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We formulate a light-front spectator model for the proton incorporating the gluonic degree of
freedom. In this model, at high energy scattering of the proton, the active parton is a gluon and the rest is
viewed as a spin-1

2
spectator with an effective mass. The light front wave functions of the proton are

constructed using a soft wall AdS/QCD prediction and parametrized by fitting the unpolarized gluon
distribution function to the NNPDF3.0nlo dataset. We investigate the helicity distribution of gluon in
this model. We find that our prediction for the gluon helicity asymmetry agrees well with existing
experimental data and satisfies the perturbative QCD constraints at small and large longitudinal
momentum regions. We also present the transverse momentum dependent distributions (TMDs) for
gluon in this model. We further show that the model-independent Mulders-Rodrigues inequalities are
obeyed by the TMDs computed in our model.
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I. INTRODUCTION

Understanding the structure of hadrons in terms of the
fundamental degrees of freedom in QCD, i.e., quarks and
gluons, is one of the remaining challenges in nuclear
and particle physics. There has been numerous research
in recent years to learn more about the parton distributions
(PDFs), transverse momentum dependent distributions
(TMDs), generalized parton distributions (GPDs), gravita-
tional form factors (GFFs), Wigner distributions, etc., of the
quarks and their properties were investigated using various
theoretical models [1–23], revealing numerous insights
into the nucleon structure. In comparison to quark distri-
butions, the gluon distributions are less precisely known,
which has an impact on the calculation of the cross section

of a process dominated by the gluon-initiated channel.
Determining the proton mass decomposition in terms of
their constituents is a very important and current topic in
hadronic physics. The decomposition of the proton mass is
not unique, and different sum rules, which are related to
the QCD energy-momentum tensor, can be found in the
literature [23–30]. Gluons, which are the mediators for
the strong interaction, have a considerable influence on
the mass decomposition of the proton. In the study of
deep inelastic scattering processes, the gluon distribu-
tions and fragmentation functions contain essential infor-
mation about the system [31]. These process-independent
distributions characterize the soft part of the scattering,
or the deep structure of the hadrons, together with their
quark and antiquark equivalents. The majority of hadron
high energy scattering investigations relies on the QCD
factorization, in which PDFs play a crucial role. There are
two gluonic PDFs at leading twist: unpolarized fg1ðxÞ and
polarized gg1LðxÞ PDFs. The unpolarized gluon PDF has
been studied using lattice QCD [32–35] and various other
theoretical approaches [34,36–40] with better accuracy
as compared to the polarized PDF. The uncertainty is
mainly in the small x region of the polarized PDF. Even
the sign of the polarized PDF in the small x region is not
yet well-decided [41].
The first Mellin moment of the gluon polarized PDF

gives the gluon spin contribution to the proton spin. It is
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found that the quark spin only contributes around
ð20–30Þ% of the proton spin [42–46]. Even after sepa-
rating out the quark OAM and spin contributions, there is
a sizable amount of spin contribution that cannot be
explained through quarks only. The proton spin decom-
position, like the proton mass decomposition, is not
unique. As of now the total proton spin can be decom-
posed in a gauge invariant frame-independent sum rule
also known as Ji’s spin decomposition and the infinite-
momentum frame sum rule, known as the Jaffe-Manohar
decomposition [47–51]. Several experiments like the
RHIC spin program at BNL [41,45,46], PHENIX [52,53]
and COMPASS [54] observed a nonzero gluon helicity
suggesting that the proton spin is significantly influenced
by the gluon, which is important to resolve the proton spin
puzzle. However, the gluon helicity is not well determined
yet. The polarized PDF gg1LðxÞ measures the gluon spin
contribution to the proton but it has large uncertainty in
the small-x region. More discussions on the quark and
gluon helicity distributions in the small-x region can be
found in the Refs. [55–59]. Recently, some theoretical
studies using the basis light-front quantization (BLFQ)
approach [60], the holographic light-front QCD
(HLFQCD) approach [61], and the lattice QCD [35,62,63]
have reported the nonzero and sizeable contributions of
the gluon spin to the total proton spin. While there have
been significant improvements in the extracted gg1LðxÞ
precision over the last decade [39,41,45,64–69] followed
by few older references [70–72]. Still, there are various
concerns such as the suppression in the gluon distribution
in the momentum fraction region 0.1 < x < 0.4 when the
ATLAS and CMS jet data are included [38], determination
of gluon helicity in entire x-region etc. Accurate meas-
urement of the nucleon spin structure, specifically the
gluon and sea quark distributions, are two of the primary
scientific objectives of the forthcoming Electron-Ion-
Colliders (EICs) [73–75]. It is not yet completely clear
how gluons, valence quarks, and sea quarks share the spin
of the proton. But in recent studies, it has been found that
gluons contribute more to the proton spin than the valence
quarks. The Electron-Ion-Collider (EIC) will focus par-
ticularly on the small-x region, which contains more gluon
density and is complicated to study. In addition to PDFs,
we also explore the gluon TMDs in this work. It has
recently been demonstrated that gluons and quark TMDs
are essential to describe the three-dimensional picture of
the nucleon in momentum space. The gluon TMDs have
been studied in [76–81]. TMDs play a crucial role in the
experimentally observed single spin and azimuthal asym-
metries in for example semi-inclusive deep inelastic
scattering (SIDIS) and Drell-Yan (DY) processes. There
are eight leading twist gluon TMDs. The collinear limit
of the TMDs fg1ðx;p2⊥Þ and gg1Lðx;p2⊥Þ are related to the
unpolarized and polarized PDFs, respectively. An over-
view of the available literature on unpolarized and helicity

gluon TMDs at small-x can be found in Ref. [82] (and
references therein). Some recent theoretical and phenom-
enological studies are discussed in Refs. [83–85].
Recently, a few spectator models have been proposed

for the study of the gluon distributions [80,81,86,87]. In
the construction of the spectator models, the crucial step is
the choice of the light-front wave functions [36]. We can
write the form factors, PDFs, TMDs, GPDs and Wigner
distributions in terms of the overlap representation of the
light-front wave functions in a spectator model. It has
been verified that the form factors and partonic distribu-
tions follow model-independent scaling rules in the limit-
ing cases of the longitudinal momentum fraction x. The
behavior of gluon parton densities at large and small x
have been observed in Refs. [88,89]. In these works, the
authors derived QCD constraints [88] on unpolarized fg1,
polarized gg1L gluon PDFs and on the gluon helicity
asymmetry ratio gg1L=f

g
1, which goes to zero as x → 0

and it is 1 as x → 1. A reasonably good model should
follow these limiting conditions. In this work, we study
the gluon PDFs and T-even gluon TMDs using a light-
front gluon spectator model, where the light-front wave
functions are constructed using a soft wall AdS/QCD
prediction [90]. This model is a generalization of the
light-front quark-diquark model [16,91,92]. The gluon-
spectator model describes the nucleon as a composite
system of an active gluon and the rest of the system as a
spectator. At low energy, the spectator contains mainly
three valence quarks of the nucleon. We are considering
the spectator as a spin-1

2
effective system.

The paper is organized as follows: In Sec. II, we discuss
our model construction. We show the model calculation of
the T-even TMDs in Sec. III. In Sec. IV, we determine our
model parameters from the fitting of our unpolarized gluon
PDF to the NNPDF3.0nlo data. In Sec. V, we show our
model results for all four T-even gluon TMDs. Finally, we
provide a purple brief summary and discussion in Sec. VI.

II. MODEL CONSTRUCTION

The minimum Fock state of the proton contains only
valence quarks. As we include the higher Fock sectors then
gluons, and sea quarks also come into the picture. In this
simplified model, we describe the proton as a composite
state of one active gluon and a spin-1

2
spectator [81].

We choose a reference frame in which the transverse
momentum of the proton vanishes, i.e., P ¼ ðPþ; M

2

Pþ ; 0⊥Þ.
The momentum of the active parton is given by p ¼
ðxPþ; p

2þp2⊥
xPþ ;p⊥Þ and the momentum of the spectator

PX ¼ ðð1 − xÞPþ; P−
X;−p⊥Þ with x ¼ pþ=Pþ being the

fraction of proton longitudinal momentum carried by the
struck gluon. The proton state can be written as a two-
particle Fock-state expansion with proton spin components
Jz ¼ � 1

2
[36] as,
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jP;↑ð↓Þi ¼
Z

d2p⊥dx
16π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp ×

�
ψ↑ð↓Þ
þ1þ1

2

ðx;p⊥Þ
����þ 1;þ 1

2
; xPþ;p⊥

�
þ ψ↑ð↓Þ

þ1−1
2

ðx;p⊥Þ
����þ 1;−

1

2
; xPþ;p⊥

�

þ ψ↑ð↓Þ
−1þ1

2

ðx;p⊥Þ
���� − 1;þ 1

2
; xPþ;p⊥

�
þ ψ↑ð↓Þ

−1−1
2

ðx;p⊥Þ
���� − 1;−

1

2
; xPþ;p⊥

��
; ð1Þ

where ψ↑ð↓Þ
λgλX

ðx;p⊥Þ are the LFWFs corresponding to the

two-particle state jλg; λX; xPþ;p⊥i with proton helicities
λp ¼ ↑ð↓Þ. Here, λg and λX stand for the helicity compo-
nents of the constituent gluon and spectator, respectively.
Our proposal for the light-front wave functions in

Eq. (1) is inspired by the wave function of the physical
electron [36], which is made up of a spin-1 photon and a
spin-1

2
electron. We argue that the light-front wave functions

for the Fock-state expansion for a proton with Jz ¼ þ1=2
have the following form:

ψ↑
þ1þ1

2

ðx;p⊥Þ ¼ −
ffiffiffi
2

p ð−p1⊥ þ ip2⊥Þ
xð1 − xÞ φðx;p2⊥Þ;

ψ↑
þ1−1

2

ðx;p⊥Þ ¼ −
ffiffiffi
2

p �
M −

MX

ð1 − xÞ
�
φðx;p2⊥Þ;

ψ↑
−1þ1

2

ðx;p⊥Þ ¼ −
ffiffiffi
2

p ðp1⊥ þ ip2⊥Þ
x

φðx;p2⊥Þ;

ψ↑
−1−1

2

ðx;p⊥Þ ¼ 0; ð2Þ

where M and MX represent the masses of the proton and
spectator, respectively. φðx;p2⊥Þ is the modified form of the

soft-wall AdS/QCD wave function [91] modeled by intro-
ducing the parameters a and b. Similarly, the light-front
wave functions for the proton with Jz ¼ −1=2 have the
form

ψ↓
þ1þ1

2

ðx;p⊥Þ ¼ 0;

ψ↓
þ1−1

2

ðx;p⊥Þ ¼ −
ffiffiffi
2

p ð−p1⊥ þ ip2⊥Þ
x

φðx;p2⊥Þ;

ψ↓
−1þ1

2

ðx;p⊥Þ ¼ −
ffiffiffi
2

p �
M −

MX

ð1 − xÞ
�
φðx;p2⊥Þ;

ψ↓
−1−1

2

ðx;p⊥Þ ¼ −
ffiffiffi
2

p ðp1⊥ þ ip2⊥Þ
xð1 − xÞ φðx;p2⊥Þ: ð3Þ

The behavior at x → 0, as well as the counting rules at
x → 1, provide information on the various gluon distribu-
tions [88,89]. To elaborate, the asymptotic behavior of the
PDFs at small x is adopted from the observed Regge
behavior in particle colliders, and the large-x behavior is
based on the power counting rules for hard scattering [89].
Keeping all these in mind, we have modified the soft wall
AdS-QCD wave function, φðx;p2⊥Þ, The complete form of
the modified soft-wall AdS/QCD wave function is given by,

φðx;p2⊥Þ ¼ Ng
4π

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log½1=ð1 − xÞ�

x

r
xbð1 − xÞa exp

�
−
log½1=ð1 − xÞ�

2κ2x2
p2⊥

�
: ð4Þ

where a and b are our model parameters. We take AdS/QCD scale parameter κ ¼ 0.4 GeV [15]. The values of the model
parameters a, b, and the normalization constant Ng are fixed by fitting the gluon unpolarized PDF at the scale Q0 ¼ 2 GeV
with NNPDF3.0 data. For the stability of the proton, the spectator mass, MX is considered higher than the proton mass,
i.e., MX > M.

III. GLUON TMDs

In the light front formalism, the unintegrated gluon correlation function for leading twist gluon TMDs in the SIDIS
process is given by the following relation [77]:

Φg½ij�ðx;p⊥; SÞ ¼
1

xPþ

Z
dξ−

2π

d2ξ⊥
ð2πÞ2 e

ik·ξhP; SjFþj
a ð0ÞWþ∞;abð0; ξÞFþi

b ðξÞjP;Si
����
ξþ¼0þ

; ð5Þ

where Fμν is the gluon field strength tensor and Wþ∞;ab is
the Wilson line that ensures the correlator to be gauge
invariant. The subscript “þ” specifies that the Wilson line
in the correlator operator expression is future-pointing,

which is necessary for SIDIS TMD distributions. There
are eight leading twist gluon TMDs out of which four of
them are T-even (fg1, g

g
1L, g

g
1T , and h⊥g

1 ) and the remaining
four are T-odd (f⊥g

1T ; h
⊥g
1L ; h

g
1T; h

⊥g
1T ) [1,77]. The twist-2
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chiral-even gluon TMDs are defined through the
correlator (5) as [1]

Φgðx;p⊥; SÞ ¼ δijTΦg½ij�ðx;p⊥; SÞ

¼ fg1ðx;p2⊥Þ −
ϵij⊥pi⊥S

j
⊥

M
f⊥g
1T ðx;p2⊥Þ; ð6Þ

and,

Φ̃gðx;p⊥; SÞ ¼ iϵijTΦg½ij�ðx;p⊥; SÞ

¼ λgg1Lðx;p2⊥Þ þ
p⊥ · S⊥

M
gg1Tðx;p2⊥Þ; ð7Þ

where δijT ¼ −gij and ϵijT ¼ ϵ−þij. Similarly, the chiral-odd
gluon transverse momentum dependent distributions are
obtained by using the symmetry operator Ŝ, which is

defined as ŜOij ¼ 1=2ðOij þOji − δijTO
mmÞ for a general

tensor Oij. Then,

Φg;ij
T ðx;p⊥; SÞ
¼ −ŜΦg½ij�ðx;p⊥; SÞ

¼ −
Ŝpi⊥p

j
⊥

2M2
h⊥g
1 ðx;p2⊥Þ þ

λŜpi⊥ϵ
jk
⊥pk⊥

2M2
h⊥g
1Lðx;p2⊥Þ

þ Ŝpi⊥ϵ
jk
⊥Sk⊥

2M

�
hg1Tðx;p2⊥Þ þ

p2⊥
2M2

h⊥g
1T ðx;p2⊥Þ

�

þ Ŝpi⊥ϵ
jk
⊥ ð2pk⊥p⊥:S⊥ − Sk⊥p2⊥Þ

4M3
h⊥g
1T ðx;p2⊥Þ: ð8Þ

Using the above Eqs. (6)–(8), one can compute all the
T-even TMDs. The unpolarized TMD, fg1ðx;p2⊥Þ is defined
as the overlap representation of the proton light-front wave
functions as [93]

fg1ðx;p2⊥Þ ¼ −
1

16π3
gμνT

X
λgλ

0
gλX

ϵ
λ0g�
μ ϵ

λg
ν ψ

↑�
λ0gλX

ðx;p2⊥Þψ↑
λgλX

ðx;p2⊥Þ

¼ 1

16π3
X
λgλ

0
gλX

ðϵλ0g�1 ϵ
λg
1 þ ϵ

λ0g�
2 ϵ

λg
2 Þψ↑�

λ0gλX
ðx;p2⊥Þψ↑

λgλX
ðx;p2⊥Þ

¼ 1

16π3

h
jψ↑

þ1þ1=2ðx;p2⊥Þj2 þ jψ↑
þ1−1=2ðx;p2⊥Þj2 þ jψ↑

−1þ1=2ðx;p2⊥Þj2
i
: ð9Þ

After employing the light-front wave functions, Eqs. (2) and (3) in the above Eq. (9), we obtain the gluon unpolarized
TMD as,

fg1ðx;p2⊥Þ ¼ N2
g

2

πκ2
log½1=ð1 − xÞ�

x
x2bð1 − xÞ2a½AðxÞ þ p2⊥BðxÞ� exp½−CðxÞp2⊥�; ð10Þ

where AðxÞ, BðxÞ and CðxÞ are given by

AðxÞ ¼
�
M −

MX

ð1 − xÞ
�

2

; BðxÞ ¼ 1þ ð1 − xÞ2
x2ð1 − xÞ2 and CðxÞ ¼ log½1=ð1 − xÞ�

κ2x2
: ð11Þ

Similarly, the gluon helicity TMD gg1Lðx;p2⊥Þ, which describes the distribution of a circularly polarized gluon in a
longitudinally polarized proton, is defined as,

gg1Lðx;p2⊥Þ ¼ −
1

16π3
iϵμνT

X
λgλ

0
gλX

ϵ
λ0g�
μ ϵ

λg
ν ψ

↑�
λ0gλX

ðx;p2⊥Þψ↑
λgλX

ðx;p2⊥Þ

¼ 1

16π3
i
X
λgλ

0
gλX

ðϵλ0g�2 ϵ
λg
1 − ϵ

λ0g�
1 ϵ

λg
2 Þψ↑�

λ0gλX
ðx;p2⊥Þψ↑

λgλX
ðx;p2⊥Þ

¼ 1

16π3

h
jψ↑

þ1þ1=2ðx;p2⊥Þj2 þ jψ↑
þ1−1=2ðx;p2⊥Þj2 − jψ↑

−1þ1=2ðx;p2⊥Þj2
i
: ð12Þ

The analytical expression for the gluon helicity TMD in our model is obtained as,

gg1Lðx;p2⊥Þ ¼ N2
g

2

πκ2
log½1=ð1 − xÞ�

x
x2bð1 − xÞ2a½AðxÞ þ p2⊥B̃ðxÞ� exp½−CðxÞp2⊥�; ð13Þ
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where AðxÞ, CðxÞ are same as (11), while B̃ðxÞ is given as

B̃ðxÞ ¼ 1 − ð1 − xÞ2
x2ð1 − xÞ2 : ð14Þ

The worm-gear gluon TMD gg1Tðx;p2⊥Þ is defined as the distribution of a circularly polarized gluon in a transversely
polarized proton [86] and given by,

p⊥:S⊥
M

gg1Tðx;p2⊥Þ ¼ −
1

16π3
iϵμνT

X
λgλ

0
gλX

ϵ
λ0g�
μ ϵ

λg
ν ψ

↑�
λ0gλX

ðx;p2⊥Þψ↓
λgλX

ðx;p2⊥Þ

¼ 1

16π3
i
2

X
λgλ

0
gλX

ðϵλ0g�1 ϵ
λg
2 − ϵ

λ0g�
2 ϵ

λg
1 Þ½ψ↑�

λ0gλX
ðx;p2⊥Þψ↓

λgλX
ðx;p2⊥Þ þ ψ↓�

λ0gλX
ðx;p2⊥Þψ↑

λgλX
ðx;p2⊥Þ�

gg1Tðx;p2⊥Þ ¼ −
4M

16π3x

�
M −

MX

ð1 − xÞ
�
½φðx;p2⊥Þ�2: ð15Þ

Using the soft-wall AdS/QCD wave function (4), the above equation can be written as,

gg1Tðx;p2⊥Þ ¼ −
4M
πκ2

N2
gðMð1 − xÞ −MXÞ log½1=ð1 − xÞ�x2b−2ð1 − xÞ2a−1 exp½−CðxÞp2⊥�: ð16Þ

Finally, The Boer-Mulders gluon TMD h⊥g
1 ðx;p2⊥Þ, which describes a linearly polarized gluon inside an unpolarized proton,

is given as,

p2⊥
2M2

h⊥g
1 ðx;p2⊥Þ ¼

1

2
ημνT

X
λNλg≠λ0gλX

1

16π3

h
ϵ
λ0g�
μ ϵ

λg
ν ψ

�λN
λ0gλX

ðx;p⊥ÞψλN
λgλX

ðx;p⊥Þ
i
;

h⊥g
1 ðx;p2⊥Þ ¼ −

1

16π3
M2

p4⊥

X
λNλX

h
ðp1 − ip2Þ2ψ�λN

þ1λX
ðx;p⊥ÞψλN

−1λXðx;p⊥Þ þ ðp1 þ ip2Þ2ψ�λN
−1λXðx;p⊥ÞψλN

þ1λX
ðx;p⊥Þ

i

¼ 8M2

16π3
1

x2ð1 − xÞ ½φðx;p
2⊥Þ�2;

h⊥g
1 ðx;p2⊥Þ ¼

8M2

πκ2
N2

g log½1=ð1 − xÞ�x2b−3ð1 − xÞ2a−1 exp½−CðxÞp2⊥�: ð17Þ

where we used ημνT ¼ gμνT þ 2pμ
⊥pν⊥=p2⊥. After performing the p⊥-integration of the gluon unpolarized TMD, Eq. (10),

we obtain the corresponding collinear unpolarized PDF, fg1ðxÞ as,

fg1ðxÞ ¼
Z

d2p⊥fg1ðx;p2⊥Þ

¼ 2N2
gx2bþ1ð1 − xÞ2a−2

�
κ2

ð1þ ð1 − xÞ2Þ
log½1=ð1 − xÞ� þ ðMð1 − xÞ −MXÞ2

�
: ð18Þ

The gluon helicity PDF gg1LðxÞ can be obtained after the p⊥-integration of the gluon helicity TMD in Eq. (13) as,

gg1LðxÞ ¼
Z

d2p⊥gg1Lðx;p2⊥Þ

¼ 2N2
gx2bþ1ð1 − xÞ2a−2

�
κ2

ð1 − ð1 − xÞ2Þ
log½1=ð1 − xÞ� þ ðMð1 − xÞ −MXÞ2

�
: ð19Þ
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Similarly, the collinear PDFs of worm-gear, Eq. (16), and
the Boer-Mulders, Eq. (17), TMDs are given as,

gg1TðxÞ ¼
Z

d2p⊥gg1Tðx;p2⊥Þ

¼ −4MN2
gðMð1 − xÞ −MXÞx2bð1 − xÞ2a−1; ð20Þ

and,

h⊥g
1 ðxÞ ¼

Z
d2p⊥h⊥g

1 ðx;p2⊥Þ

¼ 8M2N2
gx2b−1ð1 − xÞ2a−1: ð21Þ

IV. NUMERICAL FITTING AND MODEL
PARAMETERS

There are four parameters a, b, Ng, andMX in our model,
which will decide the goodness of the model. The parameters
Ng and MX are free parameters and they are fixed by
normalization conditions of the gluon PDFs and spectator
mass properties of the proton, respectively. The parameters a
and b decide the behavior of the distributions in extreme
limits of x are crucial to fix. We determine these model
parameters, by fitting our unpolarized gluon distribution
with the latest available gluon PDF data at NLO of the gluon
distribution xfg1ðxÞ from the global analysis by the NNPDF
Collaboration [39]. We particularly fit NNPDF3.0 NLO
unpolarized gluon distribution at the scaleQ0 ¼ 2 GeV. We
choose 300 data points within the interval 0.001 < x < 1
and 100 replicas of the gluon distribution. The effective
uncertainties are calculated from the standard deviation of
these 100 replicas for each value of xi.
We set the gluon mass Mg ¼ 0. The choice of model

parameters a and b depend on the spectator mass. During the
search for the optimal fit, we find that for spectator mass
close to the proton mass, the model parameters produce a
more physically acceptable spin contribution of the gluon
than for larger spectator mass. Here, we choose MX ¼
0.985 GeV. In a similar kind of spectator model, the
spectator mass has been chosen as MX ¼ 0.943 GeV [81].
The model is very sensitive in the small x region. Even in the
NNPDF analysis, the polarized PDF has large uncertainty in
the small-x region, which makes the spin contribution
prediction sensitive to the lower limit of x. Keeping all of
this in mind, we exclude a very small x region from our
fitting and our model is valid for the range 0.001 < x < 1.
The value of the fitted model parameters is listed in

Table I. These model parameters are fixed by fitting the
NNPDF3.0 NLO dataset at Q0 ¼ 2 GeV with a χ2min ¼
20.37 with the normalization constant Ng ¼ 2.088. We
notice that the 2σ uncertainty to the parameter fitting is
close to the experimental error corridor, and we take 2σ
uncertainty as a standard maximized error in this model for

further reporting. The parameters in the wave functions
determined by the fitting of unpolarized gluon PDF can be
further employed to predict the other gluon distributions e.g.,
gluon helicity, transversity, TMDs etc. In Fig. 1, we show the
results of our fit for the unpolarized gluon distribution
xfg1ðxÞ at Q0 ¼ 2 GeV. The solid magenta band identifies
the NNPDF3.0 parametrization of xfg1ðxÞ [94] and the
blue-dashed line with the blue band shows our model results
at 2σ error corridor.

V. RESULTS

The value of the average longitudinal momentum of the
gluon is defined as the second Mellin’s moment of the
unpolarized PDF as,

hxig ¼
Z

1

0.001
dxxfg1ðxÞ ¼ 0.416þ0.048

−0.041 ; ð22Þ

which is close to the recent lattice calculations at
Q2

0 ¼ 4 GeV2, hxig ¼ 0.427ð92Þ [95]. In Table II, we
compared the average value of the longitudinal momentum
fraction for the unpolarized gluon PDF with the available
theoretical models in the literature [80,81,86,96].
In Fig. 2, we show our model predictions for the

polarized gluon distribution xgg1LðxÞ (left panel) and the

FIG. 1. Our model unpolarized gluon PDF fg1ðxÞ (blue dashed
line with blue band of 2σ error) compared with the NNPDF3.0nlo
dataset (solid magenta line with magenta band) as a function of
longitudinal momentum fraction x in the kinematics region
0.001 ≤ x ≤ 1 at Q0 ¼ 2 GeV.

TABLE I. Numerical values and the uncertainties of the fitted
model parameters a and b.

Parameter Central value 1σ-error band 2σ-error band

a 3.88 �0.1020 �0.2232
b −0.53 �0.0035 �0.0071
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gluon helicity asymmetry ratio gg1LðxÞ=fg1ðxÞ (right panel)
at Q0 ¼ 2 GeV. The red band in the left panel of Fig. 2
represents the NNPDFpol1.1 results, which have large
uncertainty in the entire range of x and particularly in the
small-x region. The central line of NNPDFpol1.1 data is
negative in the x close to 0.001 region, while in our model,
the gluon helicity distribution is always positive. Overall,
we find that our gluon helicity distribution in the entire
region of x except the domain 0.07 < x < 0.3 is more or
less consistent with the global analysis. Within the domain
0.07 < x < 0.3, the distribution is going beyond the
uncertainty band. As a result, we obtain the high value
of gluon spin contribution in the small-x region as shown
in Table III. The spin contribution for large-x mainly
comes from the quark sector and we cannot expect much
contribution from gluons. In Table III, we list the
dependence of the gluon helicity on the x range and also
compare them with the other model predictions of gluon
helicity in certain ranges of x. We observe that the
maximum contribution to the gluon helicity comes from
the small-x region. Compared to other model results, the
gluon helicity contributions for different x regions are
found to be relatively larger in our model. The high gluon
spin contribution has been reported in Refs. [96,97].
Meanwhile, in Ref. [80], the gluon spin contribution is
relatively small, sg ¼ 0.159� 0.011, which may be due to
the fact that the unpolarized as well as helicity PDFs have
been simultaneously fitted in that model. The latest lattice

result of the gluon total angular momentum is reported to
be Jg ¼ 0.187ð46Þ at the scale 2 GeV [95].
In the right panel of Fig. 2, the gluon helicity asymmetry

has been compared with available experimental data.
From this comparison, we notice that our result for helicity
asymmetry is in good agreement with the experimental
measurements. In our model, the helicity asymmetry ratio
is independent of the model parameters a and b and
depends only on the spectator mass MX, which satisfies
the following model-independent QCD constraints [88,89],

lim
x→0

gg1LðxÞ
fg1ðxÞ

¼ 0; and lim
x→1

gg1LðxÞ
fg1ðxÞ

¼ 1: ð23Þ

The uncertainty band in the helicity asymmetry ratio
plot (Fig. 2) is created by including the errors in the
spectator mass (MX ¼ 0.985þ0.044

−0.045 ) in such a way that the
maximum spin contribution should not go beyond
the total proton spin and the lower cutoff for the spectator
mass is MX → M.
In Fig. 3, we show x-weighted collinear PDFs of worm-

gear gg1TðxÞ and the Boer-Mulders h⊥g
1 ðxÞ TMDs as a

function of x. There is no PDF corresponding to the
collinear limit of the worm-gear and the Boer-Mulders
TMDs. We have also shown their comparison with the

TABLE II. Comparison of the numerical values of the average
longitudinal momentum of the gluon at Q0 ¼ 2 GeV.

This work [80] [81] [96] [95]

hxig 0.416 0.424 0.411 0.409 0.427

FIG. 2. The gluon helicity PDF, gg1LðxÞ (left panel) compared with the NNPDFpol1.1 [45] and the spectator model results [80] at
Q0 ¼ 2 GeV. The right panel shows the comparison for the helicity asymmetry gg1LðxÞ=fg1ðxÞ from our calculation (blue band) with the
experimental measurements. The direct measurements of COMPASS [65,98], HERMES [99] and SMC [100] are obtained in the leading
order from high pT hadrons while open charm muon production at COMPASS [101] are taken from next-to-leading order at different
values of x.

TABLE III. Comparison of the numerical values of the gluon
spin contribution with the available data at Q0 ¼ 2 GeV.

Gluon helicity Central value Our predictions

ΔG ¼ R
0.3
0.05 dxΔgðxÞ 0.20 [53] 0.28þ0.047

−0.037

ΔG ¼ R
0.2
0.05 dxΔgðxÞ 0.23(6) [45] 0.22þ0.033

−0.024

ΔG ¼ R
1
0.05 dxΔgðxÞ 0.19(6) [41] 0.326þ0.066

−0.050
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results reported in Ref. [86] in the range 0 < x < 0.6.
The difference between the two results is due to the fact
that, both the models are different by their choice of light
front wave functions. In Ref. [86] the authors have modeled
their LFWFs as ϕð1Þðx;p2⊥Þ and ϕð2Þðx;p2⊥Þ, which are
expressed in terms of gluon helicity aligned, GþðxÞ and
helicity antialigned, G−ðxÞ distributions by introducing a
profile function DgðxÞ, i.e., wave functions are modeled
to satisfy both unpolarized and polarized gluon PDFs,
whereas our wave functions are taken from AdS/QCD
predictions and no such profile function is introduced. The
wave function are fitted to the unpolarized gluon PDF and
polarized PDFs are our model predictions. Though we do
not impose the additional constraints at x ¼ 0 and 1, our
model also satisfies these constraints as one can see in
Eq. (23) and Fig. 2.
The three-dimensional distribution of the T-even TMDs,

fg1ðx;p2⊥Þ, gg1Lðx;p2⊥Þ, gg1Tðx;p2⊥Þ, and h⊥g
1 ðx;p2⊥Þ at the

scale Q0 ¼ 2 GeV are shown in Fig. 4. All the T-even
TMDs have their positive peaks around small x and fall off
very sharply with increasing p⊥. In Fig. 5, we present our
model results for the T-even gluon TMDs as a function of
p2⊥ at x ¼ 0.1. These distributions are found to be slightly
overestimated as compared to the results reported in
Ref. [86], whereas the worm-gear TMD in Ref. [80] is
shown to be negative. We also notice that our model results
for T-even TMDs fall off very sharply with p2⊥ as compared
to the other theoretical predictions [80,86,96].
The following gluon densities [80] are also pertinent

since they describe the two-dimensional p⊥-distributions
of gluons at various x for various combinations of their
polarization and nucleon spin state. The unpolarized
gluon density in an unpolarized nucleon is calculated
as follows:

xρgðx; px; pyÞ ¼ xfg1ðx;p2⊥Þ; ð24Þ

which describes the probability density of finding the
unpolarized gluons at given x and p⊥. The “Boer-
Mulders” density, which shows the probability density
of finding the linearly polarized gluons with x and p⊥ is
given as,

xρ↔g ðx; px; pyÞ ¼
1

2

�
xfg1ðx;p2⊥Þ þ

p2
x − p2

y

2M2
xh⊥g

1 ðx;p2⊥Þ
�

ð25Þ

Similarly, the “helicity density,” which describes the
probability density of circularly polarized gluons at
particular x and p⊥ inside the longitudinally polarized
proton is given as,

xρ↺=þ
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2⊥Þþxgg1Lðx;p2⊥Þ� ð26Þ

Finally, the “worm-gear density,” which describes the
probability density of circularly polarized gluons at
given x and p⊥ inside the transversely polarized proton
is given as,

xρ↺=↔
g ðx;px;pyÞ¼

1

2
½xfg1ðx;p2⊥Þ−

px

M
xgg1Tðx;p2⊥Þ� ð27Þ

We would like to emphasize here the definitions of
helicity density (26) and worm-gear density (27) differ
by a factor of 1

2
from the corresponding definitions in

Ref. [80]. Without the half factor, the helicity density
becomes larger than the unpolarized gluon density. The
unpolarized, Eq. (24), and the helicity, Eq. (26), densities
show that the p⊥ distributions are cylindrically symmetric
around the longitudinal direction, as the proton (gluon) is
unpolarized or longitudinally (circularly) polarized along
to Pþ. The Boer-Mulders density Eq. (25) is symmetric
about the px and py axes because it describes unpolarized
proton and linearly polarized gluons along the px

FIG. 3. The gluon worm-gear, xgg1LðxÞ (left) and the Boer-Mulders, xh⊥g
1 ðxÞ (right) collinear PDFs. The insets show a comparison of

our results to those presented in Ref. [86] with dashed borders.
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direction. The worm-gear density involves a transversely
polarized proton along the þpx axes. Hence it is asym-
metrically distributed in the same direction. In Fig. 6
we show the contour plots for the p⊥-distribution of the
densities at x ¼ 0.1. The upper left panel shows the
unpolarized density, ρg which is cylindrically symmetric
in the px and py directions followed by the ancillary 1D
plots which represents the corresponding density at
py ¼ 0. The upper right panel represents the BM density,
ρ↔ which shows a quadrupole structure. The lower left
panel presents the gluon helicity density, ρ↺=þ which is
perfectly symmetric in the transverse plane because it
describes a proton (gluon) longitudinally (circularly)

polarized along the direction of motion pointing toward
the reader. The lower right panel represents the worm-
gear density, ρ↺=↔ which is slightly asymmetric in px at
x ¼ 0.1 because the proton is transversely polarized along
the px-direction. The color code identifies the size of the
oscillation of each density along the px and py directions.

A. Relations between TMDs

The gluon TMDs are very sensitive to x. The TMDs and
their relations among them could be separated into small
and large x regions. Depending upon the applicability of
the model these relations can be checked only in certain
ranges of x. The leading twist TMDs in this model also

FIG. 4. The TMDs for the gluon as functions of x and p2⊥. Upper panel: The unpolarized gluon TMD, fg1ðx;p2⊥Þ (left), The gluon
helicity TMD, gg1Lðx;p2⊥Þ (right panel). Lower panel: The worm-gear TMD, gg1Tðx;p2⊥Þ (left) and the Boer-Mulders TMD,
h⊥g
1 ðx;p2⊥Þ (right).
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satisfy the inequality relations, which are valid in QCD and
all models [79,86], e.g., positivity bound, which is the most
known model-independent relation. According to which
the unpolarized TMD fg1ðx;p2⊥Þ should be always positive
and larger than the polarized one [77] i.e.,

fg1ðx;p2⊥Þ > 0; fg1ðx;p2⊥Þ ≥ jgg1Lðx;p2⊥Þj: ð28Þ

and,

fg1ðx;p2⊥Þ ≥
jp⊥j
M

jgg1Tðx;p2⊥Þj;

fg1ðx;p2⊥Þ ≥
jp⊥j2
2M2

jh⊥g
1 ðx;p2⊥Þj: ð29Þ

Apart from these relations, there are several relations
among TMDs themselves. The Mulders-Rodrigues rela-
tions for unpolarized and the polarized TMDs [77] are more
stringent conditions than the above positivity bounds and
are satisfied in our model:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½gg1Lðx;p2⊥Þ�2 þ

�jp⊥j
M

gg1Tðx;p2⊥Þ
�
2

s
≤ fg1ðx;p2⊥Þ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½gg1Lðx;p2⊥Þ�2 þ
�
p2⊥
2M2

h⊥g
1 ðx;p2⊥Þ

�
2

s
≤ fg1ðx;p2⊥Þ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�jp⊥j

M
gg1Tðx;p2⊥Þ

�
2

þ
�
p2⊥
2M2

h⊥g
1 ðx;p2⊥Þ

�
2

s
≤ fg1ðx;p2⊥Þ:

ð30Þ

The positivity bounds Eqs. (28) and (29) can be derived as
limiting cases of Eq. (30).
An interesting sum rule has been derived in Ref. [86]

involving the T-even TMDs, by expressing them in terms of
overlaps of LFWFs. This can be expressed as:

½fg1ðx;p2⊥Þ�2 ¼ ½gg1Lðx;p2⊥Þ�2 þ
�jp⊥j
M

gg1Tðx;p2⊥Þ
�
2

þ
�
p2⊥
2M2

h⊥g
1 ðx;p2⊥Þ

�
2

; ð31Þ

FIG. 5. The T-even TMDs as a function of p2⊥ for x ¼ 0.1. Upper panel: the unpolarized gluon TMD, xfg1ðx;p2⊥Þ (left), The helicity
TMD, xgg1Lðx;p2⊥Þ (right). Lower panel: the worm-gear TMD, gg1Tðx;p2⊥Þ (left) and the Boer-Mulders TMD, h⊥g

1 ðx;p2⊥Þ (right),
respectively.
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The above relation, Eq. (31), gives the connection between
the square of an unpolarized TMD and a combination of
squares of three polarized TMDs. In Fig. 7, we show the

ratio of Boer-Mulders to unpolarized TMDs weighted by
p2⊥=2M2 as a function of p⊥ for different values of the
gluon longitudinal momentum fraction x. We notice that

FIG. 6. Upper panel: unpolarized gluon density (left), Boer-Mulders gluon density (right) for a virtually moving unpolarized nucleon.
Lower panel: helicity gluon density (left) and worm-gear gluon density (right) for a polarized nucleon virtually moving toward
the reader. 1D ancillary plots for each contour plot indicate the density at py ¼ 0. All densities are represented as a function of
p⊥ ≡ ðpx; pyÞ at a constant x ¼ 0.1.
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the positivity bound saturates only for the small x-values,
for large x-values the positivity inequality is satisfied in the
whole range of p⊥. Saturation of the positivity bound for
gluon TMDs in a spectator model in the certain kinematical
region has been reported in Ref. [102]. Note that all the
relations listed above are independent of the parameters of
our model.

VI. CONCLUSION

We have proposed a light-front spectator model with the
light-front wave functions modeled from the soft-wall
holographic AdS/QCD prediction for two-body bound

states. In this simple model, proton is assumed to consist
of a struck gluon and a spin-1=2 spectator. We fixed our
model parameters by fitting the unpolarized gluon PDF,
fg1ðxÞ with the NNPDF3.0nlo global analysis. The helicity
PDF and other T-even TMDs are calculated as predictions
of the model and are shown to satisfy the positivity bound
and have in good agreement with the available model
predictions. The model is found to satisfy the constraints
imposed by QCD including counting rules at small and
large x. We have demonstrated that the gluon TMDs obey
the model-independent Mulders-Rodrigues inequalities.
We have also shown in this model that the superposition
of the squares of all polarized T-even TMDs is equal to
the square of the unpolarized TMD. We verified that this
sum rule is also followed in similar models. It will be
interesting to study the other proton properties like GPDs,
T-odd TMDs, Wigner distributions, GTMDs, etc., and
their scale evolutions in this model, and to compare with
other model predictions, which can be helpful for the
upcoming EICs.
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