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We describe the formal analogies in the description of the inclusive production in hard processes of
hadron pairs (based on dihadron fragmentation functions) and of a single hadron inside a jet (based on
hadron-in-jet fragmentation functions). Since several observables involving dihadron fragmentation
functions have been proposed in the past, we are able to suggest new interesting observables involving
hadron-in-jet fragmentation functions, in lepton-hadron deep-inelastic scattering and hadronic collisions.
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I. INTRODUCTION

Investigation of the partonic structure of hadrons is based
on the crucial method of factorization, which makes it
possible to split the cross section of a given process in a
perturbative calculable hard cross section (describing the
underlying elementary process at the partonic level) and
one or more nonperturbative functions (describing the
distribution of partons inside hadrons and/or their frag-
mentation into detected hadronic final states). Although
factorization has been established for many hard processes
in the collinear framework, where transverse momenta of
all partons are integrated, this is not the case for transverse-
momentum dependent partonic functions (TMDs).
For certain processes involving two hadrons in the initial

state and with observed hadronic final states, e.g., inclusive
production of hadrons in hadronic collisions Aþ B →
CþDþ X, TMD factorization can be explicitly broken
because the strongly interacting particles are entangled by a
complicated color flow [1,2]. Because of this, it is not
possible to describe these processes in terms of the TMDs
that appear in other processes, like the inclusive production
of a hadron C in deep-inelastic scattering (DIS) [semi-
inclusive DIS (SIDIS), denoted as lþ A → l0 þ Cþ X]
[3,4] or the inclusive production of two hadrons C, D in
electron-positron annihilations (eþ þ e− → CþDþ X)
[5] or the Drell-Yan process [6]. Even neglecting factori-
zation-breaking contributions, the TMDs involved in

hadron-hadron collisions would be different from the ones
in the other processes, an effect that has been referred to as
generalized universality [7–10].
The most familiar example where this problem occurs is

the study of the Collins effect [11]. The so-called “Collins
function” can be used as an analyzer of the transverse
polarization of the fragmenting quark. It can appear in
SIDIS in combination with the chiral-odd TMD parton
distribution function (PDF) h1, called “transversity,” and
in the eþ þ e− → CþDþ X process [12–14]. However,
because of TMD factorization breaking, it is not possible to
rigorously study the Collins function in hadronic collisions.
An alternative option to theCollins effect is represented by

the inclusive production of two hadrons coming from the
fragmentation of a single parton. In this case, the analyzer of
the transverse polarization of the fragmenting quark is
represented by the transverse component of the relative
momentum of the hadron pair [15]. The advantage is that this
correlation survives the integration over parton transverse
momenta and can be analyzed in the collinear framework.
Hence, in the SIDIS process lþ A↑ → l0 þ ðC1C2Þ þ X
the transversity h1 can be extracted as a collinear PDF
through the chiral-odd partner H∢

1 , the dihadron fragmenta-
tion function (DiFF) that describes the fragmentation of a
transversely polarized quark into the hadron pair [16–18] and
is also called an interference fragmentation function (IFF)
[16,17]. As for the Collins function, the H∢

1 can be inde-
pendently extracted from azimuthal asymmetries in the
production of two opposite dihadron pairs in eþe− annihi-
lations, in the collinear framework [19–22]. This last remark
makes the crucial difference. First of all, it allows one to
cross-check the universality of both h1 and H∢

1 in hadronic
collisions of the typeAþ B↑ → ðC1C2Þ þ X [23]. Secondly,
it makes it possible to extract the chiral-odd PDF h1 from a
global fit of SIDIS, eþe− and hadronic collision data in the
same theoretically rigorous way as it is usually done for the
other unpolarized f1 and helicity g1 PDFs [24].
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Another intriguing option is represented by the inclusive
production of a hadron inside a jet. In fact, for a collision
process like Aþ B → ðJet CÞ þ X the cross section can
be factorized in a hybrid form [25]: it involves collinear
PDFs in the initial collision, but the final state is repre-
sented by a new function, the jet TMDFF (jTMDFF) that
depends on the jet kinematics. The formalism for the
fragmentation of a hadron inside a jet was introduced in
the collinear framework in Ref. [26] and later generalized
to include the dependence on the transverse momentum of
the hadron with respect to the jet axis [27].1 The jTMDFF
can be matched onto the same TMD FF of hadron C which
appears in SIDIS and eþe− cross sections in the TMD
framework [28].2 It is then possible to access TMD FFs
even for that class of processes where factorization in the
TMD framework is not available. When one of the two
colliding hadrons is transversely factorized, say B↑, the
fragmentation of the transversely polarized quark is
described by the polarized jTMDFF H⊥

1 that can be
matched onto the Collins function H⊥

1 [29]; this
“Collins-in-jet” effect makes it possible to check the
universality of the Collins function and gives an alternative
option to access the transversity h1 in a rigorously
factorized framework.
The hybrid factorization for the hadron-in-jet inclusive

production has been shown to work also for the SIDIS cross
section [30–32]. Hence, it comes natural to consider the
formal similarities between the inclusive production of
dihadrons and of hadrons inside a jet, i.e. between DiFFs
and jTMDFFs. In this way, we are able to transfer the
knowledge acquired on one mechanism to the other one,
and suggest new channels to investigate the partonic
structure of hadrons. We stress that the correspondence
we propose is derived at leading order (LO) in the strong
coupling αS. Inclusion of higher-order corrections will lead
to different evolution equations for the two types of
functions. Nevertheless, these differences will not affect
the number and type of fragmentation functions nor the
observables that can be constructed with them.
The paper is organized as follows. In Sec. II, we recall

the formalism for describing the inclusive dihadron pro-
duction in unpolarized proton-proton collisions. In Sec. III,
we illustrate the formulas for the inclusive hadron-in-jet
production in the same process. In Sec. IV, we generalize
the formalism to the case of collisions with one transversely
polarized hadron. In Sec. V, by comparing the cross
sections for the two mechanisms we establish a general
set of correspondence rules. In Sec. VI, we use these rules
to extend the study of two processes: (a) the inclusive
production of two back-to-back hadrons-in-jet in

unpolarized proton-proton collisions, which could give
access to jets initiated by linearly polarized gluons;
(b) the inclusive production of a hadron-in-jet in SIDIS
up to subleading twist, which could give access to the
chiral-odd PDF eðxÞ related to the nucleon scalar charge.
Finally, in Sec. VII we conclude and give some future
perspectives.

II. FRAGMENTATION INTOA PAIR OFHADRONS

We consider the fragmentation of an unpolarized
quark q, with 4-momentum p and mass m, into two
unpolarized hadrons inside the same jet, with 4-momenta
P1, P2 and massesM1,M2, respectively. We define the total
4-momentum P ¼ P1 þ P2 and relative 4-momentum R ¼
ðP1 − P2Þ=2 of the pair, where P2 ¼ M2

hh is its invariant
mass. We choose the ẑ axis along the direction of the jet
axis. At LO, we identify the jet axis with the direction of the
3-momentum p. We choose the so-called “collinear”
kinematics where the 3-momentum P is pointing along
p. The transverse components of R with respect to ẑ are
denoted by R⊥, with R2⊥ ¼ −R2⊥ (see Fig. 1).3

The hadron pair is inclusively produced from a hard
process in a deep-inelastic regime. When specifying the
kinematics on the light cone, the dominant components
P−
1 ; P

−
2 ; p

− can be used to define the following invariants
[18,21,34,35],4

zhh ¼
P−

p− ¼ P−
1 þ P−

2

p− ¼ z1 þ z2

ζ ¼ 2R−

P− ¼ z1 − z2
zhh

; ð1Þ

which represent the fraction of the fragmenting quark
momentum carried by the hadron pair and how this fraction
is split inside the pair, respectively.
The fragmentation is described starting from the quark-

quark correlator [18,34]

Δðp;P; RÞ ¼
X
X

Z
dx

ð2πÞ4 e
ip·xh0jψðxÞjX;P; Ri

× hX;P; Rjψ̄ð0Þj0i; ð2Þ

where ψ is the quark field operator and the sum runs over
all possible final states jX;P; Ri containing a hadron pair
with total and relative momenta P, R, respectively. At
leading twist, the fragmentation of an unpolarized quark

1In Ref. [27], the jTMDFF is called generalized fragmenting
jet function (FJF).

2In Ref. [28], the jTMDFF is called semi-inclusive TMD
fragmenting jet function (siTMDFJF).

3In the following, we adhere to the conventions adopted in
Ref. [33]: the fragmenting quark momentum is denoted by p,
the transverse component of hadron and quark vectors with
respect to each other is denoted by the ⊥ subscript, in all other
cases with the T subscript.

4In Refs. [17,19,20,36,37], the less symmetric definition
ξ ¼ ðζ þ 1Þ=2 ¼ z1=z ¼ 1 − z2=z was adopted.
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into two unpolarized hadrons can be parametrized in terms
of a single DiFF according to [34]

D1ðzhh; ζ;R2⊥Þ ¼ 4π Tr½Δðzhh; ζ;R2⊥Þγ−�; ð3Þ
where

Δðzhh; ζ;R2⊥Þ ¼
zhh
32

Z
dpþ

Z
dp⊥ Δðp;P; RÞ

���
p−¼P−=zhh

:

ð4Þ

In fact, the full dependence of the correlator in Eq. (2) is
reduced to the one in Eq. (4) by considering that [36]

(i) in Eq. (4) we integrate over the light-cone sup-
pressed variable pþ and over p⊥ with the condi-
tion p− ¼ P−=zhh;

(ii) our choice of frame and kinematics implies no
dependence on P⊥;

(iii) the following kinematical relations hold [18]:

P2 ¼ M2
hh;

R2 ¼ M2
1 þM2

2

2
−
M2

hh

4
−
ðM2

1 −M2
2Þ2

4M2
hh

;

R2⊥ ¼ 1

2

�ð1 − ζÞð1þ ζÞ
2

M2
hh

− ð1 − ζÞM2
1 − ð1þ ζÞM2

2

�
: ð5Þ

It is useful to recall also that [18]

p · R ¼ M2
1 −M2

2 −
ζ
2
M2

hh

2zhh
þ zhhζ

p2 þ p2⊥
2

− p⊥ · R⊥; ð6Þ

from which we deduce that in general DiFFs depend only
on the relative angle between p⊥ and R⊥.

A. Cross section for dihadron production
in proton-proton collisions

If the hadron pair is inclusively produced from the
collision of two unpolarized protons with momenta PA
and PB, we can identify the reaction plane as the plane

formed by PA and P. The azimuthal orientation around P of
the plane formed by P1 and P2 with respect to the reaction
plane is described by the azimuthal angle ϕR (see Fig. 2 and
Ref. [38] for a formal definition). The transverse compo-
nent of P with respect to PA is denoted by PT. Its modulus
represents the hard scale of the process, namely we assume
that jPT j ≫ Mhh, M1, M2. For simplicity, in the following
the dependence of DiFFs on jPT j is understood.
At leading order in 1=jPT j, the differential cross section

for the process Aþ B → ðC1C2Þ þ X reads (see
Appendix A and Eq. (15) of Ref. [38])

dσUU

dηdjPT jdζdR⊥
¼

X
a;b;c;d

Z
dxAdxBdzhhC
xAxBz2hhC

fa1ðxAÞfb1ðxBÞ

×
jPT jŝ
2πs

dσ̂ab→cd

dt̂
ŝδðŝþ t̂þ ûÞ

×Dc
1ðzhhC; ζ;R2⊥Þ; ð7Þ

where fa1 and fb1 are the usual parton distribution functions
in the proton for partons a, b with fractional momenta xA,
xB, respectively, and η is the pseudorapidity of the hadron
pair with respect to PA:

η ¼ 1

2
log

P0 þ Pz

P0 − Pz
: ð8Þ

The elementary cross section dσ̂ describes the scattering of
partons a and b into partons c (with momentum P=zhhC)
and d, which is not detected. The partonic Mandelstam
variables ŝ; t̂; û are related to the external ones by

FIG. 2. Kinematics for the collision of a proton with
3-momentum PA and a (transversely polarized) proton with
momentum PB (and polarization SBT), inclusively producing
two unpolarized hadrons with total and relative momenta
P ¼ P1 þ P2 and R ¼ ðP1 − P2Þ=2. The plane formed by P
and R is oriented by the azimuthal angle ϕR around P with
respect to the reaction plane formed by PA and P.

FIG. 1. Collinear kinematics for the fragmentation of a quark
with 3-momentum p (and transverse polarization s⊥) into a pair of
hadrons with total 3-momentum P ¼ P1 þ P2 pointing along p,
namely with P⊥ ¼ 0. The ẑ axis is along the same direction of
p and P.
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ŝ ¼ xAxBs; t̂ ¼ xA
zhhC

t; û ¼ xB
zhhC

u: ð9Þ

The δ function in Eq. (7) expresses the momentum
conservation in the partonic scattering, and it can be
rewritten as [38]

ŝδðŝþ t̂þ ûÞ ¼ zhhCδðzhhC − z̄hhÞ; ð10Þ

where

z̄hh ¼
jPT jffiffiffi

s
p xAe−η þ xBeη

xAxB
: ð11Þ

In Eq. (7), the sum runs upon all possible combinations of
parton flavors. The elementary cross sections dσ̂ab→cd for
the independent combinations are listed in the Appendix
of Ref. [38].

III. HADRON-IN-JET FRAGMENTATION

We now consider the distribution of a hadron with
4-momentum Ph and mass Mh inside a jet with radius r,
initiated by a unpolarized quark q with 4-momentum p and
mass m. Following Ref. [28], we denote by j⊥ the trans-
verse momentum of the hadron inside the jet (see Fig. 3).
The latter is defined with respect to the standard jet axis
(rather than using a recoil-free algorithm) because only in
this case a direct connection to the TMD FF can be made
[28]. As in the dihadron case, the ẑ axis is chosen along the
standard jet axis and at LO it is identified with the direction
of p.
When the jet is produced in a hard process in a deep-

inelastic kinematical regime, the large light-cone compo-
nents of quark, jet, and hadron vectors are denoted by p−,
J−, and P−

h , respectively. They are used to define the
following invariants:

zJ ¼
J−

p− ; zh ¼
P−
h

J−
; ð12Þ

which represent the fraction of the fragmenting quark
momentum carried by the jet and the fraction of jet
momentum carried by the hadron inside the jet,

respectively. The J− is related to the transverse momentum
of the reconstructed jet in the hard process, whose size is
denoted as jPT j and represents the hard scale of the process
itself.
The fragmentation is described starting from the quark-

quark correlator

Δðp; J; PhÞ ¼
X
X

Z
dx

ð2πÞ4 e
ip·xh0jψðxÞjX; J; Phi

× hX; J; Phjψ̄ð0Þj0i; ð13Þ

where, as before, ψ is the quark field operator and the sum
runs over all possible final states jX; J; Phi containing a
hadron Ph inside a jet J. At leading twist, the object
describing the observed hadron inside the produced jet can
be parametrized in terms of a jTMDFF according to [28]

D1ðzJ; zh; j⊥; jPT j; jPT jrÞ
¼ zJ

4Nc
Tr½ΔðzJ; zh; j⊥; jPT j; jPT jrÞγ−�; ð14Þ

where Nc is the number of quark colors, jPT jr is the typical
momentum scale of the jet [28], and

ΔðzJ; zh; j⊥; jPT j; jPT jrÞ ¼
Z

dpþΔðp; J; PhÞ
���� p−¼J−=zJjpT j¼jPT j=zJ

J−¼P−
h
=zh

:

ð15Þ

Depending on the relative size of j j⊥j, jPT jr, and the
QCD nonperturbative scale ΛQCD, the jTMDFF of Eq. (14)
can be expressed in different factorized forms. Here, we are
interested in the kinematical region ΛQCD ≲ j j⊥j ≪ jPT jr
where collinear radiation within the jet and soft radiation of
order j j⊥j are relevant, while harder radiation is allowed
only outside the jet and it does not affect the distribution of
the hadron transverse momentum jj⊥j. In this regime, a
factorized form for D1 is given in Ref. [28] in terms of a
hard matching function (related to the hard out-of-jet
radiation) and a convolution of a usual TMD FF and a
soft function (accounting for the soft radiation inside the
jet). It is obtained by initially evolving the TMD FF in the
usual Collins-Soper-Sterman (CSS) scheme up to the jet
scale jPT jr, then matching to the calculable hard function
describing the out-of-jet radiation, and finally evolving to
the hard scale by using the standard timelike DGLAP
equations. All calculations in Ref. [28] are performed at
NLO. At LO, the direction of the quark momentum p
coincides with the standard jet axis and its transverse
component is equal to the transverse momentum of the
reconstructed jet in the hard process, jpT j ≈ jPT j. In this
approximation, the jTMDFF Dq

1 for the fragmentation of a
quark q into a hadron inside the jet reduces to

FIG. 3. Fragmentation of a unpolarized hadronwith 3-momentum
Ph inside a jet of radius r initiated by a quark with 3-momentum p
(and transverse polarization s⊥). The transverse component of Ph
with respect to the standard jet axis is denoted by j⊥ [28]. For the
sake of simplicity, p and the jet axis are approximately taken
along the same direction.
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Dq
1ðzJ; zh; j⊥; jPT j; jPT jrÞjLO
¼

X
i

δð1 − zJÞδqiDi
1ðzh; j2⊥; jPT jÞ

¼ δð1 − zJÞDq
1ðzh; j2⊥; jPT jÞ; ð16Þ

where Dq
1 is the standard single-hadron TMD FF that can

be isolated also in eþe− annihilations or in semi-inclusive
deep-inelastic scattering.

A. Cross section for hadron-in-jet fragmentation
in proton-proton collisions

We consider the same situation as in Sec. II A, namely
the collision of two unpolarized protons with momenta PA
and PB. The final state is now described by the inclusive
production of a jet where a hadron is identified inside it
with transverse momentum j⊥ with respect to the standard
jet axis. Following Ref. [29], the factorization theorem for
the process Aþ B → ðJet CÞ þ X can be written as

dσUU

dηdjPT jdzhdj⊥
¼ 2πjPT j

s

X
a;b;c;d

Z
dxAdxBdzJC
xAxBz2JC

fa1ðxAÞfb1ðxBÞHU
ab→cdD

c
1ðzJC; zh; j⊥; jPT j; jPT jrÞz2JCδðzJC − z̄JÞ; ð17Þ

where z̄J is given as in Eq. (11) and HU
ab→cd describes the elementary hard process aþ b → cþ d from which the parton c

initiates the reconstructed jet.
As detailed in Appendix B, the HU

ab→cd of Ref. [29] can be reconnected to the dσ̂ab→cd of Eq. (7) by

HU
ab→cd ¼

ŝ
πzJC

dσ̂ab→cd

dt̂
: ð18Þ

The cross section of Eq. (17) can then be cast in the form

dσ
dηdjPT jdzhdj⊥

¼
X
a;b;c;d

Z
dxAdxBdzJC
xAxBz2JC

fa1ðxAÞfb1ðxBÞ2
jPT jŝ
s

dσ̂ab→cd

dt̂
zJCδðzJC − z̄JÞDc

1ðzJC; zh; j⊥; jPT j; jPT jrÞ

¼
X
a;b;c;d

Z
dxAdxBdzJC
xAxBz2JC

fa1ðxAÞfb1ðxBÞ2
jPT jŝ
s

dσ̂ab→cd

dt̂
ŝδðŝþ t̂þ ûÞDc

1ðzJC; zh; j⊥; jPT j; jPT jrÞ; ð19Þ

where we used Eq. (10) adapted to the case of hadron-in-jet
fragmentation, i.e., by replacing zhhC with zJC for the
fragmenting parton c and using the pseudorapidity of the jet
with respect to PA.

IV. FRAGMENTATION OF TRANSVERSELY
POLARIZED QUARKS

We extend our study to the case of a fragmenting quark
with transverse polarization s⊥. We first consider the frag-
mentation in a pair of unpolarized hadrons (see Fig. 1). In
the kinematic conditions described in Sec. II, the leading-
twist correlator of Eq. (4) can be expanded as [34]

Δðzhh; ζ;R2⊥Þ ¼
1

16π

�
D1ðzhh; ζ;R2⊥Þ=n−

þH∢
1 ðzhh; ζ;R2⊥Þ

i
2Mhh

½=R⊥; =n−�
�
; ð20Þ

where H∢
1 describes the probability density for a trans-

versely polarized quark to fragment into a pair of unpo-
larized hadrons with total momentum collinear with the
quark momentum. The H∢

1 can be extracted by the
following projection,

ðs⊥ ×R⊥Þ · P
Mhh

H∢
1 ðzhh;ζ;R2⊥Þ ¼ 4πTr½Δðzhh;ζ;R2⊥Þiσi−γ5�;

ð21Þ

where σμν ¼ i½γμ; γν�=2 and its spatial index i points in the
direction of s⊥.
Similarly, if the transversely polarized quark fragments

into a hadron inside a jet in the kinematical conditions
described in Sec. III (see Fig. 3), we can project out the
“Collins-in-jet” function H⊥

1 from the correlator in
Eq. (15) as

ðs⊥ × j⊥Þ · p
zhMh

H⊥
1 ðzJ; zh; j⊥; jPT j; jPT jrÞ

¼ zJ
4Nc

Tr½ΔðzJ; zh; j⊥; jPT j; jPT jrÞiσi−γ5�; ð22Þ

where again the spatial index i of σμν points in the direction
of s⊥.
In the following section, for the two fragmentation

scenarios we analyze the contributions that arise in the
cross section for proton-proton collisions when one of the
two protons is transversely polarized.
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A. Transversely polarized proton-proton collisions

For the process Aþ B↑ → ðC1C2Þ þ X depicted in
Fig. 2, the polarized part of the cross section reads (see
Appendix A and Eq. (16) of Ref. [38])

dσUT

dηdjPT jdζdR⊥dϕSB

¼ jSBT j
4π2

sinðϕSB − ϕRÞ

×
X
a;b;c;d

Z
dxAdxBdzhhC
xAxBz2hhC

fa1ðxAÞ

× hb1ðxBÞ
jPT jŝ
s

dΔσ̂ab↑→c↑d

dt̂

× ŝδðŝþ t̂þ ûÞ jR⊥j
Mhh

×H∢ c
1 ðzhhC; ζ;R2⊥Þ; ð23Þ

where SBT is the transverse polarization of the colliding
proton with orientation ϕSB with respect to the reaction
plane, and hb1 is the transversity distribution for the

transversely polarized parton b with fractional momentum
xB. The elementary cross sections dΔσ̂ab↑→c↑d describe the
scattering of parton a and b with transfer of the transverse
polarization of the latter to parton c while summing on the
undetected fragments from parton d. All the possible
independent flavor combinations are listed in the appendix
of Ref. [38].
The corresponding process Aþ B↑ → ðJet CÞ þ X is

displayed in Fig. 4. A hadron with 3-momentum Ph is
inclusively produced inside a jet with standard axis Ĵ from
the collisions of a proton with 3-momentum PA and a
transversely polarized proton with 3-momentum PB and
polarization SBT . The azimuthal angles ϕSB and ϕh describe
the orientation of SBT and of the plane formed by Ph and Ĵ,
respectively, with respect to the reaction plane formed by
PA and Ĵ. The polarized part of the cross section reads [29]5

dσUT

dηdjPT jdzhdj⊥dϕSB

¼ jSBT j sinðϕSB − ϕhÞ
jPT j
s

×
X
a;b;c;d

Z
dxAdxBdzJC
xAxBz2JC

fa1ðxAÞ

× hb1ðxBÞHCollins
ab↑→c↑d

jj⊥j
Mh

×H⊥c
1 ðzJC; zh; j⊥; jPT j; jPT jrÞ

× z2JCδðzJC − z̄JÞ; ð24Þ

where HCollins
ab↑→c↑d

is the cross section for the transfer of
transverse polarization in the elementary hard process
aþ b↑ → c↑ þ d, and H⊥c

1 is the polarized jTMDFF
describing the hadron inside the jet produced by the
transversely polarized fragmenting parton c.
By extending the relation (18) to the polarized case

involving HCollins
ab↑→c↑d

of Ref. [29] and dΔσ̂ab↑→c↑d of
Ref. [38] (and exchanging t̂ ↔ û to account for the fact
that the transversely polarized parton in Ref. [29] is a↑

while in Ref. [38] is b↑), we finally get

dσUT

dηdjPT jdzhdj⊥dϕSB

¼ jSBT j sinðϕSB − ϕhÞ
X
a;b;c;d

Z
dxAdxBdzJC
xAxBz2JC

fa1ðxAÞhb1ðxBÞ
jPT jŝ
πs

zJCδðzJC − z̄JÞ

×
dΔσ̂ab↑→c↑d

dt̂
jj⊥j
Mh

H⊥c
1 ðzJC; zh; j⊥; jPT j; jPT jrÞ

¼ jSBT j sinðϕSB − ϕhÞ
X
a;b;c;d

Z
dxAdxBdzJC
xAxBz2JC

fa1ðxAÞhb1ðxBÞ
jPT jŝ
πs

dΔσ̂ab↑→c↑d

dt̂
ŝδðŝþ t̂þ ûÞ

×
jj⊥j
Mh

H⊥c
1 ðzJC; zh; j⊥; jPT j; jPT jrÞ: ð25Þ

FIG. 4. Kinematics for the collision of a proton with
3-momentum PA and a transversely polarized proton with
momentum PB (and polarization SBT), inclusively producing
inside a jet a hadron with 3-momentum Ph and transverse
component j⊥ with respect to the jet axis Ĵ. The plane formed
by Ĵ and Ph is oriented by the azimuthal angle ϕh around Ĵ with
respect to the reaction plane formed by PA and Ĵ.

5The expression in Eq. (24) differs from Ref. [29] by a 1=zh term because of a definition of the Collins function inherited from
Ref. [25] which does not adhere to the Trento conventions [39].
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V. CORRESPONDENCE BETWEEN DIHADRON
AND HADRON-IN-JET FRAGMENTATION

We are now in the position to compare the cross sections
for the Aþ Bð↑Þ → ðC1C2Þ þ X and Aþ Bð↑Þ → ðJet CÞ þ
X processes. We deduce that

(i) from Eq. (12), the combination zJzh ¼ P−
h =p

−

describes the fraction of fragmenting quark momen-
tum carried by the hadron inside the jet; hence, it can
be mapped onto zhh of Eq. (1);

(ii) by comparing the same two equations, we can map
zh onto ζzhh ¼ z1 − z2, the relative fractional mo-
mentum carried by the hadron pair; thus, for both
hadronic final states (dihadron and hadron inside jet)
the light-cone kinematics can be described by a pair
of invariants and we can establish a correspondence
between these pairs, namely ðzhh; ζÞ ↔ ðzJ; zhÞ;

(iii) along the same line, we can map the transverse
momentum j⊥ of the hadron inside the jet with
respect to the standard jet axis onto the transverse
component R⊥ of the hadron pair relative momen-
tum with respect to the direction of the pair total
momentum, which in collinear kinematics coincides
with the standard jet axis; obviously, the same map-
ping holds for their azimuthal angles, i.e., ϕh ↔ ϕR;

(iv) by directly comparing Eqs. (7) with (19) and
Eqs. (23) with (25), the jTMDFF can be mapped
onto the corresponding DiFF according to

4πDq
1ðzJ; zh; j⊥; jPT j; jPT jrÞ

⟷ Dq
1ðzhh; ζ;R2⊥; jPT jÞ; ð26Þ

4πH⊥q
1 ðzJ; zh; j⊥; jPT j; jPT jrÞ

⟷ H∢ q
1 ðzhh; ζ;R2⊥; jPT jÞ: ð27Þ

We remark that the above correspondence is derived at
LO in αS. In fact, DiFFs have been extracted so far only

through a LO analysis of inclusive dihadron production in
eþe− annihilation [21], in combined eþe− and SIDIS
processes [22], and in a global fit of eþe−, SIDIS, and
hadron-hadron collision data [24]. The formalism of
jTMDFFs is available instead up to NLO, but only in
the unpolarized case [28,29]. The inclusion of higher order
corrections (NLO, NNLO, etc.) would expose sharp
differences in the scale dependence of the two categories
of functions; in particular, DiFFs would not incorporate any
rapidity divergence, like all collinear objects following
DGLAP evolution equations. However, the structure of the
quark-quark correlators and, consequently, of the cross
sections will remain independent of evolution effects.
The correspondence expressed in Eqs. (26) and (27)

represents the main result of this paper. It has been derived
by considering the case of proton-proton collisions but it
can be extended to all hard processes where collinear
factorization holds, like inclusive dihadron production in
eþe− annihilations [19–21] and SIDIS. In the following, we
outline some interesting applications involving proton-
proton collisions and the SIDIS process.

VI. OPPORTUNITIES WITH HADRON-IN-JET
FRAGMENTATION

In this section,wemention twopossible applications of the
above correspondence where results known for dihadron
inclusive production can be formally translated into the cross
section for hadron-in-jet fragmentation, opening up new
channels for investigating the partonic structure of hadrons.

A. Inclusive production of two dihadrons and back-to-
back hadron-in-jets in proton-proton collisions

For the process Aþ B → ðC1C2ÞC þ ðD1D2ÞD þ X
depicted in the left panel of Fig. 5, after summing over
the polarizations of initial hadrons the leading-twist cross
section reads (seeAppendixA and Eqs. (20–22) in Ref. [38])

dσUU

dηCdjPCT jdζCdRC⊥dηDdjPDT jdζDdRD⊥
¼ jPCT jjPDT j

8π2
X
a;b

Z
dxAdxBdzhhCdzhhD

z2hhCz
2
hhD

fa1ðxAÞfb1ðxBÞ

× ŝδðŝþ t̂þ ûÞδ
�jPCT j
zhhC

−
jPDT j
zhhD

	
δ

�
xAPAz − xBPBz −

PCz

zhhC
−

PDz

zhhD

	

×

�X
c;d

�
dσ̂ab→cd

dt̂
Dc

1ðzhhC; ζC;R2
C⊥ÞDd

1ðzhhD; ζD;R2
D⊥Þ þ cosðϕRC

− ϕRD
Þ

×
dΔσ̂ab→c↑d↑

dt̂
jRC⊥j
MC

H∢ c
1 ðzhhC; ζC;R2

C⊥Þ
jRD⊥j
MD

H∢ d
1 ðzhhD; ζD;R2

D⊥Þ
�

þ cosð2ϕRC
− 2ϕRD

Þ dΔσ̂ab→g↑g↑

dt̂
jRC⊥j2
M2

C
H∢ g

1 ðzhhC; ζC;R2
C⊥Þ

×
jRD⊥j2
M2

D
H∢ g

1 ðzhhD; ζD;R2
D⊥Þ

�
; ð28Þ
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where the momenta and the angles of the second hadron
pair are defined in complete analogy with the first pair by
replacing the labels c, C with d, D. The delta functions
describe in the elementary process the conservation of
energy and of momentum both along the longitudinal
direction of the ẑ axis (identified with PA, see Fig. 5)
and in the transverse plane.
In Eq. (28), the elementary cross sections dΔσ̂ab→c↑d↑

involve only quarks for the final partons c, d, while
dΔσ̂ab→g↑g↑ contain only final gluons linearly polarized

in the transverse plane. Hence, the H∢ g
1 function describes

the fragmentation of such linearly polarized gluons into
pairs of unpolarized hadrons.6 For both cases of final

polarized quarks and gluons, all nonvanishing combina-
tions are listed in the appendix of Ref. [38].
Therefore, by disentangling specific asymmetries in the

azimuthal orientation of the planes containing the momenta
of the two dihadrons one can access the DiFFs H∢ q

1 and
H∢ g

1 for the fragmentation of transversely polarized quarks
and linearly polarized gluons, respectively, without con-
sidering any polarization in the initial hadronic collision
[38]. Because of the correspondence described in Sec. V, it
is interesting to explore the same possibility for the process
Aþ B → ðJet CÞ þ ðJet DÞ þ X, as depicted in the right
panel of Fig. 5. Using the same rules of correspondence as
in the single hadron-pair production, we get

dσUU

dηCdjPCT jdzhCdjC⊥dηDdjPDT jdzhDdjD⊥
¼ 2jPCT jjPDT j

X
a;b

Z
dxAdxBdzJCdzJD

z2JCz
2
JD

fa1ðxAÞfb1ðxBÞ

× ŝδðŝþ t̂þ ûÞδ
�jPCT j

zJC
−
jPDT j
zJD

	
δ

�
xAPAz − xBPBz −

PCz

zJC
−
PDz

zJD

	

×

�X
c;d

�
dσ̂ab→cd

dt̂
Dc

1ðzJC; zhC; j2C⊥; jPCT j; jPCT jrCÞDd
1ðzJD; zhD; j2D⊥; jPDT j; jPDT jrDÞ

þ cosðϕjC − ϕjDÞ
dΔσ̂ab→c↑d↑

dt̂
j jC⊥j
MhC

H⊥c
1 ðzJC; zhC; j2C⊥; jPCT j; jPCT jrCÞ

j jD⊥j
MhD

H⊥d
1 ðzJD; zhD; j2D⊥; jPDT j; jPDT jrDÞ

�

þ cosð2ϕjC − 2ϕjDÞ
dΔσ̂ab→g↑g↑

dt̂
j jC⊥j2
M2

hC

H⊥g
1 ðzJC; zhC; j2C⊥; jPCT j; jPCT jrCÞ

j jD⊥j2
M2

hD

H⊥g
1 ðzJD; zhD; j2D⊥; jPDT j; jPDT jrDÞ

�
;

ð29Þ

FIG. 5. Kinematics for the collision of two unpolarized protons with 3-momenta PA and PB along the ẑ axis. Left panel: inclusive
production of two back-to-back hadron pairs with total momenta PC ¼ PC1 þ PC2 and PD ¼ PD1 þ PD2, and back-to-back projections
PCT and PDT on the transverse plane (ϕC ¼ ϕD þ π), respectively; the planes containing the momenta of each pair form the azimuthal
angles ϕRC

and ϕRD
with the reaction plane containing PA and PC. Right panel: inclusive production of two back-to-back jets with axis

ĴC, ĴD, and back-to-back projected momenta PCT and PDT on the transverse plane (ϕC ¼ ϕD þ π), respectively; in each jet a hadron is
detected with 3-momentum PhC (PhD ) and transverse component jC⊥ (jD⊥) with respect to the jet axis ĴC (ĴD); the planes containing ĴC,

PhC and ĴD, PhD form the azimuthal angles ϕjC , ϕjD with the reaction plane containing PA and ĴC.

6The H∢ g
1 corresponds to the notation δĜ∢ of Ref. [38].
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where ϕjC and ϕjD are the azimuthal angles with res-
pect to the reaction plane of the transverse momenta
jC⊥, jD⊥ of hadrons inside the jets with radius rC and
rD, respectively. All other variables are defined in
complete analogy with the single hadron-in-jet case,
identifying each corresponding jet by using the labels
c, C and d, D.
From Eq. (29), we deduce that the cosðϕjC − ϕjDÞ

asymmetry in the azimuthal distribution of the two
hadrons inside the two back-to-back jets is generated
by two “Collins-in-jet” effects, one per each jet. This
asymmetry allows one to isolate back-to-back jets pro-
duced by the fragmentation of back-to-back transversely
polarized quarks, giving an alternative option to access the
Collins function of each hadron inside the corresponding
jet. Similarly and even more interestingly, extracting the
cosð2ϕjC − 2ϕjDÞ Fourier component in the azimuthal
distribution allows one to isolate back-to-back jets pro-
duced by the fragmentation of back-to-back linearly
polarized gluons, giving access to a new class of frag-
mentation functions: the H⊥ g

1 describe the inclusive
production of hadrons inside jets by the fragmentation
of linearly polarized gluons, where the hadron transverse
momentum j⊥ with respect to the jet axis becomes the spin
analyzer of the gluon linear polarization in the trans-
verse plane.

B. Semi-inclusive deep-inelastic scattering
up to subleading twist

The left panel of Fig. 6 describes the kinematics for the
lþ A → l0 þ ðC1C2Þ þ X process, namely for the inclu-
sive production of a hadron pair with momenta P1 and P2

by the scattering of a lepton with 4-momentum l off a
hadronic target with momentum PA, mass M, and polari-
zation S, leading to a final lepton with 4-momentum l0.
The azimuthal orientations of the transverse polarization ST
and of the hadron pair plane [represented by R⊥ ¼ ðP1⊥ −
P2⊥Þ=2] are given byϕS andϕR, respectively, and they are all
measured with respect to the scattering plane identified by l
and l0. The hard scale of the process is given by
Q2 ¼ −q2 ¼ −ðl − l0Þ2 ≫ M ≥ 0. The collinear kinemat-
ics is realized by integrating over the transverse components
of the hadron-pair total 3-momentum P ¼ P1 þ P2 or,
equivalently, by taking P collinear with q̂, which identifies
the ẑ axis.
The expressions of the LO cross section for various com-

binations of polarization of lepton probe andproton target are
listed in Eqs. (44)–(49) of Ref. [34] up to subleading twist. A
slightly different notation was employed in Ref. [40], where
the cross section was described in terms of structure
functions, based on the analogous expression in Ref. [41].
Here, we limit ourselves to reproducing the terms that are
more interesting for our discussion:

dσ
dxdydzhhdϕSdR⊥dζ

¼ 2α2

xyQ2

y2

2ð1 − εÞ fFUU;T þ � � � þ jST j½ε sinðϕR þ ϕSÞFsin ðϕRþϕSÞ
UT þ � � ��

þ SL½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
sinϕRF

sinϕR
UL þ � � ��

þ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
sinϕRF

sinϕR
LU þ � � � þ jST jλ½…�g; ð30Þ

where α is the fine structure constant, x ¼ Q2=2PA · q ≈ kþ=Pþ
A is the fraction of target momentum carried by a parton with

4-momentum k and fractional charge eq, y ¼ PA · q=PA · l ≈ ðEl − E0
lÞ=El is the fraction of beam energy transferred to

FIG. 6. Kinematics for the semi-inclusive deep-inelastic scattering of a lepton with initial momentum l and final momentum l0 on a
hadronic target with transverse polarization ST oriented along ϕS with respect to the scattering plane formed by l and l0. The final state
can be either a pair of unpolarized hadrons with momenta P1 and P2 with azimuthal orientation ϕR and total momentum P ¼ P1 þ P2

(left panel), or a hadron with momentum Ph and azimuthal orientation ϕh inside a jet with standard axis Ĵ (right panel). In both cases, the
parallel kinematics is considered where P and Ĵ are along the momentum transfer q ¼ l − l0, which identifies the ẑ axis.
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the hadronic system, λ is the beam helicity, SL is the target longitudinal polarization, ε is the ratio of longitudinal and
transverse photon flux, and

y2

2ð1 − εÞ ≈
�
1 − yþ 1

2
y2
	
;

y2

2ð1 − εÞ ε ≈ ð1 − yÞ; ð31Þ

y2

2ð1 − εÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
≈ ð2 − yÞ

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
;

y2

2ð1 − εÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
≈ y

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
: ð32Þ

The structure functions of interest can be written in terms of PDFs and DiFFs in the following way:

FsinðϕRþϕSÞ
UT ¼ 1

4π
x
X
q

e2q
jR⊥j
Mhh

hq1ðxÞH∢ q
1 ðzhh; ζ;R2⊥Þ; ð33Þ

FsinϕR
LU ¼ 2M

Q
1

4π
x
X
q

e2q
jR⊥j
Mhh

�
eqðxÞH∢ q

1 ðzhh; ζ;R2⊥Þ þ
Mhh

M
fq1ðxÞ

G̃∢ qðzhh; ζ;R2⊥Þ
zhh

�
; ð34Þ

FsinϕR
UL ¼ 2M

Q
1

4π
x
X
q

e2q
jR⊥j
Mhh

�
hqLðxÞH∢ q

1 ðzhh; ζ;R2⊥Þ þ
Mhh

M
gq1ðxÞ

G̃∢ qðzhh; ζ;R2⊥Þ
zhh

�
: ð35Þ

Equation (33) represents the standard way to address in a
collinear framework the chiral-odd transversity PDF h1ðxÞ.
The integral of h1ðxÞ is the tensor charge, which might
represent a possible portal to new physics beyond the
Standard Model [42] since it is relevant for explorations of
new possible CP-violating couplings [43] or effects
induced by tensor operators not included in the Standard
Model Lagrangian [44]. The tensor charge can be com-
puted in lattice QCD with very high precision [45]. Future
facilities will have a large impact on the current uncertainty
on the tensor charge extracted from phenomenological
studies [46–48].
Equation (34) is particularly interestingbecause it contains

the contribution of the twist-3 chiral-odd PDF eðxÞ, which
contains crucial information on quark-gluon-quark correla-
tions (see, e.g., [49]). The integral of eðxÞ is the scalar charge
of the nucleon and is related to the so-called σ term, which
plays an important role in understanding the emergence of
nucleon mass from chiral symmetry breaking [50] and its
decomposition in terms of contributions from quarks and
gluons [51–54]. The nucleon scalar charge can be important
also for the search of physics beyond the Standard Model,
since it probes scalar interactions and can be relevant for dark
matter searches (see, e.g., Refs. [44,55]). The nucleon scalar
charge and the σ term have been computed in lattice QCD
(for a review, see Ref. [56] and references therein). The eðxÞ
has been studied in several nonperturbativemodels of hadron
structure [57–65]. It can be extracted from the TMD
framework by considering the beam spin asymmetry that
isolates the dσLU cross section for inclusive single-hadron
production, where the chiral-odd partner is represented by
the Collins function H⊥

1 [66–68]. However, this observable
contains three other contributions [69–71]. Moreover, each

term is represented by an intricate convolution upon trans-
verse momenta. Therefore, it may be more convenient to
work in the collinear framework and isolate the eðxÞ through
the simple product with its chiral-odd partner represented by
the DiFF H∢

1 , as shown in Eq. (34).
In order to reach this goal, we need to deal with the

second contribution in Eq. (34), which depends on the
unknown twist-3 DiFF G̃∢. Calculations in the spectator
model show that G̃∢ turns out to be small, and possibly
with opposite sign to H∢

1 [72]. The extraction of eðxÞ from
CLAS and CLAS12 data projected onto the x dependence
was performed assuming that theMhh dependence of G̃

∢ is
the same as H∢

1 but rescaled by a constant factor [73]. A
possible strategy to overcome this problem could be to
study the ratio dσLU=dσUL [35]. In fact, if the term
proportional to G̃∢ would be negligible, using the flavor
symmetries of H∢

1 [21–24,37,74–77] the ratio should not
exhibit any dependence on ðzhh;MhhÞ, since the latter
should cancel out between numerator and denominator.
On the contrary, any observed dependence would hint at a
non-negligible contribution from twist-3 DiFF, making the
extraction of eðxÞ more challenging.
In this perspective, collecting more information on these

observables from other channels should give more insight.
Hence, it might be useful to consider the lþ A → l0 þ
ðJet CÞ þ X process depicted in the right panel of Fig. 6,
namely the SIDIS on a (polarized) hadron target where a
hadron with momentum Ph is inclusively produced inside a
jet with transverse momentum j⊥ with respect to the jet axis
Ĵ taken parallel to the ẑ ¼ q̂ axis. The cross section of this
process has the same structure as Eq. (30). By using the
correspondence of Sec. V, the structure functions in
Eqs. (33)–(35) become
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F
sinðϕjþϕSÞ
UT ¼ x

X
q

e2q
jj⊥j
Mh

hq1ðxÞH⊥ q
1 ðzJ; zh; j2⊥;Q;QrÞ; ð36Þ

F
sinϕj

LU ¼ 2M
Q

x
X
q

e2q
jj⊥j
Mh

�
eqðxÞH⊥ q

1 ðzJ; zh; j2⊥;Q;QrÞ þMh

M
fq1ðxÞ

G̃⊥ qðzJ; zh; j2⊥;Q;QrÞ
zh

�
; ð37Þ

F
sinϕj

UL ¼ 2M
Q

x
X
q

e2q
jj⊥j
Mh

�
hqLðxÞH⊥ q

1 ðzJ; zh; j2⊥;Q;QrÞ þMh

M
gq1ðxÞ

G̃⊥ qðzJ; zh; j2⊥;Q;QrÞ
zh

�
; ð38Þ

where Qr is the typical scale of the jet with radius r.
Equation (36) indicates a new way to address the collinear
transversity PDF h1ðxÞ, namely through the “Collins-in-jet”
effect in the SIDIS process. Equations (37) and (38) show
that in the same framework of the SIDIS “Collins-in-jet”
effect one can address also the twist-3 collinear PDFs eðxÞ
and hLðxÞ, provided that the remaining contribution given
by G̃⊥ is small. The G̃⊥ is a new twist-3 jTMDFF that
corresponds to the above twist-3 DiFF G̃∢. As in the
dihadron case, by using the current knowledge on the
“Collins-in-jet” effect one could predict the dependence of
the ratio dσLU=dσUL on the kinematic variables of the final
state. The analysis of any possible deviation of data from
these predictions would indicate if the contribution of the
twist-3 G̃⊥ would or would not be negligible.

VII. CONCLUSIONS

Transverse-momentum-dependent factorization gives
the possibility of measuring many interesting signals and
accessing many intriguing features of the structure of
hadrons. However, one of its shortcomings is that it cannot
be applied to hadronic collisions with observed hadronic
final states, like, e.g., the process Aþ B → CþDþ X.
Two alternative mechanisms have been proposed to

recover part of the versatility of TMDs while preserving
the applicability to hadronic processes: the inclusive
production of dihadrons, or of a hadron inside a jet.
The inclusive production of dihadrons, namely of two
hadrons originating from the fragmentation of the same
parton, can be usefully studied in the collinear framework,
where transverse momenta of all partons are integrated; it
involves universal collinear dihadron fragmentation func-
tions. The inclusive production of a hadron inside a jet,
namely the inclusive production of a jet with a detected
substructure, can be studied in a hybrid factorization
approach involving collinear partonic functions in the
initial state and TMD hadron-in-jet fragmentation func-
tions in the final state.
In this paper, we have explored similarities between

the two formalisms of dihadron and hadron-in-jet
production, and we have established a set of correspon-
dence rules between DiFFs and jTMDFFs. We have
used this correspondence to transfer to the jTMDFF case

some interesting results obtained with DiFFs, in par-
ticular for inclusive production of two back-to-back
dihadrons in unpolarized proton-proton collisions, and
for inclusive production of a dihadron in semi-inclusive
deep-inelastic scattering.
In unpolarized proton-proton collisions with the inclu-

sive production of two back-to-back jets where one hadron
is detected inside each jet, the cross section contains
specific modulations that can distinguish if the hadron is
detected inside a jet generated by a quark or by a gluon.
Moreover, one of the two modulations is sensitive to a
polarized jTMDFF directly linked to the TMD fragmenta-
tion function of a linearly polarized gluon.
In semi-inclusive deep-inelastic scattering, the cross

section for an unpolarized lepton probe and transversely
polarized proton target offers a new channel to extract the
chiral-odd transversity collinear parton distribution func-
tion h1ðxÞ, which is connected to the puzzling proton tensor
charge. The cross section for a longitudinally polarized
lepton and unpolarized proton contains a term proportional
to the chiral-odd subleading-twist collinear parton distri-
bution function eðxÞ, which is connected to the well-known
nucleon σ term and to the physics of QCD chiral symmetry
breaking.
The above examples illustrate how useful the formal

comparison between DiFFs and jTMDFFs can be. The
inclusive production of dihadrons has already been mea-
sured in hadronic colliders [78–80], eþe− colliders [81],
and fixed-target experiments [82–85]. The inclusive pro-
duction of hadrons in a jet has been measured only in
hadronic colliders [86,87]. Both channels will be (abun-
dantly) available at the future Electron-Ion Collider [47,48].
Therefore, we think it is worth exploring the above-
mentioned possibilities and to push further the analysis
of the consequences of the correspondence rules set in
this paper.

APPENDIX A: CROSS SECTION FOR INCLUSIVE
DIHADRON PRODUCTION

In Ref. [38], Eq. (15) shows the unpolarized cross
section for the process Aþ B → ðC1C2Þ þ X. After inte-
grating over the azimuthal orientation ϕSB of the polariza-
tion of hadron B, it reads
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dσUU

dηdjPT jd cos θCdM2
hhdϕR

¼ jPT j
2π

X
a;b;c;d

Z
dxAdxBdzhhC

z2hhC
fa1ðxAÞfb1ðxBÞzhhCδðzhhC − z̄hhÞ

dσ̂ab→cd

dt̂
Dc

1ðzhhC; cos θC;M2
hhÞ

¼ jPT j
2πs

X
a;b;c;d

Z
dxAdxBdzhhC
xAxBz2hhC

fa1ðxAÞfb1ðxBÞŝ2δðŝþ t̂þ ûÞ dσ̂ab→cd

dt̂
Dc

1ðzhhC; cos θC;M2
hhÞ; ðA1Þ

where η, jPT j, M2
hh, and ϕR are defined in Sec. II A, and θC is the polar angle between P and the direction of the back-to-

back emission of the two hadrons in their center-of-mass (c.m.) frame (see Fig. 3 of Ref. [18]).
It turns out that ζ ¼ aþ b cos θC, with a, b functions of only the invariant massMhh [18]. Therefore, the Jacobian of the

transformation is dζ ¼ 2jRj=Mhhd cos θC with [38]

jRj ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

hh − 2ðM2
1 þM2

2Þ þ ðM2
1 −M2

2Þ2=M2
hh

q
: ðA2Þ

Using the kinematic relations in Eq. (5) and the obvious definition R⊥ ¼ ðjR⊥j cosϕR; jR⊥j sinϕRÞ, we can compute the
Jacobian of the transformation dM2

hhdϕR ¼ dR⊥8=ð1 − ζ2Þ. The cross section in Eq. (A1) can be conveniently rewritten as

dσUU

dηdjPT jdζdR⊥
¼

X
a;b;c;d

Z
dxAdxBdzhhC
xAxBz2hhC

fa1ðxAÞfb1ðxBÞ
jPT jŝ
2πs

dσ̂ab→cd

dt̂
ŝδðŝþ t̂þ ûÞDc

1ðzhhC; ζ;R2⊥Þ; ðA3Þ

where

Dc
1ðzhhC; cos θC;M2

hhÞ ¼ 2
jRj
Mhh

1 − ζ2

8
Dc

1ðzhhC; ζ;R2⊥Þ ðA4Þ

takes into account the above Jacobians.

In a similar way, Eq. (16) of Ref. [38] describes the polarized cross section for the process Aþ B↑ → ðC1C2Þ þ X:

dσUT

dηdjPT jd cos θCdM2
hhdϕRdϕSB

¼ jPT j
4π2

jSBT j sinðϕSB − ϕRÞ
X
a;b;c;d

Z
dxAdxBdzhhC

z2hhC
fa1ðxAÞhb1ðxBÞzhhCδðzhhC − z̄hhÞ

×
dΔσ̂ab↑→c↑d

dt̂
jRj
Mhh

sin θCH
∢ c
1 ðzhhC; cos θC;M2

hhÞ

¼ jPT j
4π2s

jSBT j sinðϕSB − ϕRÞ
X
a;b;c;d

Z
dxAdxBdzhhC
xAxBz2hhC

fa1ðxAÞhb1ðxBÞŝ2δðŝþ t̂þ ûÞ

×
dΔσ̂ab↑→c↑d

dt̂
jR⊥j
Mhh

H∢ c
1 ðzhhC; cos θC;M2

hhÞ; ðA5Þ

where SBT is the transverse polarization of the colliding proton with orientation ϕSB with respect to the reaction plane, and
hb1 is the transversity distribution for the transversely polarized parton b with fractional momentum xB. The elementary
cross sections dΔσ̂ab↑→c↑d describe the annihilation of parton a and bwith transfer of the transverse polarization of the latter
to parton cwhile summing on the undetected fragments from parton d. All the possible independent flavor combinations are
listed in the appendix of Ref. [38].
By applying the same transformation of variables from d cos θCdM2

hhdϕR to dζdR⊥, we get

dσUT

dηdjPT jdζdR⊥dϕSB

¼ jSBT j
4π2

sinðϕSB − ϕRÞ
X
a;b;c;d

Z
dxAdxBdzhhC
xAxBz2hhC

fa1ðxAÞhb1ðxBÞ
jPT jŝ
s

dΔσ̂ab↑→c↑d

dt̂
ŝδðŝþ t̂þ ûÞ

×
jR⊥j
Mhh

H∢ c
1 ðzhhC; ζ;R2⊥Þ; ðA6Þ
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where

H∢ c
1 ðzhhC; cos θC;M2

hhÞ ¼ 2
jRj
Mhh

1 − ζ2

8
H∢ c

1 ðzhhC; ζ;R2⊥Þ: ðA7Þ

We generalize the above formulas to the case of the inclusive production of two dihadrons. In Ref. [38], from
Eqs. (20)–(22) the unpolarized cross section for the process Aþ B → ðC1C2ÞC þ ðD1D2ÞD þ X reads (after integrating on
the polarizations of initial hadrons)

dσUU

dηCdjPCT jd cos θCdM2
CdϕRC

dηDdjPDT jd cos θDdM2
DdϕRD

¼ jPCT jjPDT j
8π2

X
a;b

Z
dxAdxBdzhhCdzhhD

z2hhCz
2
hhD

fa1ðxAÞfb1ðxBÞxBδðxB − x̄BÞzhhCδðzhhC − z̄hhCÞ
zhhCz2hhD
jPCT jjPDT j

δðzhhD − z̄hhDÞ

×

�X
c;d

�
dσ̂ab→cd

dt̂
Dc

1ðzhhC; cos θC;M2
CÞDd

1ðzhhD; cos θD;M2
DÞ

þ cosðϕRC
− ϕRD

Þ dΔσ̂ab→c↑d↑

dt̂
jRCj
MC

sin θCH
∢ c
1 ðzhhC; cos θC;M2

CÞ
jRDj
MD

sin θDH
∢ d
1 ðzhhD; cos θD;M2

DÞ
�

þ cosð2ϕRC
− 2ϕRD

Þ dΔσ̂ab→g↑g↑

dt̂
jRCj2
M2

C
sin2θCH

∢ g
1 ðzhhC; cos θC;M2

CÞ
jRDj2
M2

D
sin2θDH

∢ g
1 ðzhhD; cos θD;M2

DÞ
�
; ðA8Þ

where the momenta and the angles of the second hadron
pair are defined in complete analogy with the first pair by
replacing the labels c, C with d, D. The additional delta
functions are due to momentum conservation in the
elementary ab → cd process both in the longitudinal
direction of the ẑ axis, identified with PA, and in the
transverse plane.
In collinear kinematics, the conservation in the trans-

verse plane is trivially PCT=zhhC ¼ −PDT=zhhD. This
implies that the above cross section is integrated in the
azimuthal angles of PCT and PDT with the condition ϕC ¼
ϕD þ π and that the moduli are constrained by [8]

δ

�jPCT j
zhhC

−
jPDT j
zhhD

	
¼ z2hhDzhhC

jPCT jjPDT j
δðzhhD − z̄hhDÞ;

z̄hhD ¼ jPDT jffiffiffi
s

p eηC þ eηD

xA
: ðA9Þ

The conservation along the ẑ axis in the c.m. frame of the
annihilation reads xAPAz − xBPBz ¼ PCz=zhhC þPDz=zhhD.
Using the previous delta function, after some manipulation
it can be rewritten as

δ

�
ηC þ ηD þ log

xB
xA

	
¼ xBδðxB − x̄BÞ;

x̄B ¼ xAe−ηCe−ηD: ðA10Þ
Finally, the third delta function is the analog of Eq. (10).
Because of Eq. (A10), it can be rewritten as

ŝδðŝþ t̂þ ûÞ ¼ zhhCδðzhhC − z̄hhCÞ;

z̄hhC ¼ jPCT jffiffiffi
s

p xAe−ηC þ xBeηC

xAxB
¼ jPCT jffiffiffi

s
p eηC þ eηD

xA
:

ðA11Þ
In Eq. (A8), the elementary cross sections dΔσ̂ab→c↑d↑

involve only quarks for the final partons c, d, while
dΔσ̂ab→g↑g↑ contain only final gluons linearly polarized

in the transverse plane. Hence, the H∢ g
1 function describes

the fragmentation of such linearly polarized gluons into
pairs of unpolarized hadrons. For both cases of final
polarized quarks and gluons, all nonvanishing combina-
tions are listed in the Appendix of Ref. [38].
By introducing the same transformation of variables

used for the inclusive production of a single hadron pair, the
cross section of Eq. (A8) can be rewritten as
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dσUU

dηCdjPCT jdζCdRC⊥dηDdjPDT jdζDdRD⊥
¼ jPCT jjPDT j

8π2
X
a;b

Z
dxAdxBdzhhCdzhhD

z2hhCz
2
hhD

fa1ðxAÞfb1ðxBÞ

× ŝδðŝþ t̂þ ûÞδ
�jPCT j
zhhC

−
jPDT j
zhhD

	
δ

�
xAPAz − xBPBz −

PCz

zhhC
−

PDz

zhhD

	

×

�X
c;d

�
dσ̂ab→cd

dt̂
Dc

1ðzhhC; ζC;R2
C⊥ÞDd

1ðzhhD; ζD;R2
D⊥Þ

þ cosðϕRC
− ϕRD

Þ dΔσ̂ab→c↑d↑

dt̂
jRC⊥j
MC

H∢ c
1 ðzhhC; ζC;R2

C⊥Þ
jRD⊥j
MD

H∢ d
1 ðzhhD; ζD;R2

D⊥Þ
�

þ cosð2ϕRC
− 2ϕRD

Þ dΔσ̂ab→g↑g↑

dt̂
jRC⊥j2
M2

C
H∢ g

1 ðzhhC; ζC;R2
C⊥Þ

jRD⊥j2
M2

D
H∢ g

1 ðzhhD; ζD;R2
D⊥Þ

�
: ðA12Þ

APPENDIX B: ELEMENTARY HARD CROSS
SECTION FOR a+ b → c+ d

We compare the elementary cross section used in
Refs. [29,38] and in the relevant literature for inclusive
production of a hadronic final state in hadron-hadron
collisions.
In Refs. [88,89], the cross section for the process Aþ

B → Cþ X reads

ECdσ
dPC

¼
X
a;b;c;d

Z
dxAdxBdzC

πz2C
fa1ðxAÞfb1ðxBÞ

×
dσ̂ab→cd

dt̂
ŝδðŝþ t̂þ ûÞD1ðzCÞ: ðB1Þ

The same structure of cross section can be obtained in
Ref. [90] after making the transformation of variables v̂ ¼
1þ t̂=ŝ and ŵ ¼ −û=ðŝþ t̂Þ, but obtaining the above
elementary cross section multiplied by ŝ. By labeling the
dσ̂ of Refs. [88,89] as dσ̂ToCa and the one of Ref. [90] as
dσ̂ACGG, we get

dσ̂ACGGab→cd

dt̂
¼ ŝ

dσ̂ToCaab→cd

dt̂
: ðB2Þ

Equation (B1) can be further integrated in the angle
of PT and made differential in the pseudorapidity η of the
final hadron through the transformation 2πjPT jdjPT jdPz=
E → 2πjPT jdjPT jdη:

dσ
dηdjPT j

¼ 2jPT j
X
a;b;c;d

Z
dxAdxBdzC

z2C
fa1ðxAÞfb1ðxBÞ

×
dσ̂ToCaab→cd

dt̂
ŝδðŝþ t̂þ ûÞD1ðzCÞ: ðB3Þ

This expression is formally identical to the cross section
for the Aþ B → ðC1C2Þ þ X process of Eq. (A1) after
integrating over d cos θC; dϕR and using Eq. (10) (apart
from the dependence on the dihadron invariant mass Mhh
through the unpolarized DiFFD1, which does not affect the
argument about the elementary cross section). By labeling
the dσ̂ of Eq. (A1) as dσ̂DiFF, we get

dσ̂ACGGab→cd

dt̂
¼ ŝ

dσ̂ToCaab→cd

dt̂
¼ ŝ

dσ̂DiFFab→cd

dt̂
: ðB4Þ

The above relation can be cross-checked by inspecting the
elementary cross sections of various partonic channels in
the appendix of Refs. [90,38], respectively.
By recalling the relations (9) and (10), Eq. (17) has the

same structure as Eq. (B3) (apart for the dependence on the
variables ðzh; j⊥Þ describing the jet substructure through
the unpolarized jTMDFF D1, which does not affect the
argument about the elementary cross section) provided that

πzJC
ŝ

HU
ab→cd ¼

dσ̂ToCaab→cd

dt̂
: ðB5Þ

Because of Eq. (B4), the above relation leads to Eq. (18).
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