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The calculations based on the next-to-leading logarithm (NLL) approximation for the Balitsky-Fadin-
Kuraev-Lipatov (BKFL) evolution are presented for the Mueller-Navelet (MN) dijet production cross
section, as well as for their ratios at different collision energies. The MN dijet denotes the jet pair consists of
jets, which were selected with p⊥ > p⊥min and with maximal rapidity separation in the event. The NLL
BFKL predictions for the MN cross sections are given for the pp collisions at

ffiffiffi
s

p ¼ 2.76, 8, and 13 TeV,
for p⊥min ¼ 20 and 35 GeV. The results are in agreement with the measurement by the Compact Muon
Solenoid (CMS) experiment in pp collisions at

ffiffiffi
s

p ¼ 2.76 TeV and p⊥min ¼ 35 GeV within the
theoretical and experimental uncertainties. The predictions of the NLL BFKL calculation of ratios of
the MN cross sections at different collision energies and p⊥min are also presented.

DOI: 10.1103/PhysRevD.108.014010

I. INTRODUCTION

To explore new physics at modern hadron colliders it is
important to correctly take into account the effects of
quantum chromodynamics (QCD). There is a well tested
hard QCD kinematic regime, for which

ffiffiffi
s

p
∼Q → ∞ andffiffiffi

s
p

=Q ¼ const, where the large Q logarithms are requiring
resummation by the Gribov-Lipatov-Altarelli-Parisi-
Dokshitzer (DGLAP) evolution equation [1–5]. Here

ffiffiffi
s

p
andQ stand for energy and hard scale of the collision. With
the increase of the collision energy

ffiffiffi
s

p
, the semihard QCD

regime, where
ffiffiffi
s

p
=Q → ∞ and Q ¼ const ≫ ΛQCD, is

expected to become essential. For this kinematical limit,
the large logarithms of s need to be resummed, which is
achieved with the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
evolution equation [6–9]. Phenomenologically, while the
DGLAP evolution is well established in the hard regime,
the indications of the BFKL evolution on the semihard
regime in data still remain uncertain.
The final-state configurations with two jets featuring a

large rapidity separation, Δy, are considered to be one of
the direct probes in the search for the BFKL evolution
manifestations at hadron collisions [10,11]. The main
contribution to the dijet production cross section at large

Δy in the BFKL approach comes from the Mueller-Navelet
(MN) dijets [10,12–21], where the MN dijet is the pair of
jets with the largest Δy in the event, and jet pairs are
combined from all the jets with the transverse momentum,
p⊥, above some chosen transverse momentum threshold,
p⊥min. In fact, the MN dijets are a subset of inclusive dijets,
a larger set consisting of all pairwise combinations (taken
within a single event) of jets, that have p⊥ > p⊥min [15].
Besides the inclusive dijets, there also studies of dijets
with large rapidity gaps, i.e., when there is dijet
production without any hadron activity in certain rapidity
regions [11,22,23]. Some indications on BFKL evolution
effects were found in studies of MN dijet production
[16,24–32] and in those of dijets with large rapidity gaps
[33–41], but in most of the cases the absence of the full
next-to-leading-logarithmic (NLL) BFKL and pure
DGLAP predictions prevented definite conclusions.
At the LHC, theMN dijets were studied up to now in ratio

of MN dijet cross section to two-jet cross section [42,43] and
in angular decorrelations [25,26]. The NLL BFKL calcu-
lations are in agreement with the LHC data, where com-
parison is possible, while none of the available Monte Carlo
(MC) event generators based on leading-logarithmic (LL)
DGLAP can describe all the measured observables well.
The goal of this paper is to confront the calculation of the

MN dijet production cross sections based on the NLL
BFKL [27,31] to the MN cross section recently measured
by the Compact Muon Solenoid (CMS) experiment in pp
collsions at

ffiffiffi
s

p ¼ 2.76 TeV [44], as well as to make
predictions for the MN cross section for

ffiffiffi
s

p ¼ 8 and
13 TeV. In addition, some predictions will be presented
for the ratios of the MN cross sections as a function of
rapidity separation Δy at different LHC energies.
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In Sec. II, the NLL BFKL formalism [27,31] to the MN
dijet cross section calculation within the approach [45] is
briefly outlined. In Sec. III, the theoretical uncertainty of
the calculation is discussed. In Sec. IV, there is a com-
parison of the calculations and the CMSmeasurements [44]
at 2.76 TeV, as well as some predictions for pp collisions atffiffiffi
s

p ¼ 8 and 13 TeV. Also, our predictions for the MN dijet
cross section ratios as a function of rapidity separation at
different LHC energies are presented.

II. NEXT-TO-LEADING LOGARITHMIC BFKL
APPROACH TO MUELLER-NAVELET

CROSS SECTION

In the semihard regime, assuming the factorization to be
expressed as a convolution of a partonic subprocess cross
section σ̂ and parton distribution functions (PDFs), the MN
cross section can be written as follows:

dσ

dy1dy2d2k⃗1d2k⃗2
¼
X
ij

Z
1

0

dx1dx2fiðx1; μFÞfjðx2; μFÞ

×
dσ̂ijðx1x2s; μF; μRÞ
dy1dy2d2k⃗1d2k⃗2

; ð1Þ

where y1ð2Þ are the rapidities of the two jets in a dijet, k⃗1ð2Þ
are the transverse momenta of the jets, fiðjÞ are the PDFs,
x1ð2Þ are the longitudinal proton momentum fractions
carried by the partons before their scattering, and μR and
μF are the renormalization and factorization scales respec-
tively. The summation in Eq. (1) goes through all the open
parton flavors, and the integration performed is over x1ð2Þ.
Within the BFKL approach, the partonic cross section σ̂

itself factorizes into the process dependent vertices V and
the universal Green’s function G:

dσ̂ijðx1x2s; μF; μRÞ
dy1dy2d2k⃗1d2k⃗2

¼ xJ1xJ2
ð2πÞ2

Z
d2q⃗1
q⃗12

Viðq⃗1; x1; s0; k⃗1; xJ1; μF; μRÞ

×
Z

d2q⃗2
q⃗22

Vjð−q⃗2; x2; s0; k⃗2; xJ2; μF; μRÞ

×
Z
C

dω
2πi

�
x1x2s
s0

�
ω

Gωðq⃗1; q⃗2Þ; ð2Þ

where xJ1ðJ2Þ are the longitudinal momentum fractions
carried by the jets J1 and J2 of the MN dijet, q⃗1ð2Þ are the
transverse momenta of the reggeized gluons, and s0 is the

BFKL parameter, which defines the scale for the beginning
of the high-energy asymptotics. The vertex Vðq⃗; x; k⃗; xJÞ
describes the transition of an incident parton with the
longitudinal momentum fraction x to a jet with the
longitudinal momentum fraction xJ and the transverse
momentum k⃗ by scattering off a reggeized gluon with
the transverse momentum q⃗. The integration contour C is a
vertical line in the ω complex plane such that all the poles
of the Green’s function Gω are to the left of the contour.
Green’s function Gω obeys the BFKL equation

ωGωðq⃗1; q⃗2Þ ¼ δ2ðq⃗1 − q⃗2Þ þ
Z

d2q⃗Kðq⃗1; q⃗ÞGωðq⃗; q⃗2Þ;

ð3Þ

where Kðq⃗1; q⃗Þ is the BFKL kernel.
The vertices V are calculated at the NLL accuracy in the

small-cone approximation in Ref. [46]. They are often
combined with PDFs within the impact factors

Φðq⃗; k⃗; xJ;ω; s0; μF; μRÞ≡
X
i

Z
1

0

dxfiðx; μFÞ
�
x
xJ

�
ω

× Viðq⃗; x; s0; k⃗; xJ; μF; μRÞ:
ð4Þ

Using the impact factors Φ, the differential cross section
for dijet production can be rewritten as

dσ

dy1dy2d2k⃗1d2k⃗2

¼ xJ1xJ2
ð2πÞ2

Z
C

dω
2πi

eωðY−Y0ÞGωðq⃗1; q⃗2Þ

×
Z

d2q⃗1
q⃗12

Φ1ðq⃗1; k⃗1; xJ1;ω; s0; μF; μRÞ

×
Z

d2q⃗2
q⃗22

Φ2ð−q⃗2; k⃗2; xJ2;ω; s0; μF; μRÞ; ð5Þ

where Y ¼ ln xJ1xJ2s
jk⃗1jjk⃗2j

and Y0 ¼ ln s0
jk⃗1jjk⃗2j

. In this kinematics, Y

at large values is equal to Δy∶ Y ¼ Δy ¼ jy1 − y2j.
To calculate the cross section at NLL accuracy, it is

convenient to consider the impact factors and Green’s
function in the basis of the LL BFKL kernel eigenfunc-
tions, which are labeled with the conformal spin n and the
conformal weights ν. The projections of the impact factors
are given by

Φ1ðn; ν; k⃗1; xJ1;ω; s0; μF; μRÞ ¼
Z

d2q⃗1
q⃗12

Φ1ðq⃗1; k⃗1; xJ1;ω; s0; μF; μRÞ
1

π
ffiffiffi
2

p ðq⃗12Þiν−1=2einϕ1 ;

Φ2ðn; ν; k⃗2; xJ2;ω; s0; μF; μRÞ ¼
Z

d2q⃗2
q⃗22

Φ2ð−q⃗2; k⃗2; xJ2;ω; s0; μF; μRÞ
1

π
ffiffiffi
2

p ðq⃗22Þ−iν−1=2e−inϕ2 ; ð6Þ
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where ϕ1ð2Þ are the azimuthal angles of jets.
The expansion of the impact factors in powers of strong

coupling αsðμRÞ is

Φ1;2ðn; ν; k⃗1;2; xJ1;2;ω; s0; μF; μRÞ
¼ αsðμRÞ½c1;2ðn; νÞ þ ᾱsðμRÞcð1Þ1;2ðn; νÞ�; ð7Þ

which can be found in Eqs. (34) and (36) of Ref. [47].
In this equation, ᾱsðμRÞ ¼ CAαsðμRÞ=π and CA is the
quadratic Casimir operator for the adjoint representation
of the SU(3) group. The variables k⃗1;2, xJ1;2, ω, s0, μF, μR
are suppressed in Eq. (7) for c1;2ðn; νÞ and cð1Þ1;2ðn; νÞ for
shortness’s sake. The calculation of jet vertices at the NLL
BFKL accuracy relies on the jet definition. In Ref. [47], the
small cone approximation and cone algorithm were used as
jet reconstruction algorithms. The dependence on the jet

algorithms was studied in Ref. [48]. In this work, the results
are presented for the kt algorithm as described in Ref. [48].
The matrix elements of the NLL BFKL Green’s function

between the eigenfunctions of the LL BFKL kernel can be
found in Eq. (24) of Ref. [31].
Making decomposition of the cross section in Eq. (5) in

cosines of the azimuthal angle ϕ ¼ π − ðϕ1 − ϕ2Þ

dσ

dy1dy2djk⃗1jdjk⃗2jdϕ1dϕ2

¼ 1

ð2πÞ2
�
C0 þ

X∞
n¼1

2 cosðnϕÞCn
�
;

ð8Þ

transforming to the jn; νi basis, and separating out the
terms proportional to β0 ¼ 11CA=3 − 2nf=3 explicitly
[as needed in the Brodsky-Fadin-Kim-Lipatov-Pivovarov
(BFKLP) approach [45]], one can get an expression for the
Cn coefficients of the expansion (8).

Cn ¼
xJ1xJ2
jk⃗1jjk⃗2j

Z þ∞

−∞
dνeðY−Y0ÞᾱsðμRÞχðn;νÞα2sðμRÞc1ðn;νÞc2ðn;νÞ

"
1þ ᾱsðμRÞ

 
c̄ð1Þ1 ðn;νÞ
c1ðn; νÞ

þ c̄ð1Þ2 ðn;νÞ
c2ðn;νÞ

þ β0
2Nc

�
5

3
þ ln

μ2R
jk⃗1jjk⃗2j

�!

þ ᾱ2sðμRÞ ln
xJ1xJ2s

s0

�
χ̄ðn; νÞ þ β0

4Nc
χðn;νÞ

�
−
χðn;νÞ

2
þ 5

3
þ ln

μ2R
jk⃗1jjk⃗2j

��#
; ð9Þ

where c̄ð1Þ1;2 ≡ cð1Þ1;2 − c̃ð1Þ1;2 and c̃ð1Þ1;2 is defined in Eq. (30) of
Ref. [31]. ᾱsχðn; νÞ is the eigenvalue of the LL BFKL
kernel. χ̄ðn; νÞ describes the diagonal part of the NLL BFKL
kernel in the jn; νi basis not proportional to β0. It is defined
by Eq. (19) of Ref. [31]. For resumming large coupling
constant contributions within the BFKLP approach [45],
which is a non-Abelian generalization of Brodsky-Lepage-
Mackenzie [49] optimal scale setting, one needs to change
renormalization scheme from the non-physical modified
minimal subtraction (MS) scheme to the physical momen-
tum subtraction (MOM) scheme. The MS and MOM
schemes are related by a finite transformation [45,50]

αMS
s ¼ αMOM

s

�
1þ αMOM

s

π
ðTβ þ TconfÞ

�
;

Tβ ¼ −
β0
2

�
1þ 2

3
I

�
;

Tconf ¼ CA

8

�
17

2
Iþ 3

2
ðI − 1Þξþ

�
1−

1

3
I

�
ξ2 −

1

6
ξ3
�
; ð10Þ

where I ≃ 2.3439 and ξ is a gauge parameter, which is set
to zero (that corresponds to the Landau gauge), and Tβ and
Tconf are the β-dependent and β-independent (conformal)
parts of the transformation.
Then the optimal μBFKLPR scale is the value of μR that

makes the part of the integral in Eq. (9), proportional to β0,
vanish. This leads to the necessity to solve the integral
equation, which can be done numerically. This can be
impractical as far as the scale setting needs to be done
under the integration. In Ref. [31] two approximate
methods were suggested, which are referred to as case (a)
and case (b).
In case (a), the expressions for the optimal scale and

Cn are

ðμBFKLPR;a Þ2 ¼ jk⃗1jjk⃗2j exp
�
2

�
1þ 2

3
I

�
−
5

3

�
; ð11Þ

CBFKLP;an ¼ xJ1xJ2
jk⃗1jjk⃗2j

Z þ∞

−∞
dνeðY−Y0ÞᾱMOM

s ðμBFKLPR;a Þ½χðn;νÞþᾱMOM
s ðμBFKLPR;a Þðχ̄ðn;νÞþTconf

Nc
χðn;νÞ− β0

8Nc
χ2ðn;νÞÞ�

× ðαMOM
s ðμBFKLPR;a ÞÞ2c1ðn; νÞc2ðn; νÞ

"
1þ ᾱMOM

s ðμBFKLPR;a Þ
(
c̄ð1Þ1 ðn; νÞ
c1ðn; νÞ

þ c̄ð1Þ2 ðn; νÞ
c2ðn; νÞ

þ 2Tconf

Nc

)#
; ð12Þ
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and in case (b) they are

ðμBFKLPR;b Þ2 ¼ jk⃗1jjk⃗2j exp
�
2

�
1þ 2

3
I

�
−
5

3
þ 1

2
χðn; νÞ

�
; ð13Þ

CBFKLP;bn ¼ xJ1xJ2
jk⃗1jjk⃗2j

Z þ∞

−∞
dνeðY−Y0ÞᾱMOM

s ðμBFKLPR;b Þ½χðn;νÞþᾱMOM
s ðμBFKLPR;b Þðχ̄ðn;νÞþTconf

Nc
χðn;νÞÞ�ðαMOM

s ðμBFKLPR;b ÞÞ2

× c1ðn; νÞc2ðn; νÞ
"
1þ ᾱMOM

s ðμBFKLPR;b Þ
(
c̄ð1Þ1 ðn; νÞ
c1ðn; νÞ

þ c̄ð1Þ2 ðn; νÞ
c2ðn; νÞ

þ 2Tconf

Nc
þ β0
4Nc

χðn; νÞ
)#

: ð14Þ

Only the C0 term survives after the integration of Eq. (8)
over the azimuthal angles

dσ

dy1dy2djk⃗1jdjk⃗2j
¼ C0: ð15Þ

It is worth noting that the results of Ref. [51] show that
case (a) better reproduces the exact calculation for the
optimal scale μBFKLPR for C0. Therefore here case (a) is used
as an estimate of the MN cross section and the difference
between case (a) and case (b) as an estimate of the
theoretical uncertainty related to the choice of the renorm-
alization and factorization scales.
It should be noted that the BFKL calculations employ

the large Δy approximation for which jt̂j ≪ ŝ; jûj, where
ŝ; t̂; û are the Mandelstam variables for the 2 → 2 parton
subprocess. In this approximation, σ̂ij, taken for all the
combinations of flavors i and j, become proportional to
each other, with the proportionality factors depending
on the color summation. This allows one to restrict
consideration to the gluon-gluon subprocess and the
effective PDFs:

feffðx; μFÞ ¼
CA

CF
fgðx; μFÞ þ

X
i¼q;q̄

fiðx; μFÞ; ð16Þ

where CF is the quadratic Casimir operator for the
fundamental representation of the SU(3) group. The
validity of the large Δy approximation can be tested by
comparing the leading order (LO) analytical calculations,
i.e., the calculations with the Born level subprocess
convoluted with the PDFs, with and without the use of
this approximation.
The results of the NLL BFKL calculations just described

are presented below in Sec. IV, which also gives a com-
parison with the other two results: the LL BFKL calculations
performed according Eq. (12) from Ref. [13], as well as the
LOþ LL DGLAP-based calculation provided by MC gen-
erator PYTHIA8 [52]. The obtained results are compared
to the recent CMS measurement at

ffiffiffi
s

p ¼ 2.76 TeV [44].
The predictions for the pp collisions at the LHC energiesffiffiffi
s

p ¼ 8 and 13 TeV are also provided.

III. NUMERICAL CALCULATIONS
AND THEORETICAL UNCERTAINTY

The differential MN cross section dσMN=dΔy is calcu-
lated numerically with the NLL BFKL accuracy improved
by the BFKLP approach [45] to the optimal scale setting forffiffiffi
s

p ¼ 2.76, 8, and 13 TeV, for jets with p⊥ > p⊥min ¼
35 GeV and y < ymax ¼ 4.7. The bounds p⊥min ¼ 35 GeV
and ymax ¼ 4.7 correspond to the experimental dijet event
selection in the CMS measurement [44]. It is worth
lowering the p⊥min threshold to increase the sensitivity
to possible BFKL effects since it will involve smaller
values of x ∼ p⊥min=

ffiffiffi
s

p
. Therefore the predictions of

the MN cross section for p⊥min ¼ 20 GeV are also
calculated for

ffiffiffi
s

p ¼ 2.76, 8, and 13 TeV. The jets in the
calculations are defined with the kt algorithm with the jet
size parameter 0.5 for

ffiffiffi
s

p ¼ 2.76 and 8 TeV and 0.4 for
13 TeV. The number of flavors nf is kept at five. The strong
coupling constant, αs, and PDFs are provided at the next-to-
leading order by the LHAPDF library [53] and
MSTW2008nlo68cl [54] set.
The ratios of the MN cross sections at different collision

energies are considered as the sensitive probe of the BFKL
evolution effects. This is because the DGLAP contribution
to the PDFs can be partly canceled in the ratios. Therefore
here the ratios of dσMN=dΔy at different collision energies
are presented. RMN

8=2.76 is the ratio of the MN cross section atffiffiffi
s

p ¼ 8 TeV to the one at 2.76 TeV, whereas RMN
13=2.76 is for

13 to 2.76 TeV and RMN
13=8 is for 13 to 8 TeV. The ratios

RMN
8=2.76, R

MN
13=2.76, and RMN

13=8 are calculated for p⊥min ¼ 35

and 20 GeV.
The estimated theoretical uncertainty of the σMN calcu-

lation comes from three different sources. The first one is
the renormalization and factorization scale uncertainty. It is
estimated by the difference between case (a) Eq. (11) and
case (b) Eq. (13). The second one is the uncertainty of s0.
The central value of s0 is chosen to be jk⃗1j × jk⃗2j. It is
varied by factors 2 and 0.5 to obtain the uncertainty. The
third one is the uncertainty of the PDFs. This is estimated
with MC replicas of the PDF4LHC15_NLO_MC set [55].
These three sources provide a set of uncertainties which
are approximately equal to each other in magnitude, except
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the PDFs uncertainty for
ffiffiffi
s

p ¼ 2.76 TeV with p⊥min ¼
35 GeV becomes major at the largest Δy, because of
nearness of the x ¼ 1 bound.
The resulting uncertainty is calculated as the square root

of the quadratic sum of the uncertainties from the various
sources.

IV. RESULTS AND DISCUSSION

The MN cross section calculated with the NLL BFKL
approach improved by the BFKLP scale setting [45] for
pp collisions at

ffiffiffi
s

p ¼ 2.76 TeV and p⊥min ¼ 35 GeV is
compared with the CMS measurements [44] in Fig. 1. The
calculations with PYTHIA8, as well as the Born level
subprocess calculation with and without the large Δy
approximation, and the LL BFKL calculation as described
in [13] are also shown in Fig. 1 for the sake of comparison.
The predictions for the MC generator PYTHIA8 are given for
two tunes, namely 4C [56], which was used in the CMS
measurements [43,44], and CP5 [57], which includes a fit
of the 13 TeV measurements. Moreover, the CP5 tune
employs the next-to-next-to-leading order PDFs and αs,
which effectively lowers the cross section. In addition this
tune uses the rapidity ordering in the initial state radiation,
which makes it even closer to the BFKL evolution.
Therefore, PYTHIA8 CP5 produces a result far from a pure
DGLAP-based prediction. It should be mentioned that the
anti-kt jet algorithm is used [58] in the CMS measurements
and PYTHIA8 simulation.
As one can see from Fig. 1, the calculation with the NLL

BFKL approach improved by BFKLP prescription [45]
agrees with the data to within the systematic uncertainty,

whereas all other calculations significantly overestimate
the measurements. Moreover, it is noticeable that the NLL
corrections are of major importance for the BFKL calcu-
lations. As can be seen by comparing the Born-subprocess
calculations performed with and without (the use of) the
large Δy approximation, the large Δy approximation
becomes reliable for Δy > 4. The new CP5 tune improves
the agreement to the measurements of the PYTHIA8 pre-
dictions at the small Δy region, but does not fix its large Δy
behavior.
The prediction for the MN cross section in pp collisions

at
ffiffiffi
s

p ¼ 8 and 13 TeV for p⊥min ¼ 35 GeV is presented in
Fig. 2. The NLL BFKL-based calculation [with BFKLP
scale setting [45] ] lies below all other predictions, as it is
for

ffiffiffi
s

p ¼ 2.76 TeV. The upgrades in the CP5 tune do not
lead to any noticeable improvement at large Δy in PYTHIA8

predictions at the higher energies.
The predictions of the MN cross section in pp collisions

at
ffiffiffi
s

p ¼ 2.76, 8, and 13 TeV for p⊥min ¼ 20 GeV are
presented in Fig. 3. As can be seen by comparing the Born-
subprocess calculations and the LL BFKL calculations,
lowering the p⊥min threshold leads to an increase of
possible BFKL effects.
The predictions for the RMN

13=2.76, R
MN
8=2.76, and RMN

13=8 ratios
in pp collisions for p⊥min ¼ 35 GeV are presented in
Fig. 4, whereas they are presented in Fig. 5 for
p⊥min ¼ 20 GeV. As one can see, the BFKL and
DGLAP based predictions are well separated from each
other, confirming the sensitivity of these observables to the
BFKL effects. Moreover, the NLL BFKL predicts a
stronger rise of these observables than the LL BFKL

FIG. 1. The MN Δy -differential cross section for pp collisions at
ffiffiffi
s

p ¼ 2.76 TeV. (a) The cross section dσMN=dΔy, and (b) the
theory to data ratio. The CMS measurement [44] is represented by black circles. Statistical uncertainty of the measurement and MC
calculation by LL DGLAP-based PYTHIA8 is represented by bars. Systematic uncertainty of the data is the shaded band and systematic
uncertainty of the NLL BFKL calculation is the hatched band.
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FIG. 2. The MN Δy -differential cross section for pp collisions at
ffiffiffi
s

p ¼ 8 TeV (a) and 13 TeV (b) for p⊥min ¼ 35 GeV. Statistical
uncertainty of the MC calculations by LL DGLAP-based PYTHIA8 is represented by bars. Systematic uncertainty of the NLL BFKL
calculation is represented by a hatched band.

FIG. 3. The MN Δy -differential cross section for pp collisions at
ffiffiffi
s

p ¼ 2.76 TeV (a), 8 TeV (b), and 13 TeV (c) for
p⊥min ¼ 20 GeV. Statistical uncertainty of the MC calculations by LL DGLAP-based PYTHIA8 is represented by bars. Systematic
uncertainty of the NLL BFKL calculation is represented by the hatched band.

FIG. 4. The ratios of the MN cross sections dσMN=dΔy at different collision energies
ffiffiffi
s

p ¼ 2.76, 8, and 13 TeV, calculated for
p⊥min ¼ 35 GeV. RMN

13=2.76 (a), R
MN
8=2.76 (b), and R

MN
13=8 (c). Statistical uncertainty of the MC calculations by LL DGLAP-based PYTHIA8 is

represented by bars. Systematic uncertainty of NLL BFKL calculation is represented by the hatched band.

ANATOLII IU. EGOROV and VICTOR T. KIM PHYS. REV. D 108, 014010 (2023)

014010-6



predictions do. It can be seen by comparing the PYTHIA8

predictions with the Born-subprocess calculations that the
modeling of the parton evolution noticeably changes theffiffiffi
s

p
behavior of the MN cross section. These observations

can be tested at the LHC.

V. SUMMARY

The calculation of the set of observables intended for
the search of the BFKL evolution is performed. The MN
Δy -differential cross section dσMN=dΔy is calculated with
NLL BFKL accuracy. The BFKLP generalization [45] of
the Brodsky-Lepage-Mackenzie optimal renormalization
scale setting [49] is applied to resum the large coupling

constant effects. The ratios of the MN cross sections at
different collision energies are also calculated.
The agreement of the NLL BFKL-based calculations of

dσMN=dΔy to the CMS data at
ffiffiffi
s

p ¼ 2.76 (Ref. [44])
argues strongly in support of the BFKL evolution mani-
festation at LHC energies. The predictions given for pp
collisions at

ffiffiffi
s

p ¼ 2.76, 8, and 13 TeV for p⊥min ¼ 35 and
20 GeV can be tested at the LHC.
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