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We study, to all orders in perturbative QCD, the universal behavior of the saturation momentum QsðLÞ
controlling the transverse momentum distribution of a fast parton propagating through a dense QCD
medium with large size L. Due to the double logarithmic nature of the quantum evolution of the saturation
momentum, its large L asymptotics is obtained by slightly departing from the double logarithmic limit of
either next-to-leading log (NLL) BFKL or leading order DGLAP evolution equations. At fixed coupling, or

in conformalN ¼ 4 SYM theory, we derive the large L expansion of QsðLÞ up to order α3=2s . In QCD with
massless quarks, where conformal symmetry is broken by the running of the strong coupling constant,
the 1-loop QCD β-function fully accounts for the universal terms in the QsðLÞ expansion. Therefore, the
universal coefficients of this series are known exactly to all orders in αs.
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I. INTRODUCTION

The study of the suppression and modification of jets in
heavy-ion collisions at RHIC and LHC [1–9], commonly
referred to as “jet quenching” [10–12], aims at probing the
quark-gluon plasma at various scales as well as nonequili-
brium dynamics of QCD. This physics will play a central
role in the sPHENIX program at RHIC [13] and the
upcoming run 4 at the LHC [14]. In that context, the
phenomenon of transverse momentum broadening (TMB)
of jets in the QGP is of major importance as it controls
many jet quenching related observables measured in heavy-
ion collisions. For instance, TMB is responsible for the jet
energy loss by deflecting soft medium-induced gluons at
larger angles than the jet cone size R [15] leading to the
suppression of the jet cross section in nucleus-nucleus
collisions [16–19]. Another important and historical sig-
nature of jet quenching is the dijet azimuthal asymmetry
[20–23]. This observable is believed to be sensitive to TMB
of jets propagating in the quark-gluon plasma through the
suppression of the back-to-back peak that signals the
azimuthal decorrelation of the di-jet system [24,25].

Recently, the possibility of measuring TMB using jet
substructure observables like the Soft Drop grooming
angle has also been investigated [26,27].
TMB is encoded in the so-called jet quenching

parameter q̂, which is roughly speaking the average trans-
verse momentum squared k2⊥ acquired per unit of time by a
fast parton propagating in a dense medium

q̂ ∼
dhk2⊥i
dt

: ð1Þ

In the absence of quantum corrections, this simple Brownian
diffusion in transverse space picture leads to a TMB
distribution which is peaked around a characteristic trans-
verse momentum scale, the saturation scale Qs such that

Q2
s ∼ q̂L; ð2Þ

for a given system size L. On the other hand, at large k⊥, the
distribution becomes dominated by rare, single hard scatter-
ing with a medium quasiparticle, and therefore displays the
characteristic Rutherford-like power law 1=k4⊥. The latter has
received a lot of attention in the past few years, as it would
signal the presence of pointlike quasiparticles in the quark-
gluon plasma [28,29]. Of course, the study of this regime in
the context of jets in heavy ion collisions is rather challenging
due to the large background of soft particles and the interplay
with inelastic higher order processes, on the one hand, and to
the low cross section associated with these rare events on the
other hand.
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On the theory side, a lot of progress has been made in the
description of TMB. A compact formula à la Molière [30]
encompassing both the multiple soft scattering and single
hard scattering regimes has beenderived in [31]. Furthermore,
the effects of transverse flow on the TMB distribution have
been investigated analytically and numerically in [32–34].
Also, in the small transverse momentum domain of the
distribution,wherenonperturbative physics dominates, recent
lattice calculations opened up the possibility of achieving a
comprehensive picture of TMB at all scales [35,36].
Quantum corrections to TMB have also triggered many

recent studies since the seminal papers [37,38] in which the
authors show that radiative corrections are enhanced by
a double logarithm of the system size L, q̂NLO ∼ q̂LO ×
αs ln2 L. These quantum corrections of order αs ∝ g2 are of
a different origin than the classical corrections of order g
associated with soft thermal modes in the plasma [39] (for a
recent discussion about the interplay between quantum and
classical corrections to q̂, see [40]). The logarithmic
dependence on the system size encoded in higher order
corrections is an expression of the nonlocal nature of the
quantum fluctuations that were shown to qualitatively
affect the underlying diffusive process.
Remarkably, these quantum corrections were shown to

be process independent up to single logarithmic accuracy
(at large Nc), since they also appear in NLO corrections to
the medium-induced gluon spectrum [41–44]. This sug-
gests a renormalization group approach in order to resum
these potentially large logarithmic terms. Upon resumma-
tion to all orders, the resulting TMB distribution showcases
interesting physical properties: the typical width of the
distribution, parametrically given by the saturation momen-
tum Qs, grows with the system size L faster than the
standard diffusive exponent L1=2, and the large-k⊥ tail is a
power law which deviates from the Rutherford behavior by
a

ffiffiffiffiffi
αs

p
correction [45]. These features are characteristic of

anomalous (super) diffusive processes. Moreover, TMB
distribution andQs tend to universal limits at large system
sizes, such that these quantities are not anymore sensitive
to the details of the initial conditions and the non-
perturbative regime.
So far, the resummation of higher orders of q̂ and the

TMB distribution have been obtained at double logarithmic
accuracy (DLA), meaning that only terms of the form
αns ln2n L are included to all orders in perturbation theory.
In this paper, we address for the first time the effect of

single logarithmic corrections on the saturation momentum
QsðLÞ in the asymptotic regime where L is large. Relying
on the mapping between the evolution equation for q̂ and
the equations governing the propagation of traveling wave
fronts in nonlinear physics [46–50], we can compute the
large L asymptotic behavior of the saturation momentum,
even without having analytic control of the full nonlinear
evolution equation [45,51]. We argue that the evolution of
Qs is dominated by the double logarithmic regime of QCD,

namely by soft and collinear gluon radiations. Therefore,
the corrections beyond the DLA can be obtained either
from a BFKL [52,53] or a DGLAP [54–56] approach, as
the double logarithmic regime is common to these two
equations. We choose to proceed using the BFKL equation
at leading and next-to-leading logarithmic accuracy (the
DGLAP case is presented in Appendix A), as it is more
easily justified from a physical point of view and simpler to
implement in practice.
The main results of the paper are the universal asymp-

totic behavior of Qs at 3-loops in planar conformal N ¼ 4
SYM theory and to all loop orders in QCD with massless
quarks and at large Nc. For QCD, it reads

lnQ2
sðLÞ ¼ Y þ 2

ffiffiffiffiffiffiffiffiffiffi
4b0Y

p
þ 3ξ1ð4b0YÞ1=6

−
1

4
ð3þ 8b0Þ lnY þOð1Þ; ð3Þ

where Y ¼ lnðLÞ and b0 ¼ 1=β0 is the inverse of the 1-loop
coefficient of the QCD β-function. The subleading terms in
the expansion (3) can be found in Eq. (58). We refer to this
result as an “all-order” result (formally achieved in the
asymptotically large Y ¼ lnðLÞ limit) as each coefficient in
this asymptotic series is exact, and therefore valid to all
orders in perturbative QCD. It is then quite remarkable that
an exact, all order result can be obtained from perturbative
QCD. In N ¼ 4 SYM theory, the convergence of the
perturbative series seems to be very fast, as we notice a
very mild modification from the 2-loop to the 3-loop result.
We observe the same feature in QCD: the corrections to
the universal asymptotic behavior beyond the DLA
results [51,57] are small, and therefore, the DLA with
running coupling turns out to be a very good approximation
even at moderate values of L.
This paper is organized as follows: in the next section,

we briefly review the calculation of the saturation momen-
tum at tree level and 1-loop. We also set up our notations
for the rest of the paper. Section III discusses the nonlinear
quantum evolution of the dipole cross section and the
connection with the BFKL equation in the dilute, linear
regime which drives the universality aspects of the satu-
ration momentum for large system sizes. In Sec. IV, we
revisit the fixed coupling evolution of the jet quenching
parameter from the BFKL language, and address the
corrections beyond the double logarithmic approximation
in fixed coupling QCD and planar N ¼ 4 SYM theory.
Finally, in Sec. V, we solve the running coupling evolution
at single logarithmic accuracy and present our all order
result for the universal behavior of QsðLÞ.

II. THE SATURATION MOMENTUM
AT TREE LEVEL AND 1-LOOP

The central object of this paper is the transverse
momentum (TMB) distribution Pðk⊥; tÞ of a high energy
parton in the color representation R ¼ A;F. It represents
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the probability to acquire a transverse momentum k⊥ after a
time t. We focus on the regime in which the momentum
transfer from the medium is much smaller than the
incoming parton energy E ¼ Pþ such that the medium
interactions do not alter significantly its direction of
propagation. Under this approximation, the TMB distribu-
tion can be related to the forward scattering amplitude
Sðr⊥Þ of an effective dipole with transverse size r⊥ via a
Fourier transform:

Pðk⊥Þ ¼
Z

d2x⊥e−ik⊥·r⊥Sðr⊥Þ: ð4Þ

Assuming the interactions between the dipole and the
medium scattering centers are local and instantaneous,
with a collision rate Cðq⊥Þ, the forward scattering ampli-
tude exponentiates as follows:

Sðr⊥Þ ¼ exp

�
−
CR

Nc
σdipðr⊥ÞL

�
; ð5Þ

where σdip is the so-called dipole cross section. At leading
order, it is related to the collision rate Cðq⊥Þ according to

σdipðr⊥Þ≡
Z

d2q⊥
ð2πÞ2 ð1 − eiq⊥·r⊥ÞCðq⊥Þ; ð6Þ

¼ 1

4
q̂ð1=r2⊥; LÞr2⊥ð1þOðr2⊥μ2ÞÞ: ð7Þ

In the second equality, μ is a nonperturbative infrared
momentum scale, typically of order of the plasma Debye
mass mD ∼ gT for a plasma at temperature T. Equation (7)
essentially defines the jet quenching parameter q̂ðk2⊥; LÞ (in
the adjoint representation) in the perturbative regime. At
tree level and for a static medium, q̂ does not depend on the
system size L. Applying the gradient ∇r⊥ twice on Eq. (6),
and assuming that q̂ is a weak function of r⊥, it is
straightforward to see that it can equivalently be defined
as the second moment of the collision rate Cðq⊥Þ, with an
UV momentum cutoff set by 1=rT.
The saturation momentum is an emergent scale resulting

from the unitarization of the TMB distribution at small kT
(but still much larger than μ). It controls the transition
between the dilute regime in which the TMB distribution
has the typical Rutherford power law decay ∼1=k4⊥ and the
dense regime where the physics of multiple soft scatterings
dominates, typically about Qs ≫ μ. This transition scale is
defined by the implicit relation [31,58,59]

Sð1=Q2
sðLÞÞ≡ e−1=4 ⇔ q̂ðQ2

sðLÞ; LÞL≡Q2
sðLÞ: ð8Þ

The number e−1=4 is arbitrary here, and we will address the
sensitivity of our results to this choice later in this paper. At
tree level, using the hard thermal loop (HTL) result for the

collision rate Cðq⊥Þ that correctly accounts for modes with
jq⊥j ≪ T, one finds that

q̂ð0Þðk2⊥; LÞ ¼ q̂0 lnðk2⊥=μ2Þ; ð9Þ

with q̂0 ¼ αsNcm2
DT and μ ¼ mDe−1þγE=2. The exact fixed

coupling values for q̂0 and μ that also includes modes with
jq⊥j≳ T can be found in [39,60]. When using the 1-loop
running coupling the logarithmic dependence upon the
hard scale jk⊥j ∼ 1=jr⊥j disappears resulting in q̂ð0Þ being a
constant coefficient with q̂ð0Þ ∝ αsðm2

DÞn [61–63], where n
is the density of scattering centers. All these details will not
matter in the following discussion, owing to the universal
property of the asymptotic regime of Qs. Also, note that q̂0
is proportional to αsn. Therefore, this “tree-level” compu-
tation is actually an all order resummation in the number of
interactions with medium scattering centers. This should
be kept in mind since when we will consider the weak
coupling limit αs → 0, it will be implicitly assumed that
this limit is taken with the product αsnL [that appears in the
exponential Eq. (5)] fixed.
Using the expression (9), we get the following result for

the saturation momentum as a function of L:

Q2;ð0Þ
s ðLÞ ¼ q̂0LW−1

�
−

μ2

q̂0L

�
≃ q̂0L ln

�
q̂0L
μ2

�
; ð10Þ

where WpðxÞ is the Lambert function on the pth branch. In
what follows, it will be convenient to proceed with the
following variables:

ρsðYÞ ¼ lnðQ2
sðLÞ=μ2Þ; Y ¼ lnðL=τ0Þ; ð11Þ

with τ0 ≡ μ2=q̂0, the asymptotic behavior of the saturation
momentum at tree level is given by

ρð0Þs ðYÞ ¼ Y þ lnðYÞ þ � � � ð12Þ

At NLO, the TMB distribution, and therefore the satura-
tion momentum itself are enhanced by large double logari-
thms αs ln2ðL=τ0Þ of the system size. References [37,43]
report the following 1-loop result:

Q2
sðLÞ ¼Q2;ð0Þ

s ðLÞ×
�
1þ ᾱsln2

�
L
τ0

�

þ ᾱs

�
2 lnð2Þ− γE −

1

3

�
ln

�
L
τ0

�
þOðαsÞ

�
; ð13Þ

with ᾱs ¼ αsNc=π and where the OðαsÞ denotes the αs
finite terms. γE is the Euler-Mascheroni constant. The
potentially large double logarithm in Eq. (13) is the
dominant radiative correction in the regime E ≫ ωc ¼
q̂L2=2 we are working, and needs to be resummed to all
orders in perturbation theory when αsY2 ¼ Oð1Þ.
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III. NONLINEAR EVOLUTION
OF THE DIPOLE CROSS SECTION

A nonlinear evolution equation resumming the double
and single logarithms of Eq. (13) has been proposed in [42].
It is formulated directly in terms of the dipole cross section
σdipðr⊥;ωÞ which acquires a rapidity lnω dependence
through the evolution, where ω≡ kþ the light-cone energy
of the gluon fluctuation. Schematically, this evolution
equation reads

∂σdip
∂ lnω

¼ Hq̂ ⊗ σdipðr⊥;ωÞ; ð14Þ

where Hq̂ is a nonlinear operator whose precise definition
is not important to us [see Eq. (4.24) in [42]]. It satisfies the
property that after one step of the evolution Eq. (14), one
gets the double and single logarithmic terms in Eq. (13).
Such evolution equation is difficult to solve both

analytically and numerically. However, in this paper, we
are mainly interested in the large L limit of the saturation
momentum QsðLÞ arising from Eq. (14). In a series of
recent papers, a new mathematical method based on the
analogy between the evolution equation (14) and the
propagation of traveling wave fronts into unstable states
has been developed in order to compute analytically the
asymptotic behavior of QsðLÞ, despite the absence of
general analytic solutions of Eq. (14). In particular, the
existence of traveling wave solutions to Eq. (14) allows us
to simplify the problem and study the dilute (or linear)
regime which drives the growth of the perturbations around
the unstable state that determines the speed of the front
_ρs ¼ dρs=dY, in the presence of an absorptive boundary at
Qs. Essentially, the details of nonlinear dynamics respon-
sible for the saturation (unitarization) of the dipole Smatrix
at Qs are irrelevant for the determination of the universal
behavior of the saturation scale [50,64] (see also [48,65–68]
for concrete examples in the context of small x physics).
In order to define the dilute regime, we first recall that

the formation time of the gluon fluctuation is of order
τ≡ 1=k− ¼ 2ω=k2g⊥. In the dilute regime, the transverse
momentum accumulated via multiple collisions over the
formation time of the gluon, of order q̂τ, cannot exceed its
transverse momentum. This criterion guarantees that the
gluon is not sensitive to multiple soft scatterings over
its formation time, so that only a single (or few [40],
near the boundary of the constraint) scattering contri-
butes to the cross section. Therefore, the dilute regime
corresponds to

k2g⊥ ≫ Q2
sðτÞ ∼ q̂τ; ð15Þ

or, in terms of ω, k2g⊥ ≫
ffiffiffiffiffiffi
q̂ω

p
. In this regime, the nonlinear

evolution equation reduces to the well-known BFKL
equation [42]

∂σdipðr⊥;ωÞ
∂ lnω

¼ ᾱs
2π

Z
d2z⊥Kr0z½σdipðr⊥ − z⊥;ωÞ

þσdipðz⊥;ωÞ − σdipðr⊥;ωÞ�; ð16Þ

with the LO BFKL kernel in coordinate space

Kxyz ¼
ðx⊥ − y⊥Þ2

ðz⊥ − x⊥Þ2ðz⊥ − y⊥Þ2
; ð17Þ

and ᾱs ≡ αsCA=π, albeit with an additional constraint that
enforces the condition Eq. (15) in coordinate space [see
for instance Eq. (23) below]. We shall discuss the scale
choice for the running coupling in the case of the jet
quenching problem in the next section. In the BFKL
equation in coordinate space (16), we have parametrically
jk⊥j ∼ 1=jr⊥j, (we remind that k⊥ is the final transverse
momentum of the incoming parton) and jkg⊥j ∼ 1=jz⊥j for
the transverse momenta of the gluons along the ladder.
In addition to [42], the relevance of the BFKL equation

in the renormalization of the jet quenching parameter has
also been discussed from an effective field theory perspec-
tive in [69,70]. However, as we have anticipated it, the
dynamics being of double logarithmic nature BFKL and
DGLAP evolutions are equally good to compute the
asymptotics of the saturation scale for jet quenching.
We stress that this is quite different in studies of proton
structure at small x where the rapidity logarithm,
Y ≡ ln 1=x, is assumed to be much larger than the collinear
logarithm ln k2⊥ < lnQ2 ≪ ln 1=x. We will return to this
crucial difference between small-x and jet quenching
evolution, and its implications, when we discuss the
BFKL kernel in Mellin space.
If one aims at reaching single logarithmic accuracy for

σdipðr⊥;ωÞ, one needs also to include the NLL BFKL
evolution. This contribution is not manifest in the fixed
order computation in [37] because it appears at 2-loops
in perturbation theory (it is a corrections of order α2s).
However, it is accompanied by a double log ∼Y2, and
therefore matters at single log accuracy since α2sY2 ¼ Oð1Þ.
It is convenient to write the full NLL BKFL equation

using the variable ρ ¼ − lnðr2⊥μ2Þ and η ¼ lnðω=ω0Þ with
the infrared energy scale ω0 ¼ q̂0τ20=2,

∂σdip
∂η

¼ ½ᾱsχLLð−∂ρÞ þ ᾱ2sχNLLð−∂ρÞ�σdipðρ; ηÞ: ð18Þ

In this equation, χLL and χNLL are the Mellin space
representation of the BFKL leading log and next-to-leading
log kernel. χLL has the familiar expression

χLLðγÞ ¼ 2ψð1Þ − ψðγÞ − ψð1 − γÞ; ð19Þ

with ψðxÞ the digamma function. The expression for χNLL
is more complicated and can be found in [71]. In what
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follows, only the pole structure of χNLL at γ ¼ 1 matters.
Indeed, the jet quenching evolution problem is intrinsically
double logarithmic in nature, in the sense that it is
dominated by gluon fluctuations which are both strongly
ordered in transverse momenta in the collinear regime
k2⊥ ≫ kg⊥ ≫ … ≫ μ2 and strongly ordered in energy or
light-cone plus component E ≫ ω ≫ … ≫ ω0. This dou-
ble logarithmic regime is driven by the poles in γ ¼ 1
of χLL and χNLL. In contrast, the standard small-x
evolution is driven by finite values of γ, i.e., 1=2 and
0.372 for BFKL with and without a saturation boundary,
respectively [48,65,72,73].
Before proceeding further we need first to address the

issue of the large NLL correction in BFKL equation that are
associated with a spurious triple pole in χNLL at γ ¼ 1 due
to the wrong choice of the evolution variable ω in the
collinear regime [74–77]. The leading behavior of χNLL is
indeed [71]

χNLLðγÞ ¼ −
1

ð1 − γÞ3 þ
Bg

ð1 − γÞ2 þO
�

1

1 − γ

�
; ð20Þ

with

Bg ¼ −
11

12
−

Nf

6N3
c
≈ −

11

12
: ð21Þ

In the second equality, we have used the large Nc
approximation. The solution to this issue is well known.
Instead of using ω ¼ kþ as the evolution variable, one
should use the lifetime τ ¼ 1=k− ¼ 2ω=k2g⊥ of the gluon
fluctuation. In terms of Y ¼ lnðτ=τ0Þ, the NLL evolution
equation for σdipðρ; YÞ is identical to Eq. (18) (up to
pure αs corrections), but this time, χNLL has no triple poles
anymore [77,78]. The equation we shall study is therefore

∂σdip
∂Y

¼ ½ᾱsχLLð−∂ρÞ þ ᾱ2s χ̃NLLð−∂ρÞ�σdipðρ; YÞ; ð22Þ

with χ̃NLL ¼ χNLL þ 1=ð1 − γÞ3 þOð1Þ. Note that this
equation has other issues in the double logarithmic anticol-
linear regime [78], but this regime is irrelevant in our case,
as we shall see in the next section.
Finally, even though the dilute (linear) regime of the

nonlinear evolution drives the asymptotic behavior of ρs, it
is important to keep in mind that there is a major difference
between BFKL evolution and the problem at hand. The
latter pertains to the existence of a saturation (absorptive)
boundary in the double logarithmic phase space. This
saturation boundary can be accounted for via the following
step function in coordinate space representation of the
BFKL equation [using 1=k2g⊥ ∼maxððx⊥ − z⊥Þ2; z2⊥Þ]:

Θ
�

4

Q2
sðτÞ

−maxððx⊥ − z⊥Þ2; z2⊥Þ
�
; ð23Þ

whereQ2
sðτÞ ¼ q̂τ is the saturation momentum evaluated at

the gluon formation time τ≡ 1=k−. This step function
enforces the transverse momentum of the gluon fluctuation
to be larger than the saturation momentum so as the
fluctuation is not affected by the LPM effect.
It is worth noting that because the dynamics is domi-

nated by strongly ordered transverse sizes in DLA,
i.e., x⊥ ≪ z⊥ the theta function can be simplified as
Θð4=Q2

sðτÞ − z2⊥Þ. With this simplification, one easily
checks that Eq. (16) with this constraint reduces to the
nonlinear evolution equation for q̂ written in [41,42,45]
[see also Eq. (42) below].
We are now left with the study of the NLL BFKL

equation with a saturation boundary (or LO DGLAP as
discussed in Appendix A). The exact implementation of
this saturation condition is not decisive in the asymptotic
regime, however, its very existence constrains the shape of
the traveling wave ansatz that we shall discuss in what
follows.

IV. REVISITING THE FIXED COUPLING
PROBLEM

In order to make the connection with our previous
studies in [45,51], we shall consider the evolution of
q̂ðρ; YÞ instead of σdipðρ; YÞ. The function q̂ðρ; YÞ is
defined according to Eq. (7), or equivalently in terms of ρ,

q̂ðρ; YÞ ¼ 4μ2eρσdipðρ; YÞ: ð24Þ

Plugging this definition into Eq. (22), using eρχð−∂ρÞe−ρ ¼
χð1 − ∂ρÞ and the symmetry property χðγÞ ¼ χð1 − γÞ of
the kernel, one ends up with the following equation for q̂

∂q̂ðρ; YÞ
∂Y

¼ ½ᾱsχLLð∂ρÞ þ ᾱ2s χ̃NLLð∂ρÞ�q̂ðρ; YÞ: ð25Þ

The saturation condition Eq. (23), that translates into
ρ > ρsðYÞ in the new variables, is implicit in the above
equation.
The purpose of this section is to first recover the known

results [51,57] for the asymptotic expansion of ρs at DLA
and fixed coupling from this equation and to discuss the
case of the conformal N ¼ 4 SYM theory in which the
coupling does not run. We also demonstrate that contrary to
the BFKL problem which is driven by the behavior of
the kernel around γc ≃ 0.327, the evolution of q̂ is governed
by the double logarithmic collinear regime and therefore
driven by the behavior of the kernel around γ ¼ 0 (or γ ¼ 1
for the dipole cross section) as stated in the previous
section.
At DLA and fixed coupling, one can neglect the NLL

term and simply have

∂q̂ðρ; YÞ
∂Y

¼ ᾱsχLLð∂ρÞq̂ðρ; YÞ; ð26Þ
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for a fixed ᾱs. The key starting point of our analysis consists
of using the ansatz

q̂ðρ; YÞ ¼ eρsðYÞ−Yeβxfðx; YÞ; x ¼ ρ − ρsðYÞ ð27Þ

in order to solve Eq. (26) perturbatively in the limit Y → ∞.
It is motivated by the presence of the nonlinear saturation
condition in the evolution, Q2

sðLÞ ¼ q̂ðQ2
sðLÞ; LÞL which

reads

q̂ðρsðYÞ; YÞ ¼ eρsðYÞ−Y ð28Þ

in terms of ρs and Y. Therefore, the function f satisfies
fð0; YÞ ¼ 1 for all Y. This identity (more precisely, the 1 on
the r.h.s.) depends on the definition we adopt for Qs.
The form of this ansatz, though inspired by the study

of traveling waves propagation governed by the Balitsky-
Kovchekov (BK) equation [79,80] in small x physics,
differs from the latter in a crucial way. It involves an
additional kinematic factor 1=τ ∼ e−Y which is responsible
for driving the evolution towards the double logarithmic
regime γ ∼ 0þOðᾱ1=2s Þ instead of γc ∼ 0.327. Nevertheless,
wewill see that ourBFKLequationwith saturation constraint
admits traveling wave solutions (or geometric scaling sol-
utions) of the form q̂ðY; ρÞ ¼ eρsðYÞ−YeβxfðxÞ in the limit
Y → ∞. Since x ¼ ρ − ρsðYÞ, such solutions correspond
indeed to the propagation of a front at the speed dρs=dY from
the left to the right along the ρ axis.
As alluded to below Eq. (8), the saturation momentum is

to be defined up to a undetermined multiplicative constant.
This freedom can be absorbed into a redefinition of Y
through a constant shift (equivalent to a redefinition of the
nonperturbative scale τ0). Such redefinition does not affect
the universal terms in the asymptotic development of ρs that
we intend to calculate here, as can be checked by shifting Y
in the expressions (46) and (58).
From the existence of a scaling limit [45], we expect the

function fðx; YÞ to converge towards a well-defined func-
tion fðxÞ as Y → ∞. The parameter β will be determined
later. Plugging this ansatz into Eq. (26), and expanding the
kernel χLLðγÞ around γ ¼ β, we find

ð_ρs − 1− _ρsβÞf− _ρs∂xfþ ∂Yf¼ ᾱs
X∞
p¼0

χðpÞLL ðβÞ
p!

∂
p
x f; ð29Þ

where

_ρsðYÞ≡ dρsðYÞ
dY

and χðpÞLL ðβÞ≡ ∂
pχLLðβÞ
∂βp

: ð30Þ

Taking the limit Y → ∞ and using the existence of a scaling
limit for f, we end up with the following relations between
the speed of the front

c ¼ lim
Y→∞

_ρsðYÞ; ð31Þ

and the critical value βc of β that minimizes [45] the
velocity c,

c − 1 − cβc ¼ ᾱsχLLðβcÞ; ð32Þ

− c ¼ ᾱsχ
0
LLðβcÞ; ð33Þ

by simply identifying the terms proportional to f and ∂xf.
This system cannot be solved analytically, however one can
find the series expansion of c and βc in powers of ᾱs:

c ¼ 1þ 2
ffiffiffiffiffi
ᾱs

p þ 2ᾱs þOðᾱ3=2s Þ; ð34Þ

βc ¼
ffiffiffiffiffi
ᾱs

p
− ᾱs þOðᾱ3=2s Þ: ð35Þ

At this stage, only the terms of order up to Oð ffiffiffiffiffi
ᾱs

p Þ are
under control since we neglect the NLL BFKL term in the
evolution. To recover the DLA results reported in [45],
one can approximate χLL by its most singular behavior as
γ → 0. The LL BFKL kernel behaves like

χLLðγÞ ¼
1

γ
þ 2ζð3Þγ2 þOðγ4Þ; ð36Þ

at small γ, with ζðxÞ the Riemann zeta function and
ζð3Þ ≃ 1.2. Using χLL ¼ 1=γ, one can solve exactly the
system (34)–(35) (assuming c ≥ 1) and find c ¼ 1þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱs þ ᾱ2s

p
þ 2ᾱs and βc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱs þ ᾱ2s

p
− ᾱs in agreement

with [45]. The Oð ffiffiffiffiffi
αs

p Þ and OðαsÞ terms are not affected
by the use of the full BFKL kernel or its approximation
χLL ∼ 1=γ (contrary to the BK case in small x physics). One
can actually check that the deviations enter at Oðα2sÞ:

βc ¼ ᾱ1=2s − ᾱs þ
1

2
ᾱ3=2s þ 2ζð3Þᾱ2s þOðᾱ5=2s Þ: ð37Þ

The last term cannot be obtained from the approxi-
mated kernel, as can be checked from the expansion offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱs þ ᾱ2s

p
− ᾱs. It is a contribution beyond the double

logarithmic regime of BFKL which would enter at the same
order as the most singular term of the N3LO BFKL kernel.
This demonstrates that the asymptotic behavior of _ρs and
q̂ðρ; YÞ is mainly sensitive to the collinear double loga-
rithmic regime of the BFKL evolution, since the details of
the leading log kernel χLL are not important up to order α2s
(4-loops) in pQCD. In other words, the saddle point
βc ∼

ffiffiffiffiffi
ᾱs

p
is close to 0 for the q̂ evolution, contrary to

the case of small-x evolution of the dipole operator where
the saddle point lies at βc ≈ 0.6275.
Since the physics is dominated by the double logarithmic

regime, which is common to both BFKL and DGLAP, one
should be able to recover the results obtained in this paper
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from a BFKL approach using instead a DGLAP-like
evolution with ρ as the evolution variable. It turns out to
be the case as shown in Appendix A. This is also illustrated
in Fig. 1 where we display the ðρ; YÞ domain of pQCD as
well as the standard DGLAP and BFKL directions along
which the gluon distribution is evolved. The evolution of
Qs follows the diagonal of this diagram as a consequence of
the constraint ρ ∼ ρs ∼ Y, which is also where the DGLAP
and BFKL evolution “merge” in the double logarithmic
approximation. It is therefore natural that the corrections
beyond DLA can be obtained from both DGLAP or BFKL
approaches.
If one includes the NLL BFKL kernel χ̃NLL, the system

of Eqs. (34)–(35) is modified and the right-hand side
receives a contribution ᾱ2s χ̃NLLðβcÞ:

c − 1 − cβc ¼ ᾱsχLLðβcÞ þ ᾱ2s χ̃NLLðβcÞ; ð38Þ

− c ¼ ᾱsχ
0
LLðβcÞ þ ᾱ2s χ̃

0
NLLðβcÞ: ð39Þ

With this additional term, we gain control over the terms of
order OðᾱsÞ in the αs expansion of c and βc. Again, since
the problem is dominated by the singular behavior at γ ¼ 0,
it is sufficient to use the approximation χ̃NLLðγÞ ¼ Bg=γ2,
and one finds that

c ¼ 1þ 2
ffiffiffiffiffi
ᾱs

p þ ð2þ BgÞᾱs þOðᾱ3=2s Þ: ð40Þ

This result extends to single logarithmic accuracy the value
of the traveling wave speed c.
The term of order Oðα3=2s Þ receives contribution from

both the subleading pole in 1=γ in the NLL BFKL kernel
and from the pole in 1=γ3 of the N2LL BFKL kernel.
In fact, since the pole structure of the NLL and N2LL
BFKL equations are known thanks to the DGLAP/BFKL

duality [81,82], χ̃NLL ∼ Bg=γ2 þ a1;−1=γ and χ̃N2LL ∼
a2;−3=γ3, the value of c can be known up to order α3=2s ,

with the coefficient of the ᾱ3=2s term equal to 1þ 3Bg −
B2
g þ a1;−1 þ a2;−3.
As an illustrative example, let us consider the case of

planar N ¼ 4 SYM theory, for which there are many
results on the BFKL regime. In particular, we rely on the
calculation of the 3-loops N2LL BFKL/BK equation in this
theory [83–85]. The “classical” OðgÞ corrections to q̂ are
also known in this theory [86], but such corrections should
be included in the initial condition of the quantum
evolution, with proper matching [40]. In planar N ¼ 4
SYM theory, since the coupling does not run (Bg ¼ 0) and
a1;−1 ¼ 0 [87], we have the expansion

c ¼ 1þ 2
ffiffiffiffiffi
ᾱs

p þ 2ᾱs þ ð1þ aN¼4
2;−3 Þᾱ3=2s þOðᾱ2sÞ; ð41Þ

with the coefficient of the triple pole of the 3-loops BFKL
kernel aN¼4

2;−3 ¼ −ζð2Þ ¼ −π2=6 [83–85]. The behavior of
this series is shown Fig. 2, and compared to the strong
coupling limit c ¼ 2 obtained from AdS=CFT [88–90].
It would be interesting to exploit the BFKL/DGLAP

duality (or existing results for the NpLL BFKL equation
with p ≥ 4 [91]) in order to extend this calculation to
higher orders in αs and see the convergence of the series
and the approach towards the strong coupling regime.
Note that although this is a rather academic exercise

given that the running of the coupling spoils these con-
clusions, as we shall see in the next section, the above
discussion highlights the fact that in a conformal theory
with scale invariant coupling, the calculation of the αp=2s

order of the “anomalous dimension” c of the saturation
scale for large media requires the knowledge of the NpLL
BFKL equation because the αs expansion in the fixed

FIG. 1. The plane ðρ; YÞ and the standard DGLAP and BFKL
regime of pQCD. The saturation scale Qs evolves along the
diagonal of this diagram since ρ ∼ Y.

FIG. 2. The asymptotic limit of the front wave velocity as a
function of the coupling constant ᾱs ¼ αsNc=π in (planar)N ¼ 4
SYM theory.
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coupling case is decoupled from the asymptotic Y expan-
sion. This no longer the case with the running coupling
where αs explicitly depends on Y through its dependence
on Qs and thus, the two expansions are related to one
another.
Turning back to QCD, one may want to understand

physically where the coefficient of the αs term in c given by
Eq. (40) comes from. The Bg term is the finite part of the
gluon splitting function, and therefore this contribution
is associated with collinear but nonsoft splittings in the
evolution. On the other hand, the 2 term seems more
mysterious at first glance. We argue that it comes from the
feedback of the quantum evolution of Qs on the evolution
of the dipole cross section σdip (recall that these physical
quantities are related to one another by the nonlinearity of
the evolution). Indeed, the fixed coupling DLA equation
with χLL ¼ 1=γ is equivalent to the equation

∂q̂
∂Y

¼ ᾱs

Z
ρ
dρ0q̂ðρ0; YÞ; ð42Þ

owing to the formal relation
R
ρ dρ0 ¼ 1=∂ρ. In this equa-

tion, the lower bound is set by the single scattering criterion
k2g⊥ ≥ Q2

s i.e. ρ0 > ρsðYÞ. If we neglect quantum evolution
in this lower bound and use the tree level “classical”
expression ρsðYÞ ¼ Y instead, to constraint the ρ0 integral
such that ρ0 > Y, this equation can be solved exactly.
Defining Q2

sðLÞ ¼ q̂ðq̂0L;LÞL in agreement with the
previous approximation, the resummed value of the satu-
ration momentum is given by [57,92]

Q2
sðLÞ ¼ Q2;ð0Þ

s ðLÞ × I1ð2
ffiffiffiffiffiffiffiffiffiffi
ᾱsY2

p
Þffiffiffiffiffiffiffiffiffiffi

ᾱsY2
p ; ð43Þ

for a constant initial condition (hence Q2;ð0Þ
s ðLÞ ¼ q̂0L

here). Here InðxÞ is the modified Bessel function of rank n.
This result shows very clearly the double logarithmic
resummation structure, since the saturation momentum is
expressed as a function of αsY2 ¼ αs ln2ðL=τ0Þ. In the
asymptotic limit, assuming the strong condition αsY2 ≫ 1

(instead of αsY2 ∼ 1 only), one can easily derive the
behavior of the saturation scale from Eq. (43):

ρsðYÞ ¼ ð1þ 2
ffiffiffiffiffi
ᾱs

p ÞY −
3

2
lnðYÞ þOð1Þ: ð44Þ

In DLA evolution with linearization of the saturation
boundary, one observes that the traveling wave speed is
c ¼ 1þ 2

ffiffiffiffiffi
ᾱs

p
without terms of order αs. Hence, one can

interpret the 2 term in the ᾱs coefficient of Eq. (40) as a
single log effect coming from the quantum evolution of Qs
itself. A similar argument is presented in [57].
In Eq. (44), we also show the subasymptotic correction

to the constant speed motion of the saturation front in the

case of the linearized DLA evolution. For the full NLL
problem, the subasymptotic corrections to _ρs can be
obtained using the same method as in [45,51]. Namely,
we expand fðx; YÞ as an infinite series in powers of Y−1=2

multiplied by diffusive scaling functions Gn [49,72,93]:

fðx; YÞ ¼
X∞
n¼−1

Y−n=2Gn

�
x

Y1=2

�
: ð45Þ

Using this expansion and solving order by order for the
functionsGn with appropriate boundary conditions, we can
fix the asymptotic development of _ρs. This is shown in
Appendix B. We find that this development can be
expressed in terms of c and βc as

_ρs ¼ cþ 3

2ðβc − 1Þ
1

Y
þ 3

2ðβc − 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

χ00ðβcÞ

s
1

Y3=2

þOðY−2Þ; ð46Þ

with χ00ðβcÞ¼ ᾱsχ
00
LLðβcÞþ ᾱ2s χ̃NLL

00ðβcÞþ…. This expres-
sion encompasses all universal terms in the expansion of _ρs
at fixed coupling. The first nonuniversal terms that are
sensitive to the initial condition appear at the order Y−2.
Such terms can be easily produced by shifting the value of
Y by a constant to absorb a change in the nonperturbative
parameters τ0 or μ.
When using the DLA, i.e. χ ¼ ᾱs=γ, one recovers from

Eq. (46) the expression found in [45,51].
Each coefficient of the Y powers has an αs expansion

which can be obtained from the one of c and the shape of
the BFKL kernels near the double logarithmic regime
γ ¼ 0. These expansions are given in Appendix C up to

FIG. 3. The front wave velocity as a function of Y in (planar)
N ¼ 4 SYM theory with ᾱs ¼ 0.1. The red band shows the
uncertainty related to the unknown Y−2 corrections in _ρs,
obtained by varying τ0 by a factor of 2 around a central value.
For Y ≳ 5, next-to-double log corrections dominate over the
nonuniversal subasymptotic corrections in Y−2.
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order α3=2s in N ¼ 4 SYM theory. They are systemically
improvable by including higher logarithmic orders in the
BFKL equation. As we shall see in the next section,
conformal symmetry breaking in QCD changes this simple
picture in a quite dramatic way: the coefficients of the
universal terms in the ρs expansion are entirely fixed by the
BFKL kernel at NLL order.
The expansion (46) of _ρsðYÞ as a function of Y is shown

in Fig. 3 in the case of N ¼ 4 SYM theory, at DLA, order
αs and order α3=2s for ᾱs ¼ 0.1. The convergence is very
good, and one notices that the corrections beyond the
double logarithms are more important than the nonuniver-
sal subasymptotic 1=Y2 correction (estimated by varying τ0
by factors between 0.5 and 2) for Y ≳ 4.

V. RUNNING COUPLING EFFECTS
AND ALL-ORDER RESULT FOR THE

SATURATION MOMENTUM

We now address the running coupling problem and
compute the universal asymptotic expansion of _ρs in
QCD at single logarithmic accuracy. To do so, it is
sufficient to consider the 1-loop running coupling:

αsðρÞ ¼
b0

ρþ ρ0
; ð47Þ

with b0 ¼ 1=β0 ¼ −1=Bg and ρ0 ¼ lnðμ2=Λ2
QCDÞ. When

including running coupling effects, one has to be careful
with the prescription for the running scale. At DLA, it has
been argued in [37,57] that the running coupling should be
implemented in the following way:

∂q̂
∂Y

¼
Z

ρ
dρ0ᾱsðρ0Þq̂ðρ0; YÞ; ð48Þ

so that the standard DGLAP equation in the DLA is
recovered (cf. Appendix A). In Mellin space, the corre-
sponding NLL equation is

∂q̂
∂Y

¼ χLLð∂ρÞ½ᾱsðρÞq̂ðρ;YÞ�þ ᾱ2sðρÞχ̃NLLð∂ρÞq̂ðρ;YÞ; ð49Þ

which is slightly different from the running coupling BFKL
equation, where ᾱsðρÞ is outside of the BFKL kernel. In
fact, these two prescriptions, or scheme choices, are related
to one another by a modification of the NLL kernel [81].
For the NLL term proportional to ᾱ2s , the differences
between these two schemes are of higher order (NNLL),
which explains why we have written ᾱ2sðρÞ outside of the
NLL kernel.
We therefore need to study the evolution equation (49)

with the pole structure of the NLL BFKL kernel given by
Eq. (20). As shown in [51], the DLA running coupling
involves a modified geometric scaling limit which takes
the form

q̂ðρ; YÞ ¼ eρsðYÞ−Yeβxfðx; YÞ; x ¼ ρ − ρsðYÞffiffiffiffi
Y

p ; ð50Þ

with the function fðx; YÞ having a scaling limit fðxÞ as
Y → ∞. We then plug this ansatz inside the evolution
equation and expand the kernels χLL and χNLL around the
DLA “saddle point” β=

ffiffiffiffi
Y

p
, as expected from the fixed

coupling result where βc ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αsðρsÞ

p
∝ Y−1=2. After these

manipulations, we find the equation�
_ρs − 1 −

βx
2Y

−
β _ρs
Y1=2

�
f −

�
x
2Y

þ _ρs
Y1=2

�
∂f
∂x

þ ∂f
∂Y

¼
X∞
p¼0

χðpÞLL ðβ=Y1=2Þ
p!Yp=2 ∂

p
x

�
b0

ρs þ xY1=2 þ ρ0
f

�

þ
�

b0
ρs þ xY1=2 þ ρ0

�
2X∞
p¼0

χ̃ðpÞNLLðβ=Y1=2Þ
p!Yp=2 ∂

p
x f: ð51Þ

As in the fixed coupling problem, let us first determine the
exact location of the saddle point proportional to β and the
value of the first nontrivial correction to _ρs ¼ 1 such that

_ρs ¼ 1þ c

Y1=2 þ � � � ð52Þ

This behavior is dictated by the homogeneity of Eq. (51).
Seeking for the leading power in 1=

ffiffiffiffi
Y

p
, one gets the two

following equations:

c − βc ¼ b0=βc; ð53Þ

− 1 ¼ −b0=β2c; ð54Þ

after identification of the coefficients in front of f and ∂xf.
Therefore, one recovers the scaling limit of the running
coupling evolution equation at DLA:

c ¼ 2
ffiffiffiffiffi
b0

p
; ð55Þ

βc ¼
ffiffiffiffiffi
b0

p
: ð56Þ

We emphasize that these relations are exact to all orders in
pQCD. Indeed, contrary to the fixed coupling problem, the
NLL kernel (and the higher orders) do not affect the value
of c and βc. This is a consequence of (i) considering the
large system size limit, in which the typical transverse
momentum scale in the running coupling is Qs ∼

ffiffiffiffiffiffiffiffi
q̂0L

p
itself and (ii) the asymptotic freedom property of QCD
which imposes αs to decay as ln−1ðQ2

s=Λ2
QCDÞ ∼ 1=Y at

large Y. QCD conformal symmetry breaking through the
running of αs affects the powers of Y appearing in the
asymptotic expansion of _ρsðYÞ [and ρsðYÞ after integra-
tion], but the coefficient of the leading power is fully set by
the LL BFKL equation, in sharp contrast with the con-
formal planar N ¼ 4 SYM case.
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To obtain the subasymptotic corrections, we use again
the leading edge expansion

fðx; YÞ ¼
X∞
n¼−1

Y−n=6Gn

�
x

Y1=6

�
; ð57Þ

with a 1=6 diffusive exponent [51]. The interplay between
this expansion and the asymptotic series of _ρs enables us to
compute the subasymptotic corrections. Namely, the deter-
mination of the function G−1 fixes the correction of order
Y−5=6 in _ρs, the function G0 determines the correction of
order Y−1, and so forth (see Appendix B). After a
straightforward calculation of these functions similar to
the one in [51], we find for the universal asymptotic series,

_ρs ¼ 1þ 4b0
Ȳ1=2 þ

2ξ1b0
Ȳ5=6 þ b0ð1 − 8b0 þ 4b0BgÞ

1

Ȳ

−
7ξ21b0
270

1

Ȳ7=6 − ð5þ 1944b0Þ
ξ1b0
81

1

Ȳ4=3

− 2b20ð1 − 8b0 þ 4b0BgÞ
lnðȲÞ
Ȳ3=2 þOðȲ−3=2Þ; ð58Þ

with Ȳ ¼ 4b0Y and ξ1 ≃ −2.338 is the rightmost zero of
the Airy function. Setting Bg ¼ 0 in this expression, we
recover the DLA result obtained in [51]. Note also that,
since Bg ¼ −1=b0, the coefficient of the 1=Ȳ term is equal
to −b0ð3þ 8b0Þ. Surprisingly, the OðY−7=6Þ and OðY−4=3Þ
terms are not affected by the single log corrections (they do
not depend on Bg). The NLL DGLAP contribution (which
appears as a 1=γ pole in the NLL BFKL kernel [81]) starts
contributing at order Y−3=2, but this order is nonuniversal.
The 2ζð3Þγ2 term in χLL starts contributing at order n ¼ 6
in the leading edge expansion, meaning that the correction
of order Y−2 in _ρs would depend on ζð3Þ. The natural
suppression of the NLL term in Eq. (51) by 1=Y2 due to the
running of the coupling typically at the scale Qs implies
that the universal terms of the asymptotic expansion of the
saturation scale at large Y only depends on b0. In turn,
higher loop corrections to the BFKL equation, such as
N2LL corrections which would start at order ᾱ3s, would be
even more suppressed at large Y, so that they do not modify
the universal series Eq. (58). A more formal argument
illustrating the interplay between the αs and Y expansions
goes as follows: including the NpLL BFKL kernel at order
αpþ1
s in the right-hand side of Eq. (51) gives the minimal

1=Y power arising from this contribution, which reads

αpþ1
s ðρsðYÞÞχ̃NpLLðβ=Y1=2Þ ∼ Y−ðpþ1Þ=2; ð59Þ

since αsðρsðYÞÞ ∼ 1=Y and χ̃NpLLðγÞ ∼ 1=γpþ1 at small γ.
Thus, for p ≥ 2, the NpLL BFKL kernel contributes at
most to the nonuniversal coefficients OðY−ðpþ1Þ=2Þ.

It is also interesting to compare with the universal
asymptotic expansion of the saturation scale in the case
of small-x evolution (see [65,66,72,94,95]). For the energy
dependence of Qs, the universal terms also depend only on
the LL and NLL BFKL evolution, but the coefficients of the
development have a much stronger dependence on the
shape of the LL and NLL BFKL kernel since they depend
on the first five derivatives of the kernel at the small-x
saddle point βc ¼ 0.6275. Again, this is a specificity of the
jet quenching problem, which is controlled by double
logarithmic physics.
To sum up, the effect of the running coupling is to reduce

the sensitivity of the subasymptotic corrections to higher
orders in the resummmation. Eventually, the universal
asymptotic expansion of the saturation momentum is
entirely given by the leading poles of the LLþ NLL
BFKL kernel in Mellin space or the singular plus finite
part of the LO DGLAP splitting function. This is a
consequence of the double logarithmic nature of the
problem at hand.
A comparison between the double and single log result

is shown Fig. 4 for two truncations of the asymptotic
expansion, either up to the 1=Y term or up to the
lnðYÞ=Y3=2. In the latter case, one observes that the effect
of single log corrections is very mild. The band show the
estimated uncertainty coming from the following sublead-
ing correction in the large Y development of _ρs. As
expected, pushing the series up to order 1=Y3=2 reduces
this source of uncertainty, and the corrections from single-
log effects fall within the bands. However, we also know
that the asymptotic series converges very slowly at small
Y ≲ 10 when using the nonlinear saturation boundary
ρsðYÞ [51], so our estimation of the uncertainty coming

FIG. 4. The front wave velocity as a function of Y in QCD. The
bands show the uncertainty related to the Ȳ−7=6 (dotted) and Ȳ−3=2

(full) corrections in _ρs, obtained by adding the corresponding
power multiplied by a coefficient κb0 with jκj ≤ 10. This
comprehensive interval for κ is due to the potentially large
nonuniversal Y−3=2 coefficient, as noted in [51].
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from the nonuniversal Y−3=2 term should be taken with a
grain a salt in that domain.

VI. SUMMARY AND OUTLOOK

In this paper, we have computed for the first time
the universal behavior—independent of the nonperturba-
tive, tree-level physics—of the saturation momentum
associated with transverse momentum broadening of
high energy partons in QCD media beyond the double
logarithmic approximation. Our study relies on two
pillars (i) the universal terms of the asymptotic series
of QsðLÞ at large L are essentially controlled by the
linearized evolution equation for the dipole cross section.
This is a consequence of the mathematical mapping
between this evolution equation and equations describing
the propagation of traveling wave fronts into unstable
states (ii) the quantum evolution of the dipole cross sec-
tion in the jet quenching problem is dominated by the
double logarithmic regime of pQCD since for k2⊥ ∼Q2

s,
lnðk2⊥=μ2Þ ∼ lnðL=τ0Þ ∼ lnð1=xÞ. As a consequence, the
universal asymptotic series can be obtained either from a
BFKL or DGLAP approach, and the coefficient of the
series are only sensitive to the shape of these two kernels
close to the double logarithmic regime.
For a fixed coupling evolution, as in the case of the

supersymmetric N ¼ 4 SYM theory, we have obtained the
coefficients of the development of _ρs up to 3-loops order
α3=2s , thanks to the known pole structure of BFKL at 3-loops
in this theory. Using DGLAP/BFKL duality, we believe
that our method can be straightforwardly extended to
higher orders. As we observe a good convergence of the
coefficients for αs up to ∼0.4, we have not tried to extend
further our calculation.
The running coupling dramatically changes both the

behavior of the large L expansion and the way higher
order corrections in the resummation appear. Interestingly
enough, the universal terms depend only on the 1-loop
QCD β function. The main result of this paper, the
asymptotic behavior of dρs=dY in QCD given by
Eq. (58), is therefore exact to all orders in perturbation
theory. At large L, the effect of corrections beyond the
double logarithmic approximation turns out to be very
mild, demonstrating the excellent convergence of ρs after
quantum evolution.
The main limitation of our work is the large L

assumption. Despite the calculation of the subasymptotic
corrections which, in principle, enable us to reach phe-
nomenological values for the system size L, our work
should be supplemented by a study of the moderate and
small Y domain, which is not anymore driven by univer-
sality. This requires us to solve numerically a nonlinear
evolution for the jet quenching parameter q̂, valid at single
logarithmic accuracy, along the lines of [42]. This is a very
challenging task in practice, that we leave for future works.

Another possibility would be to take advantage of recent
progress in quantum computing to address this problem,
following the approach of [96,97], in which radiative
corrections are straightforward to include.
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APPENDIX A: SINGLE LOGARITHMIC
CORRECTIONS FROM DGLAP-LIKE

EVOLUTION

In this appendix, we compute the single log corrections
from a DGLAP evolution. Our starting point is the DGLAP
equation for the gluon distribution function xgðx;Q2Þ:

∂xgðx;Q2Þ
∂ lnðQ2Þ ¼ αsðQ2Þ

2π

Z
1

x

dz
z
PgðzÞxgðx=z;Q2Þ: ðA1Þ

In the double logarithmic approximation, one uses
PgðzÞ ¼ 2CA=z, giving

∂xgðx;Q2Þ
∂ lnðQ2Þ ¼ ᾱs

Z
1

x

dz
z
x
z
gðx=z;Q2Þ: ðA2Þ

To obtain the corresponding equation for q̂, we use the fact
that in the dilute limit, q̂ðρ; YÞ ∝ xgðx;Q2Þ [51], with the
identification Y ¼ − lnðxÞ and ρ ¼ lnðQ2=μ2Þ, so that the
DGLAP evolution of q̂ reads

∂q̂ðY; ρÞ
∂ρ

¼ ᾱsðρÞ
Z

Y

0

dY 0q̂ðY 0; ρÞ; ðA3Þ

which is almost equivalent to the nonlinear equation studied
in [45] modulo the replacement Y → minðY; YsðρÞÞ in the
upper limit of the Y 0 integral [with YsðρÞ the inverse function
of ρsðYÞ]. At single log accuracy, one can use the following
approximation of PgðzÞ:

PgðzÞ ¼
2CA

z
ð1þ BgzÞ; ðA4Þ

withBg ¼ −11=12 − Nf=ð6N3
cÞ the finite part of the g → gg

(and g → qq̄) splitting function.Hence, the equationwe shall
study is

∂q̂ðY; ρÞ
∂ρ

¼ ᾱsðρÞ
Z

Y

0

dY 0½1þ BgeY
0−Y �q̂ðY 0; ρÞ: ðA5Þ
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The equation above can bewritten in a fully differential form:

∂
3q̂ðY; ρÞ
∂Y2

∂ρ
þ ∂

2q̂ðY; ρÞ
∂Y∂ρ

− ᾱsðρÞð1þ BgÞ
∂q̂ðY; ρÞ

∂Y

− ᾱsðρÞq̂ðY; ρÞ ¼ 0: ðA6Þ

Let us consider the fixed coupling approximation
ᾱsðρÞ ¼ ᾱs, and look for an asymptotic solution of the form

q̂ðY; ρÞ ¼ eρsðYÞ−Yeβx; x ¼ ρ − ρsðYÞ; ðA7Þ

with _ρs ¼ c. We have

∂
2q̂ðY; ρÞ
∂Y∂ρ

¼ eβx½ðc − 1Þβ − cβ2�: ðA8Þ

Plugging our ansatz inside the differential equation, one finds
the following relation between β and c:

ðβ− 1Þð1þ cðβ− 1ÞÞβcþ ᾱsðBg þ ðβ− 1Þð1þBgÞcÞ ¼ 0:

ðA9Þ
The extremum condition, obtained by differentiating the
relation above with respect to β gives

−1þ ᾱsð1þ BgÞ þ 2β þ c − 4βcþ 3β2c ¼ 0: ðA10Þ

This system can be exactly solved, but it ismore enlightening
to find the ᾱs expansion of c and β. The following two
developments are solution

c ¼ 1þ 2
ffiffiffiffiffi
ᾱs

p þ ð2þ BgÞᾱs þOðᾱ3=2s Þ; ðA11Þ

β ¼ ffiffiffiffiffi
ᾱs

p þ ðBg − 1Þᾱs þOðᾱ3=2s Þ: ðA12Þ

This is the same result as the one obtained from the fixed
coupling NLL BFKL evolution.

APPENDIX B: LEADING EDGE EXPANSION
CALCULATION

We briefly reproduce here the calculation of the universal
terms in the leading edge expansion detailed in [51]. We
essentially detail the calculation of the first term G−1ðzÞ in
this series, which fixes the first subasymptotic correction
to _ρs. The computation of the higher order terms proceeds
in a similar fashion.
Fixed coupling.—We first insert Eq. (45) in Eq. (29),

with the asymptotic series

_ρs ¼ cþ δ1
Y
þ � � � : ðB1Þ

Gathering the leading terms proportional to 1=Y in the
resulting equation, we get the following differential equa-
tion satisfied by the function G−1:

−
1

2
χ00ðβcÞG00−1 −

1

2
zG0−1 þ

�
1

2
þ δ1 − δ1βc

�
G−1 ¼ 0:

ðB2Þ

This equation can be solved analytically with the initial
conditions G−1ðzÞ ¼ cste × zþOðz2Þ. This initial condi-
tion comes from the saturation constraint on the evolu-
tion equation which imposes fð0; YÞ ¼ 1 and therefore
G−1ð0Þ ¼ 0. Demanding the solution to decay at large z
and to be positive, one can further constrain the value of δ1
to be

δ1 ¼
3

2ð1 − βcÞ
; ðB3Þ

so that the function G−1 reads

G−1ðzÞ ¼ cste × βcz exp

�
−

z2

2χ00ðβcÞ
�
: ðB4Þ

Running coupling.—The running coupling case is very
similar, the only difference comes from the evolution
equation (51) which imposes a diffusive power 1=6 in
the leading edge expansion. The homogeneity of Eq. (51)
constrains the possible power of the subleading asymptotic
corrections to _ρs. We have in particular,

_ρs ¼ 1þ c

Y1=2 þ
δ1
Y5=6 þ � � � : ðB5Þ

Plugging the series (57) and this development for _ρs inside
Eq. (51) and expanding in powers of Y the result, we find
the equation

−G00−1ðzÞ þ
�
1

2
b0zþ δ1

ffiffiffiffiffi
b0

p �
G−1ðzÞ ¼ 0; ðB6Þ

by identifying the Y−2=3 power. The solution to this
equation with boundary conditions G−1ðzÞ ∝ z at small z
and G−1ðzÞ → 0 at large z is (we denote Ai the Airy
function of the first kind)

G−1ðzÞ ¼ cste × Aiðξ1 þ 2−1=3b1=30 zÞ; ðB7Þ

with the constant δ1 fixed by these boundary conditions to

δ1 ¼ 2−2=3b1=60 ξ1: ðB8Þ

APPENDIX C: COEFFICIENTS OF _ρs
IN PLANAR N = 4 SYM THEORY

In this appendix, we compute the αs expansion of the
coefficients in the development of _ρs given by Eq. (46):

_ρsðYÞ ¼ cþ δ1
Y
þ δ2
Y3=2 þO

�
1

Y2

�
; ðC1Þ
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in the planar limit of the conformalN ¼ 4 SYM theory. At
order α3=2s , we have from the identities Eqs. (38) and (39),

c ¼ 1þ 2
ffiffiffiffiffi
ᾱs

p þ 2ᾱs þ
�
1 −

π2

6

�
ᾱ3=2s þOðᾱ2sÞ; ðC2Þ

βc ¼
ffiffiffiffiffi
ᾱs

p
− ᾱs þ

�
1

2
−
π2

4

�
ᾱ3=2s þOðᾱ2sÞ: ðC3Þ

Therefore, the coefficient of the 1=Y term in _ρs reads

δ1 ¼
3

2ðβc − 1Þ ; ðC4Þ

¼ −
3

2
−
3

2

ffiffiffiffiffi
ᾱs

p þ
�
3

4
þ 3π2

8

�
ᾱ3=2s þOðᾱ2sÞ; ðC5Þ

and the coefficient of the 1=Y3=2 term is given by

δ2 ¼
3

2ðβc − 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

χ00ðβcÞ

s
; ðC6Þ

¼ 3
ffiffiffi
π

p

2ᾱ1=4s

�
ᾱ1=2s þ1

2
ᾱs−

�
21

8
−
π2

8

�
ᾱ3=2s þOðᾱ2sÞ

�
: ðC7Þ

[1] K. Adcox et al. (PHENIX Collaboration), Phys. Rev. Lett.
88, 022301 (2002).

[2] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett.
91, 072301 (2003).

[3] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89,
202301 (2002).

[4] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 90,
082302 (2003).

[5] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 91,
172302 (2003).

[6] B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 720,
52 (2013).

[7] B. Abelev et al. (ALICE Collaboration), J. High Energy
Phys. 03 (2014) 013.

[8] S. Chatrchyan et al. (CMS Collaboration), Eur. Phys. J. C
72, 1945 (2012).

[9] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 114,
072302 (2015).

[10] J.-P. Blaizot and Y. Mehtar-Tani, Int. J. Mod. Phys. E 24,
1530012 (2015).

[11] G.-Y. Qin and X.-N. Wang, Int. J. Mod. Phys. E 24,
1530014 (2015).

[12] L. Cunqueiro and A. M. Sickles, Prog. Part. Nucl. Phys.
124, 103940 (2022).

[13] A. Adare et al. (PHENIX Collaboration), arXiv:1501
.06197.

[14] Z. Citron et al., CERN Yellow Rep. Monogr. 7, 1159
(2019).

[15] J.-P. Blaizot, E. Iancu, and Y. Mehtar-Tani, Phys. Rev. Lett.
111, 052001 (2013).

[16] M. Aaboud et al. (ATLAS Collaboration), Phys. Lett. B
790, 108 (2019).

[17] S. Acharya et al. (ALICE Collaboration), Phys. Rev. C 101,
034911 (2020).

[18] P. Caucal, E. Iancu, and G. Soyez, J. High Energy Phys. 10
(2019) 273.

[19] Y. Mehtar-Tani, D. Pablos, and K. Tywoniuk, Phys. Rev.
Lett. 127, 252301 (2021).

[20] A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 77,
011901 (2008).

[21] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 105,
252303 (2010).

[22] J. Adam et al. (ALICE Collaboration), J. High Energy Phys.
09 (2015) 170.

[23] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 96,
024905 (2017).

[24] A. H. Mueller, B. Wu, B.-W. Xiao, and F. Yuan, Phys. Lett.
B 763, 208 (2016).

[25] L. Chen, G.-Y. Qin, S.-Y. Wei, B.-W. Xiao, and H.-Z.
Zhang, Phys. Lett. B 773, 672 (2017).

[26] F. Ringer, B.-W. Xiao, and F. Yuan, Phys. Lett. B 808,
135634 (2020).

[27] M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. C
105, 044906 (2022).

[28] F. D’Eramo, M. Lekaveckas, H. Liu, and K. Rajagopal,
J. High Energy Phys. 05 (2013) 031.

[29] F. D’Eramo, K. Rajagopal, and Y. Yin, J. High Energy Phys.
01 (2019) 172.

[30] G. Moliere, Z. Naturforsch. A 3, 78 (1948).
[31] J. a. Barata, Y. Mehtar-Tani, A. Soto-Ontoso, and K.

Tywoniuk, Phys. Rev. D 104, 054047 (2021).
[32] A. V. Sadofyev, M. D. Sievert, and I. Vitev, Phys. Rev. D

104, 094044 (2021).
[33] J. a. Barata, A. V. Sadofyev, and C. A. Salgado, Phys. Rev.

D 105, 114010 (2022).
[34] C. Andres, F. Dominguez, A. V. Sadofyev, and C. A.

Salgado, Phys. Rev. D 106, 074023 (2022).
[35] G. D. Moore and N. Schlusser, Phys. Rev. D 101, 014505

(2020); 101, 059903(E) (2020).
[36] G. D. Moore, S. Schlichting, N. Schlusser, and I. Soudi,

J. High Energy Phys. 10 (2021) 059.
[37] T. Liou, A. H. Mueller, and B. Wu, Nucl. Phys. A916, 102

(2013).
[38] J.-P. Blaizot, F. Dominguez, E. Iancu, and Y. Mehtar-Tani,

J. High Energy Phys. 06 (2014) 075.
[39] S. Caron-Huot, Phys. Rev. D 79, 065039 (2009).

TRANSVERSE MOMENTUM BROADENING IN LARGE MEDIA … PHYS. REV. D 108, 014008 (2023)

014008-13

https://doi.org/10.1103/PhysRevLett.88.022301
https://doi.org/10.1103/PhysRevLett.88.022301
https://doi.org/10.1103/PhysRevLett.91.072301
https://doi.org/10.1103/PhysRevLett.91.072301
https://doi.org/10.1103/PhysRevLett.89.202301
https://doi.org/10.1103/PhysRevLett.89.202301
https://doi.org/10.1103/PhysRevLett.90.082302
https://doi.org/10.1103/PhysRevLett.90.082302
https://doi.org/10.1103/PhysRevLett.91.172302
https://doi.org/10.1103/PhysRevLett.91.172302
https://doi.org/10.1016/j.physletb.2013.01.051
https://doi.org/10.1016/j.physletb.2013.01.051
https://doi.org/10.1007/JHEP03(2014)013
https://doi.org/10.1007/JHEP03(2014)013
https://doi.org/10.1140/epjc/s10052-012-1945-x
https://doi.org/10.1140/epjc/s10052-012-1945-x
https://doi.org/10.1103/PhysRevLett.114.072302
https://doi.org/10.1103/PhysRevLett.114.072302
https://doi.org/10.1142/S021830131530012X
https://doi.org/10.1142/S021830131530012X
https://doi.org/10.1142/S0218301315300143
https://doi.org/10.1142/S0218301315300143
https://doi.org/10.1016/j.ppnp.2022.103940
https://doi.org/10.1016/j.ppnp.2022.103940
https://arXiv.org/abs/1501.06197
https://arXiv.org/abs/1501.06197
https://doi.org/10.23731/CYRM-2019-007.1159
https://doi.org/10.23731/CYRM-2019-007.1159
https://doi.org/10.1103/PhysRevLett.111.052001
https://doi.org/10.1103/PhysRevLett.111.052001
https://doi.org/10.1016/j.physletb.2018.10.076
https://doi.org/10.1016/j.physletb.2018.10.076
https://doi.org/10.1103/PhysRevC.101.034911
https://doi.org/10.1103/PhysRevC.101.034911
https://doi.org/10.1007/JHEP10(2019)273
https://doi.org/10.1007/JHEP10(2019)273
https://doi.org/10.1103/PhysRevLett.127.252301
https://doi.org/10.1103/PhysRevLett.127.252301
https://doi.org/10.1103/PhysRevC.77.011901
https://doi.org/10.1103/PhysRevC.77.011901
https://doi.org/10.1103/PhysRevLett.105.252303
https://doi.org/10.1103/PhysRevLett.105.252303
https://doi.org/10.1007/JHEP09(2015)170
https://doi.org/10.1007/JHEP09(2015)170
https://doi.org/10.1103/PhysRevC.96.024905
https://doi.org/10.1103/PhysRevC.96.024905
https://doi.org/10.1016/j.physletb.2016.10.037
https://doi.org/10.1016/j.physletb.2016.10.037
https://doi.org/10.1016/j.physletb.2017.09.031
https://doi.org/10.1016/j.physletb.2020.135634
https://doi.org/10.1016/j.physletb.2020.135634
https://doi.org/10.1103/PhysRevC.105.044906
https://doi.org/10.1103/PhysRevC.105.044906
https://doi.org/10.1007/JHEP05(2013)031
https://doi.org/10.1007/JHEP01(2019)172
https://doi.org/10.1007/JHEP01(2019)172
https://doi.org/10.1515/zna-1948-0203
https://doi.org/10.1103/PhysRevD.104.054047
https://doi.org/10.1103/PhysRevD.104.094044
https://doi.org/10.1103/PhysRevD.104.094044
https://doi.org/10.1103/PhysRevD.105.114010
https://doi.org/10.1103/PhysRevD.105.114010
https://doi.org/10.1103/PhysRevD.106.074023
https://doi.org/10.1103/PhysRevD.101.014505
https://doi.org/10.1103/PhysRevD.101.014505
https://doi.org/10.1103/PhysRevD.101.059903
https://doi.org/10.1007/JHEP10(2021)059
https://doi.org/10.1016/j.nuclphysa.2013.08.005
https://doi.org/10.1016/j.nuclphysa.2013.08.005
https://doi.org/10.1007/JHEP06(2014)075
https://doi.org/10.1103/PhysRevD.79.065039


[40] J. Ghiglieri and E. Weitz, J. High Energy Phys. 11 (2022)
068.

[41] J.-P. Blaizot and Y. Mehtar-Tani, Nucl. Phys. A929, 202
(2014).

[42] E. Iancu, J. High Energy Phys. 10 (2014) 095.
[43] P. Arnold, J. High Energy Phys. 03 (2022) 134.
[44] P. Arnold, T. Gorda, and S. Iqbal, J. High Energy Phys. 04

(2022) 085.
[45] P. Caucal and Y. Mehtar-Tani, Phys. Rev. D 106, L051501

(2022).
[46] G. Dee and J. Langer, Phys. Rev. Lett. 50, 383 (1983).
[47] W. Van Saarloos, Phys. Rev. Lett. 58, 2571 (1987).
[48] S. Munier and R. B. Peschanski, Phys. Rev. Lett. 91, 232001

(2003).
[49] U. Ebert and W. van Saarloos, Physica (Amsterdam) 146D,

1 (2000).
[50] W. Van Saarloos, Phys. Rep. 386, 29 (2003).
[51] P. Caucal and Y. Mehtar-Tani, J. High Energy Phys. 09

(2022) 023.
[52] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys.

JETP 45, 199 (1977).
[53] I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822

(1978).
[54] V. N. Gribov and L. N. Lipatov, Yad. Fiz. 15, 781 (1972)

[Sov. J. Nucl. Phys. 15, 438 (1972)].
[55] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
[56] Y. L. Dokshitzer, Zh. Eksp. Teor. Fiz. 73, 1216 (1977) [Sov.

Phys. JETP 46, 641 (1977)].
[57] E. Iancu and D. N. Triantafyllopoulos, Phys. Rev. D 90,

074002 (2014).
[58] H. Kowalski and D. Teaney, Phys. Rev. D 68, 114005

(2003).
[59] T. Lappi, Phys. Lett. B 703, 325 (2011).
[60] P. B. Arnold and W. Xiao, Phys. Rev. D 78, 125008 (2008).
[61] A. Peshier, Phys. Rev. Lett. 97, 212301 (2006).
[62] W. A. Horowitz and Y. V. Kovchegov, Nucl. Phys. A849, 72

(2011).
[63] Y. V. Kovchegov and H. Weigert, Nucl. Phys. A807, 158

(2008).
[64] S. Munier, Phys. Rep. 473, 1 (2009).
[65] A. H. Mueller and D. N. Triantafyllopoulos, Nucl. Phys.

B640, 331 (2002).
[66] G. Beuf, arXiv:1008.0498.
[67] F. Dominguez, A. H. Mueller, S. Munier, and B.-W. Xiao,

Phys. Lett. B 705, 106 (2011).
[68] F. Dominguez, J.-W. Qiu, B.-W. Xiao, and F. Yuan, Phys.

Rev. D 85, 045003 (2012).
[69] V. Vaidya, arXiv:2107.00029.
[70] V. Vaidya, arXiv:2109.11568.

[71] V. S. Fadin and L. N. Lipatov, Phys. Lett. B 429, 127
(1998).

[72] S. Munier and R. B. Peschanski, Phys. Rev. D 69, 034008
(2004).

[73] Y. V. Kovchegov and E. Levin, Quantum Chromodynamics
at High Energy, Cambridge Monographs on Particle Phys-
ics, Nuclear Physics and Cosmology (Cambridge University
Press, Cambridge, England, 2012).

[74] G. P. Salam, J. High Energy Phys. 07 (1998) 019.
[75] M. Ciafaloni, D. Colferai, and G. P. Salam, Phys. Rev. D 60,

114036 (1999).
[76] G. Altarelli, R. D. Ball, and S. Forte, Nucl. Phys. B742, 1

(2006).
[77] G. Beuf, Phys. Rev. D 89, 074039 (2014).
[78] B. Ducloué, E. Iancu, A. H. Mueller, G. Soyez, and D. N.

Triantafyllopoulos, J. High Energy Phys. 04 (2019) 081.
[79] I. Balitsky, Nucl. Phys. B463, 99 (1996).
[80] Y. V. Kovchegov, Phys. Rev. D 60, 034008 (1999).
[81] S. Marzani, R. D. Ball, P. Falgari, and S. Forte, Nucl. Phys.

B783, 143 (2007).
[82] M. S. Costa, V. Goncalves, and J. Penedones, J. High

Energy Phys. 12 (2012) 091.
[83] N. Gromov, F. Levkovich-Maslyuk, and G. Sizov, Phys.

Rev. Lett. 115, 251601 (2015).
[84] V. N. Velizhanin, arXiv:1508.02857.
[85] S. Caron-Huot and M. Herranen, J. High Energy Phys. 02

(2018) 058.
[86] J. Ghiglieri and H. Kim, J. High Energy Phys. 12 (2018)

049.
[87] A. V. Kotikov and L. N. Lipatov, Nucl. Phys. B582, 19

(2000).
[88] Y. Hatta, E. Iancu, and A. H. Mueller, J. High Energy Phys.

01 (2008) 063.
[89] Y. Hatta, E. Iancu, and A. H. Mueller, J. High Energy Phys.

01 (2008) 026.
[90] F. Dominguez, C. Marquet, A. H. Mueller, B. Wu, and

B.-W. Xiao, Nucl. Phys. A811, 197 (2008).
[91] V. N. Velizhanin, arXiv:2106.06527.
[92] A. H. Mueller, B. Wu, B.-W. Xiao, and F. Yuan, Phys. Rev.

D 95, 034007 (2017).
[93] E. Brunet and B. Derrida, Phys. Rev. E 56, 2597 (1997).
[94] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep.

100, 1 (1983).
[95] E. Iancu, K. Itakura, and L. McLerran, Nucl. Phys. A708,

327 (2002).
[96] M. Li, T. Lappi, and X. Zhao, Phys. Rev. D 104, 056014

(2021).
[97] J. a. Barata, X. Du, M. Li, W. Qian, and C. A. Salgado,

Phys. Rev. D 106, 074013 (2022).

PAUL CAUCAL and YACINE MEHTAR-TANI PHYS. REV. D 108, 014008 (2023)

014008-14

https://doi.org/10.1007/JHEP11(2022)068
https://doi.org/10.1007/JHEP11(2022)068
https://doi.org/10.1016/j.nuclphysa.2014.05.018
https://doi.org/10.1016/j.nuclphysa.2014.05.018
https://doi.org/10.1007/JHEP10(2014)095
https://doi.org/10.1007/JHEP03(2022)134
https://doi.org/10.1007/JHEP04(2022)085
https://doi.org/10.1007/JHEP04(2022)085
https://doi.org/10.1103/PhysRevD.106.L051501
https://doi.org/10.1103/PhysRevD.106.L051501
https://doi.org/10.1103/PhysRevLett.50.383
https://doi.org/10.1103/PhysRevLett.58.2571
https://doi.org/10.1103/PhysRevLett.91.232001
https://doi.org/10.1103/PhysRevLett.91.232001
https://doi.org/10.1016/s0167-2789(00)00068-3
https://doi.org/10.1016/s0167-2789(00)00068-3
https://doi.org/10.1016/j.physrep.2003.08.001
https://doi.org/10.1007/JHEP09(2022)023
https://doi.org/10.1007/JHEP09(2022)023
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1103/PhysRevD.90.074002
https://doi.org/10.1103/PhysRevD.90.074002
https://doi.org/10.1103/PhysRevD.68.114005
https://doi.org/10.1103/PhysRevD.68.114005
https://doi.org/10.1016/j.physletb.2011.08.011
https://doi.org/10.1103/PhysRevD.78.125008
https://doi.org/10.1103/PhysRevLett.97.212301
https://doi.org/10.1016/j.nuclphysa.2010.10.014
https://doi.org/10.1016/j.nuclphysa.2010.10.014
https://doi.org/10.1016/j.nuclphysa.2008.04.008
https://doi.org/10.1016/j.nuclphysa.2008.04.008
https://doi.org/10.1016/j.physrep.2009.02.001
https://doi.org/10.1016/S0550-3213(02)00581-3
https://doi.org/10.1016/S0550-3213(02)00581-3
https://arXiv.org/abs/1008.0498
https://doi.org/10.1016/j.physletb.2011.09.104
https://doi.org/10.1103/PhysRevD.85.045003
https://doi.org/10.1103/PhysRevD.85.045003
https://arXiv.org/abs/2107.00029
https://arXiv.org/abs/2109.11568
https://doi.org/10.1016/S0370-2693(98)00473-0
https://doi.org/10.1016/S0370-2693(98)00473-0
https://doi.org/10.1103/PhysRevD.69.034008
https://doi.org/10.1103/PhysRevD.69.034008
https://doi.org/10.1088/1126-6708/1998/07/019
https://doi.org/10.1103/PhysRevD.60.114036
https://doi.org/10.1103/PhysRevD.60.114036
https://doi.org/10.1016/j.nuclphysb.2006.01.046
https://doi.org/10.1016/j.nuclphysb.2006.01.046
https://doi.org/10.1103/PhysRevD.89.074039
https://doi.org/10.1007/JHEP04(2019)081
https://doi.org/10.1016/0550-3213(95)00638-9
https://doi.org/10.1103/PhysRevD.60.034008
https://doi.org/10.1016/j.nuclphysb.2007.05.024
https://doi.org/10.1016/j.nuclphysb.2007.05.024
https://doi.org/10.1007/JHEP12(2012)091
https://doi.org/10.1007/JHEP12(2012)091
https://doi.org/10.1103/PhysRevLett.115.251601
https://doi.org/10.1103/PhysRevLett.115.251601
https://arXiv.org/abs/1508.02857
https://doi.org/10.1007/JHEP02(2018)058
https://doi.org/10.1007/JHEP02(2018)058
https://doi.org/10.1007/JHEP12(2018)049
https://doi.org/10.1007/JHEP12(2018)049
https://doi.org/10.1016/S0550-3213(00)00329-1
https://doi.org/10.1016/S0550-3213(00)00329-1
https://doi.org/10.1088/1126-6708/2008/01/063
https://doi.org/10.1088/1126-6708/2008/01/063
https://doi.org/10.1088/1126-6708/2008/01/026
https://doi.org/10.1088/1126-6708/2008/01/026
https://doi.org/10.1016/j.nuclphysa.2008.07.004
https://arXiv.org/abs/2106.06527
https://doi.org/10.1103/PhysRevD.95.034007
https://doi.org/10.1103/PhysRevD.95.034007
https://doi.org/10.1103/PhysRevE.56.2597
https://doi.org/10.1016/0370-1573(83)90022-4
https://doi.org/10.1016/0370-1573(83)90022-4
https://doi.org/10.1016/S0375-9474(02)01010-2
https://doi.org/10.1016/S0375-9474(02)01010-2
https://doi.org/10.1103/PhysRevD.104.056014
https://doi.org/10.1103/PhysRevD.104.056014
https://doi.org/10.1103/PhysRevD.106.074013

