 for 13 TeV
LHC. From Fig. 4, we notice that the addition of resummed
NSV contributions to the SV resummed results increases
the combined scale uncertainty up to next-to-next-to-
leading logarithmic accuracy. However, the difference in
the width of uncertainty bands of NNLOþ NNLL and
NNLOþ NNLL is significantly less as compared to that of
NLOþ NLL and NLOþ NLL. For instance, the seven-
point scale uncertainty at NLOþ NLL varies between
þ21.82% and −15.38%, which is considerably increased
to (þ32%, −18.48%) at NLOþ NLL around the central
rapidity region. However, the uncertainty of (þ13.36%,
−7.89%) at NNLOþ NNLL is relatively not too much
larger than the uncertainty of (þ10.4%, −9.48%) at

NNLOþ NNLL accuracy. We can also see that the
uncertainty bands of higher-order SVþ NSV resummed
results are completely within the lower-order ones over
the full rapidity region, which is not the case with SV
resummed predictions. This hints toward a more conver-
gent perturbative expansion by the incorporation of
resummed NSV logarithms. In Table VI, we have given
the rapidity distributions of SV and SVþ NSV resummed
predictions at central scale μR ¼ μF ¼ mH=2 for bench-
mark rapidity values, along with the corresponding maxi-
mum increments and decrements in the rapidity
distribution. The increments and decrements from the
central scale values are calculated by varying fμR; μFg
in the range f1=4; 1gmH. The above given percentage
uncertainties for various perturbative orders are calculated
using values from Table VI.

FIG. 4. Comparison of seven-point scale variation between SV and SVþ NSV resummed results for 13 TeV LHC. The dashed lines
refer to the corresponding central scale values at each order.

TABLE VI. Values of resummed rapidity distribution at various orders in comparison to the fixed-order results in picobarn at the
central scale μR ¼ μF ¼ mH=2 for 13 TeV LHC.

y LOþ LL LOþ LL NLOþ NLL NLOþ NLL NNLOþ NNLL NNLO þ NNLL

0–0.4 7.6990þ2.840
−1.835 9.406þ3.878

−2.411 9.1660þ2.00
−1.410 9.8252þ3.144

−1.816 10.8117þ1.124
−1.025 10.7559þ1.437

−0.849

0.4–0.8 7.4784þ2.747
−1.780 9.1303þ3.752

−2.338 8.7608þ1.922
−1.343 9.3991þ3.023

−1.739 10.4274þ1.079
−1.041 10.3777þ1.361

−0.872

0.8–1.2 7.0128þ2.599
−1.687 8.561þ3.548

−2.211 8.0011þ1.795
−1.217 8.601þ2.815

−1.608 9.4445þ0.889
−0.940 9.407þ1.222

−0.783

1.2–1.6 6.2455þ2.331
−1.499 7.626þ3.179

−1.967 6.8874þ1.564
−1.037 7.4229þ2.457

−1.393 8.0385þ0.869
−0.708 8.0143þ1.170

−0.594

1.6–2.0 5.3542þ2.012
−1.296 6.537þ2.749

−1.70 5.577þ1.327
−0.858 6.036þ2.074

−1.159 6.5317þ0.716
−0.652 6.524þ0.937

−0.537

2.0–2.4 4.2462þ1.622
−1.034 5.1918þ2.213

−1.358 4.1411þ1.019
−0.644 4.5031þ1.592

−0.878 4.8088þ0.467
−0.478 4.8123þ0.677

−0.390
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In the above paragraph, we have compared the SV and
SVþ NSV resummed results for the seven-point scale
variations. We found that the resummed NSV logarithms
spoil the combined scale uncertainty, especially at NLOþ
NLL accuracy. Let us now turn to compare the SV and
SVþ NSV resummed predictions under the variation of
each of these scales individually and try to reason out the
behavior exhibited by the resummed NSV logarithms.
We first compare μR scale uncertainties of SV and

SVþ NSV resummed predictions. Figure 5 illustrates
the bin-integrated rapidity distributions as a function of
y under μR scale variation with μF ¼ mH=2 kept fixed
for both SV (left panel) and SVþ NSV (right panel)
resummed results. The bands are obtained by varying
fμR; μFg in the range f1=4; 1gmH around the central scale
μR ¼ μF ¼ mH=2 for 13 TeV LHC. From Fig. 5, we can
see that the uncertainty bands for SVþ NSV resummed
predictions become narrower as compared to the SV
resummed result from next-to-leading order onward.
Quantitatively, the μR scale uncertainty for NLOþ NLL
varying between þ17.96% and −14.91% is less than the
corresponding uncertainty of (þ19.35%, −15.39%) for
NLOþ NLL accuracy around y ¼ 0. Similarly, the uncer-
tainty of (þ7.56%, −7.89%) at NNLOþ NNLL due to μR
scale variation is a considerable reduction from the uncer-
tainty lying between þ10.40% and −9.48% at NNLOþ
NNLL accuracy. As mentioned earlier, the μR scale
uncertainty for fixed-order results lie in the range
(þ23.54%, −17.36%) at NLO and for NNLO it varies

between þ9.48% and −9.48% around the central rapidity
region. These percentages show that, at NLO level, the
addition of resummed SV as well as resummed NSV
contributions to the fixed-order rapidity distribution
improves the renormalization scale uncertainty. This is
expected, as the inclusion of higher-order logarithmic
corrections within a particular channel leads to a decrease
in the sensitivity of the rapidity distribution with respect to
the μR scale. Nevertheless, the addition of resummed SV
contributions to the fixed-order result at NNLO level does
not bring any notable change in the μR uncertainty. The SV
distributions constitute only 15.81% of the Born cross
section, whereas NSV logarithms contribute to overall
58.91% of the Born cross section at NNLO for the case
of inclusive cross section of Higgs boson production, as
shown in Table 2 of Ref. [56]. The same trend is expected to
follow for the rapidity distribution of Higgs boson pro-
duction through gluon fusion as well. Thus, SV contribu-
tions being the subdominant contributor is not able to bring
any change in the behavior of the fixed-order result in
comparison to the μR scale variation at NNLO. On the other
hand, inclusion of NSV logarithms, which is the dominant
contributor at this order, results in significant improvement
in the μR scale uncertainty of the rapidity distribution.
These observations are evident from the percentage uncer-
tainties given above.
Based on the inferences given above, it can be estab-

lished that the resummed results improve the renormaliza-
tion scale uncertainty of the rapidity distribution. We would
like to mention that the resummed results not only carry the

FIG. 5. Comparison of μR scale variation between SVand SVþ NSV resummed results with the scale μF ¼ mH=2. The dashed lines
refer to the corresponding central scale values at each order.
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all-order information of the distributions and logarithms that
we are resumming, but they also contain certain spurious
terms resulting from the “inexact”Mellin inversion of the N
space resummed result. These spurious terms are beyond
the precision of the resummed quantity. For instance, the
resummed SV result at NNLOþ NNLL accuracy contains
the all-order correction arising from the summation of
next-to-next-to-leading towers of SV distributions and, in
addition, certain spurious NSV and beyond NSV terms.
Similarly, the resummed NSV logarithms at this order
contain the all-order correction arising from the summation
of next-to-next-to-leading towers of NSV logarithms and
certain spurious beyond NSV terms. These spurious terms
play an important role in the factorization scale variation of
the resummed SVþ NSV predictions.
Next, we show the comparison of SV and SVþ NSV

resummed results for the rapidity distribution under μF
scale variation. We plot SV (left panel) and SV þ NSV
(right panel) resummed bin-integrated rapidity distribu-
tions as a function of y, keeping the renormalization scale
fixed at μR ¼ mH=2 as depicted in Fig. 6. The bands are
obtained by varying fμR; μFg in the range f1=4; 1gmH

around the central scale μR ¼ μF ¼ mH=2 for 13 TeV
LHC. We observe that the uncertainty bands of SVþ
NSV resummed results are wider than the corresponding
bands of SV resummed predictions at every order up to
NNLOþ NNLL. This can be seen quantitatively from the
μF scale uncertainty of ðþ21.82%;−14.89%Þ for NLOþ
NLL which gets escalated to ðþ32.0%;−18.48%Þ for

NLOþ NLL around the central rapidity region. In the
same way, the uncertainty lies between þ13.36% and
−6.22% for NNLOþ NNLL, which is a considerable
increment over ðþ7.63%;−5.14%Þ for NNLOþ NNLL
around y ¼ 0.
Let us examine more closely the reason behind the

significant dependence of SV as well as SVþ NSV
resummed results on μF scale variation. We consider
Fig. 4 given in Ref. [56] for this purpose. We have plotted
the fixed-order results truncated to SVþ NSV accuracy for
the inclusive cross section against μF scale variation. We
observe that there is a significant dependence of the
truncated result on the μF scale variation from NLO level
onward that escalates at NNLO accuracy. The same
behavior is expected to be manifested by the fixed-order
results truncated to SVþ NSV accuracy for the rapidity
distribution as well. Therefore, we compare the behavior of
this plot with that of the full fixed-order results under μF
scale variation, depicted in the left panel of Fig. 3. We find
that the μF scale dependence of the fixed-order results
of the rapidity distribution shown in Fig. 3 is very mild.
This indicates that the large μF scale variation exhibited by
fixed-order results truncated to SVþ NSV accuracy is
expected to get compensation from beyond NSV terms
in the threshold expansion. Figure 4 given in Ref. [56] also
suggests that the contributions coming from the beyond
NSV terms become more significant with increase in the
order of perturbative series. It is because more compensa-
tion is required to make the fixed-order predictions almost

FIG. 6. Comparison of μF scale variation between SVand SVþ NSV resummed results with the scale μR ¼ mH=2. The dashed lines
refer to the corresponding central scale values at each order.
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insensitive to the μF scale variation as we go to higher
orders in the perturbative expansion.
Now, we explore the reason behind the behavior of

resummed SV results under μF scale variation. The addition
of resummed SV contributions to the fixed-order predic-
tions increases the sensitivity of the rapidity distribution
with respect to the μF scale variation. This can be seen
quantitatively from μF scale uncertainties varying in the
range ðþ21.82%;−14.89%Þ and ðþ7.63%;−5.14%Þ for
NLOþ NLL and NNLOþ NNLL, respectively, around
the central rapidity region. The spurious beyond SV terms
resulting from the inexact Mellin inversion of the N space
resummed result is mainly responsible for this uncertainty.
We also observe that the μF scale uncertainty decreases
significantly at NNLOþ NNLL as compared to NLOþ
NLL accuracy. This suggests that the resummation of next-
to-next-to-leading SV distributions compensates the uncer-
tainty arising from the spurious terms of NLOþ NLL with
the higher-order logarithmic corrections.
We now proceed to analyze the behavior of NSV

logarithms with respect to the μF scale variation using
the observations made in the above paragraphs for fixed-
order and SV resummed results for the rapidity distribu-
tions. From Fig. 4 of Ref. [56] and the behavior of fixed-
order results under the μF variation shown in Fig. 3, we
deduced that the μF uncertainties due to SVþ NSV terms
are compensated by uncertainties arising from beyond
NSV terms in perturbation theory. We also observed that
this compensation increases with the increase in the order
of perturbation theory. We know that the SVþ NSV
resummed predictions contain spurious beyond NSV terms
resulting from the resummation of SVas well as NSV parts.
The behavior of the resummed SV result showed that the
corresponding spurious terms increase the μF scale uncer-
tainty of the SV resummed rapidity distribution. Now, with
the inclusion of NSV resummed logarithms, there is one
additional source to generate spurious beyond NSV terms.
Thus, the resummation of NSV logarithms is not supposed
to improve the uncertainties arising due to μF scale
variation of the SV resummed result. This inference is
consistent with the plots shown in Fig. 6 where the
inclusion of resummed NSV logarithms to the SV
resummed result increases the uncertainty due to μF scale
variation up to NNLOþ NNLL accuracy. We also observe
that the uncertainty drops down significantly when we go
from NLOþ NLL to NNLOþ NNLL. This suggests that
the higher-order logarithmic corrections from the NSV
terms improve the μF dependency of SVþ NSV resummed
results. They do so by adding more terms and also by
compensating for the spurious NSV terms arising due to SV
resummation at lower logarithmic accuracy.
In summary, the renormalization scale dependency of the

rapidity distribution decreases by the inclusion of resummed
NSV logarithms. This is expected because any change
resulting from the μR variation gets compensated by the

addition of higher-order terms coming from the resummation
of SV and NSV logarithms to all orders. This scenario
changes for the case of factorization scale variation. The
fixed-order rapidity distribution shows negligible depend-
ence on μF scale variation. The addition of SV resummed
terms increases the sensitivity of the result with respect to
the μF scale, which further deteriorates by the inclusion of
resummed NSV logarithms. One of the reasons for this
behavior is the presence of spurious terms arising due to the
inexact Mellin inversion of the N space resummed result. In
addition, this significant μF dependency of the SVþ NSV
resummed rapidity distribution is attributed to the lack of
beyond NSV terms. This hints toward the importance of
beyond NSV terms to get a more accurate and reliable
prediction for rapidity distribution. We would also like to
mention that we have used the same PDF set for both fixed-
order as well as resummed predictions. It is worthwhile to
consider resummed PDFs if they are available, especially for
studying the variations with respect to μF scale.

IV. DISCUSSION AND CONCLUSION

In this article, we provide for the first time the phenom-
enological predictions for resummed next-to-soft-virtual
corrections to the rapidity distribution of Higgs production
in gluon fusion up to NNLOþ NNLL accuracy. We have
used our recent formalism [58] to systematically resum the
NSV logarithms arising from the diagonal gluon-gluon (gg)
channel to all orders. In our previous work on inclusive
Higgs cross section, we have studied the significance of
NSV logarithms in the fixed-order predictions [56]. The
interesting results and findings of [56] have been an
inspiration to study the numerical relevance of these
NSV logarithms for the case of rapidity distribution as well.
We have analyzed the numerical effects of SVþ NSV

higher-order predictions by studying the K-factor values
around the central scale μR ¼ μF ¼ mH=2 for benchmark
rapidity values. We find that there is an enhancement of
77.5% and 4.04% at LOþ LL and NLOþ NLL, respec-
tively, by the inclusion of SVþ NSV resummed results
around the central rapidity region. However, the rapidity
distribution at NNLO gets decreased by 2.96% when we
include the NNLL resummed corrections at the central
rapidity region. This clearly indicates the improvement
in the perturbative convergence at NNLOþ NNLL
accuracy. Furthermore, we notice that the inclusion of
higher-order resummed SVþ NSV corrections makes the
perturbative predictions more reliable due to very small
percentage enhancement in the rapidity distribution at
NNLOþ NNLL in comparison to NLOþ NLL for a wide
range of rapidity values.
The standard canonical seven-point scale variation

approach has been employed to study the dependence of
our numerical predictions on renormalization (μR) and
factorization (μF) scales. We have presented the plot of
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seven-point scale variation around the central scale μR ¼
μF ¼ mH=2 for 13 TeV LHC. We find that the width of
uncertainty bands of resummed predictions is more than
that of the corresponding fixed-order results up to NLO.
However, for NNLO and NNLOþ NNLL, the width of the
uncertainty bands are comparable. Thus, by performing
the seven-point scale variation analysis, we observe that
there is a systematic reduction in the uncertainty of the
resummed results while going to higher logarithmic accu-
racy for the central scale μR ¼ μF ¼ mH=2 around the
central rapidity region. Moreover, we notice that the
uncertainty bands corresponding to higher-order predic-
tions are well contained within that of lower-order ones.
This is also an indication of better perturbative convergence
attained by the process of resummation.
The detailed analysis of the scale uncertainties unveiled

that the seven-point scale uncertainties of SVþ NSV
resummed predictions are mostly driven by the variations
in factorization scale μF, especially at NLOþ NLL. On the
other hand, the dependence on the renormalization scale μR
gets reduced by the inclusion of SVþ NSV resummed
results leading to more reliable predictions. Furthermore,
there is a systematic reduction in the μR scale uncertainty
while going from LOþ LL to NNLOþ NNLL due to the
addition of higher logarithmic corrections. From the
comparison of SV and SVþ NSV resummed results, we
find that it is the NSV part of the resummation that is

responsible for bringing down the uncertainty due to μR
scale variation. Thus, the inclusion of more corrections
within the same partonic channel improves the μR scale
uncertainties. This is due to the fact that different channels,
being renormalization group invariant, do not mix under μR
scale variation. However, the uncertainties due to μF scale
variations get worse by the addition of NSV corrections.
From our analysis, we found that the lack of beyond NSV
resummed terms is the reason behind the sensitivity of
SVþ NSV resummed results on μF scale variations.

ACKNOWLEDGMENTS

We thank J. Michel and F. Tackmann for third-order
results of rapidity for comparison purposes and C. Duhr
and B. Mistlberger for providing third-order results for the
inclusive reactions. In addition, we would also like to thank
the members of the computer administrative unit of IMSc
for their help and support.

APPENDIX A: NSV RESUMMATION
EXPONENTS ḡgd;iðωÞ

The NSV resummation exponents ḡgd;iðωÞ given in (21)
are provided as follows:

ḡgd;1ðωÞ ¼
1
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APPENDIX B: NSV RESUMMATION EXPONENTS hgd;ijðωÞ AND h̃gd;iiðω;ωlÞ
The NSV resummation exponents hgd;ijðωÞ and h̃gd;iiðω;ωlÞ given in (22) are provided as follows:
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1

β0
CAf−4Lωghgd;01ðωÞ ¼ 0; ðB1Þ

hgd;10ðωÞ ¼
1

2β20ðω − 1Þ
�
β1CAf8ωþ 8Lωg þ β0CAnf

�
80

9
ω

�
þ β0C2

A

�
−
536

9
ωþ 16ωζ2 − 32γEω

�

þ β20CAf−4 − 8Lfr þ 8Lfrωþ 8Lqr − 16γEg
�
; ðB2Þ

h̃gd;11ðω;ωlÞ ¼
C2
A

β0

�
−

4ωl

ðω − 1Þ2 −
16ω

ðω − 1Þ
�
; ðB3Þ

hgd;20ðωÞ ¼
1

2β30ðω − 1Þ2
�
β21CAf−4ω2 þ 4L2

ωg þ β0β2CAf4ω2g þ β0β1CAnf

�
80

9
ω −

40

9
ω2 þ 80

9
Lω

�

þ β0β1C2
A

�
−
536

9
ωþ 16ωζ2 þ

268

9
ω2 − 8ω2ζ2 − 32γEωþ 16γEω

2 −
536

9
Lω þ 16Lωζ2 − 32LωγE

�

þ β20CAn2f

�
−
32

27
ωþ 16

27
ω2

�
þ β20CACFnf

�
−
172

3
ωþ 64ωζ3 þ

86

3
ω2 − 32ω2ζ3

�

þ β20C
2
Anf

�
−
1096

27
ω −

224

3
ωζ3 þ

320

9
ωζ2 þ

548

27
ω2 þ 112

3
ω2ζ3 −

160

9
ω2ζ2 −

640

9
γEωþ 320

9
γEω

2

�

þ β20C
3
A

�
724

3
ω −

112

3
ωζ3 −

2144

9
ωζ2 þ

352

5
ωζ22 −

362

3
ω2 þ 56

3
ω2ζ3 þ

1072

9
ω2ζ2 −

176

5
ω2ζ22 þ

4288

9
γEω

− 128γEωζ2 −
2144

9
γEω

2 þ 64γEω
2ζ2

�
þ β20β1CAf8ω − 4ω2 − 4Lω þ 8LωLqr − 16LωγEg

þ β30CAnf

�
−
272

27
þ 32

3
ζ2 −

80

9
Lfr þ

160

9
Lfrω −

80

9
Lfrω

2 þ 80

9
Lqr −

148

9
γE

�

þ β30C
2
A

�
1808

27
− 56ζ3 −

224

3
ζ2 þ

536

9
Lfr − 16Lfrζ2 −

1072

9
Lfrωþ 32Lfrωζ2 þ

536

9
Lfrω

2 − 16Lfrω
2ζ2

−
536

9
Lqr þ 16Lqrζ2 þ

1060

9
γE − 32γEζ2 þ 32γELfr − 64γELfrωþ 32γELfrω

2 − 32γELqr þ 56γ2E

�

þ β40CAf16ζ2 − 4L2
fr þ 8L2

frω − 4L2
frω

2 − 4Lqr þ 4L2
qr þ 8γE − 16γELqr þ 16γ2Eg

�
; ðB4Þ

hgd;21ðωÞ ¼
1

2β20ðω − 1Þ2
�
β1C2

Af−32ωþ 16ω2 − 32Lωg þ β0C2
Anf

�
−
640

9
ωþ 320

9
ω2

�

þ β0C3
A

�
4288

9
ω − 128ωζ2 −

2144

9
ω2 þ 64ω2ζ2

�
þ β20CAnf

�
4

3

�

þ β20C
2
A

�
−
4

3
þ 32Lfr − 64Lfrωþ 32Lfrω

2 − 32Lqr þ 48γE

��
; ðB5Þ

h̃gd;22ðω;ωlÞ ¼
ωl

β0ðω − 1Þ3
�
C2
Anf

�
32

27

�
þ C3

A

�
−
176

27

��
; ðB6Þ

where γE is the Euler-Mascheroni constant. Here, Lω ¼ lnð1 − ωÞ with ω ¼ β0asðμ2RÞ lnN1N2, ωl ¼ β0asðμ2RÞ lnNl with

l ¼ 1, 2, Lqr ¼ lnðq2
μ2R
Þ, and Lfr ¼ lnðμ2F

μ2R
Þ.
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