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We study the properties of the lowest multiplet of light-flavor tensor meson resonances, i.e., f2ð1270Þ,
a2ð1320Þ, K�

2ð1430Þ, and f02ð1525Þ, within the resonance chiral theory approach. The higher-order
resonance chiral operators, including the light-quark mass and 1=NC corrections, are simultaneously
incorporated in our study. The use of resonance chiral expressions allows us to analyze not only the relevant
experimental data but also in the meantime the lattice results at unphysical quark masses, including the
masses of the lowest multiplet of tensor resonances and their decay widths into two pseudoscalar mesons.
In addition, the radiative decays of the tensor resonances into one photon plus one pseudoscalar meson and
two photons are also studied.
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I. INTRODUCTION

The lowest multiplet of light-flavor tensor meson reso-
nances with JP ¼ 2þ, consisting of f2ð1270Þ, a2ð1320Þ,
K�

2ð1430Þ, and f02ð1525Þ that will be simply denoted as f2,
a2, K�

2, and f02 in order, are important objects in hadron
physics. They play prominent roles in numerous physical
processes, such as the J=ψ → γPP0 (being P the light-
flavor pseudoscalar mesons) decays [1–3], the γð�Þγð�Þ →
PP0 processes (which are in turn also important to pin down
the theoretical uncertainties arising from the light-by-light
scattering to anomalous magnetic moment of muon) [4–6],
the various photoproduction reactions off the nucleon
target [7–9], the identification of the tensor glueball
candidates [10–13], and the yet unsettled issue about the
tensor resonance contributions to the chiral low energy
constants [14,15], etc.
Unlike the opaque nature and somewhat controversial

assignment of the light-flavor scalar meson resonances, the
lowest multiplet of tensor resonances can be reasonably
understood as standard q̄q mesons within the quark-model
picture [16], albeit there are some ongoing disputed
discussions about an unusual explanation of the tensor
resonance f2ð1270Þ as a ρρ bound state [17–20]. The
properties of tensor resonances, including the masses and
decay widths into two pseudoscalar mesons, are recently
computed at unphysically large pion masses by lattice

QCD [21–23], which can provide us extra useful con-
straints for the investigation of tensors. In the present
lattice simulations [21–23], the channels with three or even
more light pseudoscalar mesons are not considered. Likely
these multiparticle intermediate states will only affect the
existing determination of the masses and two-meson decay
widths of the tensor resonances at a moderate level, since
the ground tensor resonances are found to be dominated by
the compact qq̄ components with lightly dressed two-
meson decaying states [23]. The future inclusion of the
multiparticle channels will definitely give more information
about the multiparticle decay processes of the tensor
resonances, where the intermediate vector resonances, such
as ρ;ω;ϕ; K�, may play important roles. Nonetheless, in
this work we restrict ourselves to the two-body decays of
tensor resonances and take into account of the lattice results
that also include at most the two-meson intermediate states
in the simulations [21–23], which still use unphysically
large quark masses. A simultaneous analysis of the exper-
imental data and lattice results needs to properly take the
extrapolations at different quark masses. Resonance chiral
theory (RχT) [24] offers a suitable framework to meet this
requirement. In this work we aim at a precise and
comprehensive study of the tensor nonet within RχT. It
is hoped that the comprehensive descriptions of the tensor
resonance interactions with light pseudoscalar mesons will
benefit other related studies involving the tensor resonan-
ces, such as the aforementioned processes.
Regarding the mixing of the SUð3Þ octet and singlet for

the light-flavor vector resonances, i.e., the ω-ϕ system, the
mixing angle θV ¼ 36.3° only deviates from the ideal
mixing scenario θid ¼ 35.3° at the level around 3%, see
the quark model review section of Particle Data Group
(PDG) [16]. In the same place, the tensor-meson mixing
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angle of the f2ð1270Þ and f02ð1525Þ is determined to be
around 30°, which is also supported by the previous
phenomenological studies [25,26], deviating from the ideal
mixing scenario at the level around 15%, which is roughly
at the same level of the 1=NC correction or the SUð3Þ
symmetry breaking effect around 30%. In the strict ideal-
mixing case, the resulting two physical states will contain
purely the ūuþ d̄d and s̄s components, whose decay
processes will precisely follow the Okubo-Zweig-Iizuka
(OZI) rules. In other words, the deviation of the ideal
mixing also implies the breaking of OZI rules to a similar
extent. The 1=NC expansion in large NC QCD offers a
systematical framework to quantitatively account for the
OZI rules [27–29]. It is illustrated in Ref. [30] that the NC
counting rule is related with the number of traces in flavor
space in chiral perturbation theory (χPT), although some
care needs to be taken in particular situations because of
special matrix identities. Generally speaking, one addi-
tional trace for a given chiral operator implies one more
order of 1=NC suppression. In this way, one can easily
impose the OZI rules order by order in the chiral effective
field theory. We will follow the RχT approach [24] to
include the chiral operators in a joint power counting
scheme relying on the simultaneous expansions of
momenta, light-quark masses and 1=NC, to study the
tensor resonance interactions with the light pseudoscalar
π, K, η and η0, the latter of which corresponds to the
pseudo-Nambu-Goldstone boson (PNGB) nonet in the
chiral and large NC limit [31].
The η-η0 mixing is another interesting subject in hadron

physics, since it is sensitive to both effects from the light-
flavor SUð3Þ symmetry breaking and the QCD UAð1Þ
anomaly. Their mixing formalism has been widely inves-
tigated in the many phenomenological and lattice analyses;
e.g., the η-η0 mixing parameters are extensively determined
in the radiative decay processes of vector resonances
[32–36], the eletromagnetic transition form factors involv-
ing η or η0 [37,38], the lattice simulations [39,40], and a
recent review in Ref. [41]. The various decay processes of
tensor resonances can provide another kind of inputs to
address the η-η0 mixing problem. In this work different η-η0
mixing scenarios will be explored to describe the T → PP0
decays, with T being the tensor resonance. In one of the
scenarios, we go beyond the conventional η-η0 one-mixing
angle formalism by including the two-mixing-angle
scheme in the decays of tensor resonances.
The structure of this paper is as follows. The relevant chiral

Lagrangians involving tensor resonances and the calculations
of their masses and decaywidths are discussed in Sec. II. The
tensor masses from experiments and lattice simulations are
studied in Sec. III, where the f2ð1270Þ-f02ð1525Þ mixing is
also addressed. In Sec. IV, we separately discuss the strong
decay processes of T → PP0 and the radiative decay proc-
esses of T → Pγ; γγ in detail. A brief summary and con-
clusions will be delivered in Sec. V.

II. TENSOR RESONANCE CHIRAL
LAGRANGIANS AND CALCULATION

OF MASSES AND DECAY AMPLITUDES

The flavor assignment of the lowest multiplet of tensor-
meson resonances takes the usual form as

Tμν ¼

0
BBBBB@

a0
2ffiffi
2

p þ f8
2ffiffi
6

p þ f0
2ffiffi
3

p aþ2 K�þ
2

a−2 − a0
2ffiffi
2

p þ f8
2ffiffi
6

p þ f0
2ffiffi
3

p K�0
2

K�−
2 K̄�0

2 − 2f8
2ffiffi
6

p þ f0
2ffiffi
3

p

1
CCCCCA

μν

:

ð1Þ

We follow Refs. [15,42] to construct the chiral Lagrangian
involving the tensor-meson resonances with JP ¼ 2þ,
where each of the tensor resonances can be described by
the Hermitian symmetric rank-2 tensor field. The kinetic
part of Lagrangian reads [15,42]

Lkin ¼ −
1

2
hTμνDμν;ρσTρσi; ð2Þ

with

Dμν;ρσ ¼ ð□þM2
TÞ
�
1

2
ðgμρgνσ þ gμσgνρÞ − gμνgρσ

�
þ gμν∂ρ∂σ þ gρσ∂μ∂ν

−
1

2
ðgμσ∂ρ∂ν þ gμρ∂ν∂σ þ gνσ∂ρ∂μ þ gνρ∂μ∂σÞ:

ð3Þ

For the on-shell tensor resonance, which is indeed the case
in our study, it corresponds to a traceless field, i.e., Tμ

μ ¼ 0.
In this case the leading-order (LO) mass term in Eq. (2)
reduces to

Lð0Þ
m ¼ −

M2
T

2
hTμνTμνi; ð4Þ

which leads to a common massMT for all the resonances of
the lowest tensor nonet (1). For the polarization tensor
ϵμνðk; λÞ of a spin-2 tensor resonance with momentum k
and spin component λ, the sum over all of its spin
components λ gives [15]

X
λ

ϵμνðk; λÞϵ�ρσðk; λÞ ¼
1

2
ðPμρPνσ þ PνρPμσÞ −

1

3
PμνPρσ;

�
Pμν ≡ gμν −

kμkν
M2

T

�
; ð5Þ

which will be used in the calculation of the two-PNGB
decay width of the tensor resonance. There are also
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proposals to treat the tensor resonances as nonrelativistic
fields in chiral theory as elaborated in Ref. [43]. However
we will stick to the realistic description in this work.
Higher-order chiral operators are required to implement

the mass splittings. As mentioned in the Introduction, both
the light-quark masses and 1=NC corrections can be
relevant to achieve the realistic description for the tensor
nonet. Therefore, the joint expansion scheme relying on the
simultaneous expansion of momenta, light-quark masses,
and 1=NC, will be useful to organize the pertinent chiral
Lagrangians involving the tensor resonances. The general
structure of the operator in RχT can be written as

hR1R2 � � �Rjχ
ðnÞðΦÞi; ð6Þ

where insertions of additional traces should be understood,
Ri¼1;2;…;j stand for the resonance fields, and χðnÞðΦÞ
denotes the chiral building block consisting of the
PNGBs Φ with the joint-expansion counting index n. At
next-to-leading order (NLO), the relevant Lagrangian to the
mass terms consist of two operators

Lð1Þ
m ¼ λThTμνTμνχþi þ λ0ThTμνihTμνi; ð7Þ

where the first and second terms scale as Oðp2; N0
CÞ and

Oðp0; N−1
C Þ, respectively, compared to the LO operator in

Eq. (4). According to the RχT formalism [24], the LO
tensor mass MT scales as Oðp0; N0

CÞ, consistent with the
behavior of a qq̄ meson at large NC [27–29]. In other
words, the operator accompanied by λT respects the OZI
rule, while the λ0T term violates this rule; i.e., the deviation
of the ideal mixing in the f82-f

0
2 system is contributed by the

λ0T term. One could also try to introduce the relevant
Lagrangian to the mass terms at next-to-next-to-leading
order (NNLO), which would contain three additional
operators: hTμνTμνχþχþi, hTμνTμνihχþi, hTμνihTμνχþi.
By focusing on the mass splittings along, it is impossible
to pin down the NNLO coefficients accompanying these
operators. It is noted that the hTμνihTμνχþi operator was
included together with the NLO ones (7) in Ref. [25] to
address the tensor masses. While in this work, we will try to
follow as much as the joint power counting scheme by
relying on the simultaneous expansions of light-quark
masses and 1=NC at NLO.
For the two-PNGB decay processes of the tensor

resonances, the LO RχT Lagrangian comprises one
operator

Lð0Þ
TPP ¼ gThTμνfuμ; uνgi; ð8Þ

and the relevant NLO Lagrangian consists of four terms

Lð1Þ
TPP ¼ fThTμνffuμ; uνg; χþgi

þ f0ThTμνðuμχþuν þ uνχþuμÞi þ g0ThTμνihuμuνi
þ g00TðhTμνuμihuνi þ hTμνuνihuμiÞ; ð9Þ

with the basic chiral building blocks

u ¼ ei
Φffiffi
2

p
F; uμ ¼ ifu†∂μu − u∂μu†g;

χþ ¼ u†χu† þ uχ†u; χ ¼ 2Bðsþ ipÞ; ð10Þ

and the PNGB matrix

Φ ¼

0
BBB@

π0ffiffi
2

p þ η8ffiffi
6

p þ η0ffiffi
3

p πþ Kþ

π− − π0ffiffi
2

p þ η8ffiffi
6

p þ η0ffiffi
3

p K0

K− K̄0 − 2η8ffiffi
6

p þ η0ffiffi
3

p

1
CCCA:

ð11Þ

The light quark masses are introduced by taking the
external scalar source as s ¼ diagðmu;md;msÞ. We will
take the isospin symmetric limit, i.e., mu ¼ md, throughout
this work. Compared to the LO operator gT in Eq. (8)
that scales as Oðp2; N1

CÞ, the NLO operators accompanied
by fT and f0T in Eq. (9) are suppressed by the factor
of Oðp2; N0

CÞ, while the other two terms of g0T and g00T
are suppressed as Oðp0; N−1

C Þ. Two additional operators
βgμνhTμνuρuρi and γgμνhTμνχþi are introduced in Ref. [15]
to describe the interactions of light pseudoscalar mesons
and tensor resonances. Nevertheless, these two additional
terms do not contribute to the decay widths of the tensor
resonances, since the latter are traceless on shell.
The NLO operators in Eq. (7) not only introduce the

mass splittings but also lead to the mass mixing of the octet
f82 and singlet f

0
2. The physical tensor resonances f2 and f

0
2

correspond to the mass eigenstates after performing diag-
onalization of the octet and singlet fields. We parametrize
the mixing relation between the octet-singlet bases and the
physical ones as

f82 ¼ sin θTf2 þ cos θTf02;

f02 ¼ cos θTf2 − sin θTf02; ð12Þ

with θT the tensor mixing angle. In the ideal mixing
scenario, one has θT ¼ 35.3°. The masses of the physical
resonances after the diagonalization procedure are found
to be

M2
f2

¼ M2
T − 4λTm2

K − 3λ0T

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16λ2Tðm2

K −m2
πÞ2 − 8λTλ

0
Tðm2

K −m2
πÞ þ 9λ02T

q
;

ð13Þ
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M2
f0
2
¼ M2

T − 4λTm2
K − 3λ0T

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16λ2Tðm2

K −m2
πÞ2 − 8λTλ

0
Tðm2

K −m2
πÞ þ 9λ02T

q
;

ð14Þ

and the masses of a2 and K�
2 read

M2
a2 ¼ M2

T − 4λTm2
π; ð15Þ

M2
K�

2
¼ M2

T − 4λTm2
K: ð16Þ

For the tensor-meson mixing angle θT , we have

tan 2θT ¼ 8
ffiffiffi
2

p ðm2
π −m2

KÞλT
4ðm2

π −m2
KÞλT þ 9λ0T

; ð17Þ

which recovers the ideal mixing result, i.e., θT ¼
arctan ð2 ffiffiffi

2
p Þ=2 ¼ 35.3°, by setting the 1=NC suppressed

coupling λ0T ¼ 0, as expected.
Next we calculate the two-PNGB decay widths of the

tensor resonances. Another prerequisite is to solve the η-η0
mixing, which is a more involved system than the f2-f02
case. A modern study relying on Uð3Þ chiral perturbation
theory [44,45] for the η-η0 mixing gives the two-angle-
mixing prescription

�
η

η0

�
¼ 1

F

�
F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

��
η8

η0

�
; ð18Þ

which naturally reduces to the one-mixing-angle case by
taking F8 ¼ F0 ¼ F and θ8 ¼ θ0 ¼ θ.
By using the interaction Lagrangians (8) (9), the mixing

formulas in Eqs. (12), (18) and the sum of polarization
tensors (5), it is then straightforward to calculate the two-
PNGB decay width for the tensor resonance. We give the
expressions for all the relevant T → PP0 decay widths in
the Appendix.

III. MASS SPLITTINGS AND TENSOR
MIXING ANGLE

In this part, we will rely on the LO (4) and NLO (7)
Lagrangians, i.e., the results in Eqs. (13)–(16), to analyze
the masses of f2, f02, a2, and K�

2. As a byproduct, we can
also predict the f2-f02 mixing angle θT through the formula
in Eq. (17). For the inputs of experimental masses, we will
take the PDG averages [16]. Since the isospin breaking
effects are neglected in our study, we take the average mass
between the neutral and charged K�

2ð1430Þ and also assign
a conservative uncertainty to cover both the neutral and
charged masses. The experimental (Exp) inputs for the
masses used in our fits read

MExp
f2

¼ 1275.5� 0.8; MExp
a2 ¼ 1318.2� 0.6;

MExp
K�

2
¼ 1429.9� 4.1; MExp

f0
2

¼ 1517.4� 2.5; ð19Þ

which are given in units of MeV.
The three parameters relevant to the tensor masses

determined in the fits to experimental data are

MT ¼ ð1308.5� 1.2Þ MeV; λT ¼ −0.336� 0.008;

λ0T ¼ ð25718� 1054Þ MeV2; ð20Þ

with χ2=ðd:o:f:Þ ¼ 0.05=ð4–3Þ. According to the almost
vanishing χ2, one can safely conclude that the NLO
expressions of RχT in Eqs. (13)–(16) are sufficient to
describe the masses of the lowest tensor nonet. The
prediction of the tensor mixing angle θT via Eq. (17) at
the physical masses is

θPhyT ¼ ð29.1� 0.1Þ°; ð21Þ

which is close to the previous determinations in
Refs. [25,26,43].
Recent lattice simulations on the unstable resonances

have made noticeable progresses; e.g., both the masses and
partial decay widths of the lowest multiplet of tensor
resonances have been determined at unphysically large
pion mass in Refs. [21–23]. The explicit values of the
masses from the lattice determinations read

MLat
f2

¼ 1470� 15; MLat
a2 ¼ 1505� 5;

MLat
K�

2
¼ 1577� 7; MLat

f0
2
¼ 1602� 10; ð22Þ

which are given in units of MeV. The corresponding masses
of π, K, η, and η0 used in the lattice simulations [23] are

mLat
π ¼ 391� 1; mLat

K ¼ 550� 1;

mLat
η ¼ 587� 1; mLat

η0 ¼ 930� 6; ð23Þ

which are in units of MeV as well. Utilizing the NLO
expressions (13)–(16) to fit the lattice results in Eq. (22)
with the latticemπ andmK in Eq. (23), the three parameters
entering in the tensor masses are found to be

MT ¼ ð1444� 18Þ MeV; λT ¼ −0.307� 0.052;

λ0T ¼ ð27920� 16526Þ MeV2; ð24Þ

with χ2=ðd:o:f:Þ ¼ 3.3=ð4–3Þ. The corresponding masses
from such fit are

MLat;Fit
f2

¼ 1465� 26; MLat;Fit
a2 ¼ 1508� 9;

MLat;Fit
K�

2
¼ 1568� 9; MLat;Fit

f0
2

¼ 1612� 15; ð25Þ
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which reasonably reproduce the lattice inputs (22), though
with somewhat large χ2. The tensor mixing angle evaluated
at the unphysically large meson masses in Eq. (23) is

θLatT ¼ ð25.0þ5.6
−4.4Þ°: ð26Þ

By further comparing the two sets of parameters in
Eqs. (20) and (24) that are determined from the fits to
experiment and lattice data, respectively, we find that the
two NLO couplings λT and λ0T from the two fits are
compatible within uncertainties, while the two sets of data
clearly require different values for the LO mass MT . In
other words, the relative mass splittings among the lowest
tensor multiplet both from the experiment and lattice
determinations can be well described by the two operators
in Eq. (7), although one needs to globally shift the LO mass
MT when separately fitting the experimental and lattice
data. One way to understand this shift is to resort to a
specific NNLO operator

λ00ThTμνTμνihχþi; ð27Þ

since this operator will contribute to a common mass
−4λ00Tð2m2

K þm2
πÞ for all the tensor nonet, namely it is

equivalent to redefine M2
T as M2

T − 4λ00Tð2m2
K þm2

πÞ. It is
pointed out that the λ00T term will not affect the expression of
tensor mixing angle given in Eq. (17). As a result, we can
simultaneously describe both experiment and lattice deter-
minations of the masses for the lowest tensor multiplet by
using the LO MT (4), the NLO λT , and λ0T (7), and the
NNLO λ00T (27). The corresponding parameters from the
joint fit to experimental and lattice masses are

MT ¼ ð998.7� 26.4Þ MeV; λT ¼ −0.335� 0.009;

λ0T ¼ ð25732� 1216Þ MeV2; λ00T ¼ −0.350� 0.026;

ð28Þ

with χ2=ðd:o:f:Þ ¼ 4.5=ð8–4Þ. The resulting values for the
tensor masses and the tensor mixing angles at the physical
and lattice meson masses from the joint fit, together with
the two types of inputs, are summarized in Table I. The
tensor mixing angle evaluated at unphysically large meson
masses (23) is slightly decreased, when comparing with its
physical value.
Relying on the resonance parameters in Eq. (28), we give

predictions to the tensor masses and their mixing angles in
Fig. 1 at different pion masses, ranging from chiral limit
to mπ ¼ 500 MeV. Since nowadays most of the lattice
calculations can run simulations by using the physical value
for the strange quark mass, we perform the chiral extrap-
olations in Fig. 1 by fixing the strange quark mass at its
physical value. To be more specific, the leading-order
relation m2

K;Lat ¼ m2
K;Phy þ ðm2

π;Lat −m2
π;PhyÞ=2 [30] has

been employed to extrapolate the kaon masses at different
pion masses. We have also explicitly verified that the
results are barely changed by taking into account the more
sophisticated higher-order chiral corrections for m2

K in
Refs. [46–48]. The shaded areas correspond to the theo-
retical uncertainties that are estimated by taking the
parameters in Eq. (28).

TABLE I. The results from the joint fit (the column labeled as
Theoretical) to the experimental [16] and lattice [23] determi-
nations of the tensor masses. The predictions to the tensor mixing
angles are obtained according to the formula in Eq. (17).

Experimental Theoretical Lattice Theoretical

Mf2 (MeV) 1275.5�0.8 1275.5�1.7 1470�15 1466�8

Ma2 (MeV) 1318.2�0.6 1318.2�1.3 1505�5 1505�8

MK�
2
(MeV) 1429.9�4.1 1428.8�2.8 1577�7 1570�8

Mf0
2
(MeV) 1517.4�2.5 1517.2�5.1 1602�10 1620�8

θTð°Þ ��� 29.0� 0.4 ��� 26.4�0.3

FIG. 1. Masses (left panel) and mixing angle (right panel) of the tensor resonances as functions ofmπ . The mass of strange quark is set
at its physical value and the shaded areas correspond to our estimation of the theoretical uncertainties, see the text for details.
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IV. DECAY WIDTHS OF THE
TENSOR RESONANCES

In this section, we first discuss the various T → PP0
decay widths relying on the RχT Lagrangians in Eqs. (8)
and (9). The explicit expressions of the decay widths can be
found in the Appendix. We will simultaneously include the
T → PP0 decay widths both from the experiments and
lattice study as inputs in the joint fit.
For the inputs of T → PP0 partial decay widths from the

experiments, we will take the PDG averages from Ref. [16].
All the available two-pseudoscalar-meson decay widths of
f2; f02; a2, and K�

2 from PDG [16] are given in Table II.
Although the explicit values for different partial decay
widths of tensor resonances into the two pseudoscalar
mesons are not provided in the lattice analysis [23], they
can be inferred from either the available branching ratios

for fð
0Þ
2 → ππ; KK̄ [23] or the coupling strengths to differ-

ent channels for the cases of a2 → πη; KK̄ [22]. Since the
width of K�

2 → Kη at the large meson masses (23) seems
very small [21], we will estimate the decay width of K�

2 →
Kπ by the pole width provided by the former reference. The
accessible decay widths from the Hadron Spectrum
Collaboration (HSC) lattice simulations [21,23] are sum-
marized in Table III.
To describe the processes involving η and η0, one needs

to introduce their mixing parameters as shown in Eq. (18).
In the following, we will distinguish two scenarios for the
η-η0 mixing to proceed the discussions. In the first scenario,
the conventional one-mixing-angle formalism will be used

to describe the experimental and lattice data. In the other
scenario, the two-mixing-angle formula will be employed
to study the two-pseudoscalar-meson decay widths from
the experiments and lattice simulations. We separately
discuss the two scenarios in the following.

A. T → PP0 decay widths with one η-η0
mixing angle

We point out a subtlety that needs to be taken care of in
the simultaneous description of the experimental data and
lattice decay widths at unphysically meson masses. Apart
from the explicit light-pseudoscalar-meson mass depend-
ence of the decay widths as shown in the expressions in
Appendix, the meson-mass dependence of the mixing
angles for both the f2-f02 and η-η0 systems should be
considered as well. Regarding the former case, we will take
the values of mixing angle θT determined in the analysis of
tensor masses, as shown in Table I.
For the η-η0 case, due to the QCD UAð1Þ anomaly, its

mixing mechanism is more involved and the two-mixing-
angle scheme as proposed in Ref. [44] naturally results after
including the higher order Uð3Þ χPT effects [46–48].
While, the one-mixing-angle description for η-η0 naturally
results from the LO χPT, since there is only the mass
mixing term at this order. The T → PP0 decay widths in the
one-mixing-angle case can be obtained by taking θ0 ¼
θ8 ¼ θ and F0 ¼ F8 ¼ F in the expressions given in the
Appendix. In accord with this LO treatment of the η-η0
system, we also adopt in the one-mixing-angle scenario the
LO result for the weak decay constants of π and K, i.e., by
taking the common weak decay constant F at chiral limit
for π and K in the decay amplitudes given in the Appendix.
To be more specific, we will take the value of F ¼
81.7 MeV determined in Ref. [46]. For the sake of
completeness, we give the expression for the LO η-η0
mixing angle [49]

sin θ ¼ −

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð3M2

0 − 2Δ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M4

0 − 12M2
0Δ2 þ 36Δ4

p
Þ2

32Δ4

s !−1

; ð29Þ

TABLE II. Partial decay widths of the tensor resonances at
physical meson masses. The columns labeled as Fit I and Fit II
correspond to the fit results from the one-mixing-angle and two-
mixing-angle scenarios, respectively, see the text for details. All
the numbers are given in units of MeV.

Experimental [16] Fit I Fit II

Γf2→ππ 157.2� 7.3 156.9� 14.3 157.2� 15.5
Γf2→KK̄ 8.6� 1.1 9.4� 1.5 8.6� 1.6
Γf2→ηη 0.7� 0.2 1.0� 0.2 0.8� 0.3
Γf0

2
→ππ 0.7� 0.2 0.6� 0.5 0.7� 0.4

Γf0
2
→KK̄ 75.3� 6.3 74.1� 12.4 70.2� 12.3

Γf0
2
→ηη 10.0� 2.6 9.7� 3.5 7.5� 2.9

Γa2→KK̄ 5.2� 1.1 3.3� 1.2 4.0� 1.3
Γa2→πη 15.5� 2.1 13.3� 2.9 13.2� 3.4
Γa2→πη0 0.6� 0.1 0.6� 0.1 0.6� 0.1
ΓK�

2
→ηK 0.2þ0.4

−0.2 0.2þ0.4
−0.2 0.1þ0.4

−0.1
ΓK�

2
→πK 52.1� 6.1 53.5� 6.4 59.9� 7.1

TABLE III. Partial decay widths of the tensor resonances with
lattice masses (23) and (22). The meanings of Fit I and Fit II are
the same as Table II. All the numbers are given in units of MeV.

Lattice [21,23] Fit I Fit II

Γf2→ππ 136.0� 22.0 132.0� 10.8 117.0� 10.2
Γf2→KK̄ 19.2� 7.8 24.4� 3.7 20.9� 3.3
Γf0

2
→ππ 4.3� 3.1 ð1.2þ16.5

−1.2 Þ × 10−2 0.2� 0.2
Γf0

2
→KK̄ 49.7� 20.1 59.7� 9.2 53.4� 7.8

Γa2→KK̄ 7.1� 1.9 8.0� 2.3 9.2� 2.2
Γa2→πη 13.1� 3.0 13.8� 2.5 17.9� 2.0
ΓK�

2
→πK 62� 12 47.4� 6.3 48.4� 6.4
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where Δ2 ¼ m2
K −m2

π and M0 corresponds to the mass of
the singlet η0 in the chiral limit. The above equation offers a
viable approach to extrapolate the η-η0 mixing angle from
the physical masses to unphysical lattice masses.

Now we are ready to perform the joint fit to the T → PP0
decay widths both from experiments and lattice simulations
in the one-mixing-angle scenario. The resulting parameters
from the joint fit are

gT ¼ ð16.6� 1.1Þ MeV; fT ¼ ð3.9� 1.4Þ × 10−6 MeV−1;
g0T ¼ ð4.8� 0.6Þ MeV; f0T ¼ ð−3.1� 2.9Þ × 10−6 MeV−1; θPhy ¼ ð−9.0� 5.5Þ°; ð30Þ

with χ2=ðd:o:f:Þ ¼ 11.4=ð18 − 5Þ. The various partial de-
cay widths of the tensor resonances from the one-mixing-
angle fit are collected in the column labeled as Fit I in
Tables II and III for the physical and lattice masses,
respectively, together with the experimental and lattice
inputs. Both the decay widths from the experiments and
lattice simulations are reasonably reproduced in our fits.
For the tensor mixing angle θT at physical and lattice
masses (23), we have fixed their values from the analysis of
tensor masses in Table I. According to Eq. (29), the η-η0

mixing angle θPhy ¼ −ð9.0� 5.5Þ° at physical masses
corresponds to the solution of M0 ¼ ð1210þ600

−250Þ MeV,
which is clearly larger than the determinations in the
Uð3Þ χPT [46–48]. In other words, although the one-
mixing-angle fit can well reproduce the experimental and
lattice decay widths for the various T → PP0 processes,
there is a tension between the resulting LO η-η0 mixing
angle θ from such fit and the one from the determination of
Uð3Þ χPT [46–48]. Therefore it is interesting to pursue the
two-mixing-angle formalism to fit T → PP0 decay widths.
In Figs. 2 and 3, we give predictions to the pion-mass

dependence of the two-meson decay widths of the tensor
resonances from the Fit I scenario that are quoted in
Table III. The shaded areas correspond to our estimation
of theoretical uncertainties that are obtained by taking the
parameters in Eq. (30). As done in Fig. 1, we perform the
extrapolation of mK via the LO χPT ansatz by fixing

the mass of strange quark at its physical value. To give the
predictions of the curves in Figs. 2 and 3, we also need to
provide the extrapolations of the masses of η, f2, f02, a2,
and K�

2, and the mixing angles of η-η0 and f2-f02, as
functions of mπ . We use the NLO extrapolation result in
Ref. [48] for the mη. The pion-mass dependences of the
tensor masses and the tensor mixing angle are taken from
the discussions in Sec. III, i.e., the curves in Fig. 1. For the
extrapolation of the η-η0 mixing angle, we use the formula
in Eq. (29). In addition to the decay width of K�

2 → Kπ, we
also give the predictions in Fig. 3 to the pion-mass depen-
dence of ΓK�

2
→Kη, which turns out to be small in a broad

range of mπ . The decay widths of the f2 → ππ; KK̄,
f02 → ππ; KK̄, and a2 → πη; KK̄ as functions of mπ are
explicitly shown in Figs. 2 and 3. These predictions of the
two-meson decay widths at different values of mπ can
provide useful references for future lattice simulations.

B. T → PP0 decay widths with two-mixing-angle
formalism for η-η0

In this part, we apply the two-mixing-angle formula in
Eq. (18) to study of the T → PP0 decay widths. Since the
two-mixing-angle description results from taking into
account the χPT contributions at least from NLO [46] to
the η-η0 system, the higher-order χPT effects should be
also consistently introduced to π and K, which requires

FIG. 2. Partial two-meson decay widths of f2 (left panel) and f02 (right panel) as functions ofmπ . The mass of strange quark is set at its
physical value and the shaded areas correspond to our estimation of the theoretical uncertainties, see the text for details.
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us to distinguish their weak decay constants Fπ and FK in
the T → PP0 decay widths. As a result, for the two-mixing-
angle scenario, we will set FPhy

π ¼ 92.1 MeV and FPhy
K ¼

110.0 MeV [16] in the study of experimental widths. For
the lattice decay widths, one should correspondingly
extrapolate their values to the unphysically large meson
masses. We will follow Ref. [50] to set FLat

π ¼ 105.9 MeV
and FLat

K ¼ 115.0 MeV when taking the lattice masses
given in Eq. (23).
For the two-mixing-angle scenario, there are four η-η0

mixing parameters (18), i.e., F0, F8, θ0, and θ8. Due to
the limited number of decay channels involving η and η0 for
the tensor resonances, our strategy is to greatly exploit the
results from the recent NLO Uð3Þ study in Ref. [48] that
incorporates a large amount of lattice data of the η-η0

mixing [39,40,51–53]. After exploration of different set-
ups, our preferred fit is obtained by freeing the θ8 and fixing
the values of F0, F8, and θ0 from Ref. [48] when analyzing
the experimental T → PP0 decay widths. For the partial
decay widths from lattice study, there is only one avai-
lable decay channel involving η or η0. It turns out that
sensible fit can be reached by fixing all the four mixing
parameters predicted in Ref. [48]. To be more specific,
the values of the mixing parameters taken from the pre-
vious reference are FPhy

0 ¼ 97.0 MeV, FPhy
8 ¼ 115.8 MeV,

θPhy0 ¼ −5.1° at the physical masses, and FLat
0 ¼

102.3 MeV, FLat
8 ¼ 117.4 MeV, θLat0 ¼ −4.5°, θLat8 ¼

−15.4° at the lattice masses (23).
The resulting parameters from our preferred fit in the

two-mixing-angle scenario are

gT ¼ ð19.9� 1.5Þ MeV; fT ¼ ð1.2� 0.2Þ × 10−5 MeV−1;

g0T ¼ ð6.3� 0.7Þ MeV; f0T ¼ ð7.5� 5.3Þ × 10−6 MeV−1; θPhy8 ¼ ð−17.3� 6.3Þ°; ð31Þ

with χ2=ðd:o:f:Þ ¼ 13.4=ð18 − 5Þ. The value of resulting χ2
is similar to that of the one-mixing-angle fit discussed
previously. In fact, we have also tried to use a common
LO decay constant F to replace Fπ and FK in the decay
amplitudes involving pion and kaon, and in the meantime to
impose the two-mixing-angle formalism for η and η0.
Nevertheless we find that such kind of setup leads to rather
large χ2 in the fit and fails to simultaneously describe the
T → PP0 decay widths shown in Tables II and III. Therefore
our study here shows that it is crucial to consistently include
the chiral corrections to the π,K, η, and η0 at the same order in
order to obtain sensible results in the T → PP0 decays.

C. Radiative decays of tensor resonances

The two main kinds of radiative decay processes for the
tensor resonances are T → Pγ and T → γγ. One can

similarly follow the RχT framework in Sec. II to construct
the relevant operators to describe such processes.
For the T → Pγ decay, the relevant LO RχT operator can

be written as [54]

LTPγ ¼ i
cTPγ
2

ϵμναβhTαλ½fμνþ ; ∂βuλ�i; ð32Þ

where ϵμναβ is the antisymmetric tensor, and the chiral
building blocks are

fμνþ ¼ uFμνu† þ u†Fμνu; Fμν ¼ −eQð∂μAν − ∂
νAμÞ;
ð33Þ

with the quark electric-charge matrix:Q¼Diagf2
3
;−1

3
;−1

3
g.

The T → Pγ decay width from the LO Lagrangian (32) is

FIG. 3. Partial two-meson decay widths of a2 (left panel) andK�
2 (right panel) as functions ofmπ . The mass of strange quark is set at its

physical value and the shaded areas correspond to our estimation of the theoretical uncertainties, see the text for details.
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ΓT→Pγ ¼
4αc2TPγ
5F2

�
m2

T −m2
P

2mT

�
5

; ð34Þ

where α ¼ e2
4π denotes the fine structure constant,mT andmP

are the masses of the tensor and pseudoscalar mesons in
the process of T → Pγ, respectively. F corresponds to the
weak decay constant of the PNGBs at chiral limit, which
will be fixed at F ¼ 81.7 MeV as in the previous discus-
sions. By taking the following experimental decay widths
[16] as inputs

ΓExp
a�
2
→π�γ ¼ ð0.31� 0.04Þ MeV;

ΓExp
K��

2
→K�γ ¼ ð0.24� 0.06Þ MeV; ð35Þ

the fit gives

cTPγ ¼ ð5.4� 0.5Þ × 10−5 MeV−1: ð36Þ

This in turn leads to our theoretical results

ΓTheo
a�
2
→π�γ ¼ ð0.30� 0.04Þ MeV;

ΓTheo
K��

2
→K�γ ¼ ð0.25� 0.03Þ MeV; ð37Þ

which perfectly agree with the experimental inputs in
Eq. (35). Therefore it is clear that the single RχT operator
in Eq. (32) can already give a satisfactory description to the
two available experimental decay widths of a�2 → π�γ
and K��

2 → K�γ.
For the T → γγ processes, the available data from

experiments [16] are

ΓExp
f2→γγ ¼ 2.7� 0.5; ΓExp

f0
2
→γγ ¼ 0.082� 0.015;

ΓExp
a2→γγ ¼ 1.0� 0.1; ð38Þ

which are given in units of KeV. Following Ref. [42],
the LO RχT operator that describes the T → γγ process is
given by

Lð0Þ
Tγγ ¼ cTγγhTμνΘ

μν
γ i; ð39Þ

with

Θμν
γ ¼ fμþαf

ανþ þ 1

4
gμνfρσþ fþρσ: ð40Þ

Since the on-shell tensor resonance is traceless [15], the
second term in Eq. (40) will not contribute to the T → γγ
decay widths. At LO, the value of cTγγ can be completely
fixed by the a2 → γγ decay width, which leads to
cTγγ ¼ 2.4 × 10−4 MeV−1. By further taking this value
of cTγγ and the tensor mixing angle θT ¼ 29.0° in
Table I, we can give the LO prediction: ΓLO

f2→γγ ¼
2.6 KeV and ΓLO

f0
2
→γγ ¼ 0.12 KeV, the latter of which is

in clear tension with the experimental value in Eq. (38).
Next we try two possible ways to improve the simul-
taneous description for all the three types of T → γγ
decay widths. In one of them, we keep the value of
cTγγ ¼ 2.4 × 10−4 MeV−1 from the determination of
a2 → γγ and fit the tensor mixing angle θT . This leads
to θT ¼ ð27.2� 1.1Þ°, which is in tension with the mixing
angle θT ¼ ð29.0� 0.4Þ° determined from the analyses of
the tensor masses in Sec. III. The other possible way is to
introduce a new RχT operator by including the quark mass
correction to the LO one:

Lð1Þ
Tγγ ¼ dTγγhTμνΘ

μν
γ χþi: ð41Þ

The decay widths of various T → γγ processes from the
operators in Eqs. (39) and (41) take the form

Γa2→γγ ¼
�

4

3
ffiffiffi
2

p cTγγ þ
4
ffiffiffi
2

p
m2

π

3
dTγγ

�2 πα2m3
a2

20
; ð42Þ

Γf2→γγ ¼
�
2
ffiffiffi
2

p
cos θT þ sin θT

3
ffiffiffi
6

p cTγγ þ
4ðm2

K þ 2m2
πÞ cos θT þ ffiffiffi

2
p ð7m2

π − 4m2
KÞ sin θT

9
ffiffiffi
3

p dTγγ

�
2 4πα2m3

f2

5
; ð43Þ

Γf0
2
→γγ ¼

�
cos θT − 2

ffiffiffi
2

p
sin θT

3
ffiffiffi
6

p cTγγ þ
ffiffiffi
2

p ð7m2
π − 4m2

KÞ cos θT − 4ðm2
K þ 2m2

πÞ sin θT
9
ffiffiffi
3

p dTγγ

�2 4πα2m3
f0
2

5
: ð44Þ

Then we proceed the discussions by fixing the tensor
mixing angle θT ¼ 29.0° from the mass analysis and
freeing the two couplings cTγγ and dTγγ to simultaneously
fit the three decay widths in Eq. (38). The fit gives

cTγγ ¼ ð2.4� 0.1Þ × 10−4 MeV−1;
dTγγ ¼ ð−3.2� 1.5Þ × 10−11 MeV−3; ð45Þ

which in turn leads to our theoretical results
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ΓTheo
f2→γγ ¼ 2.6� 0.2; ΓTheo

f0
2
→γγ ¼ 0.082� 0.015;

ΓTheo
a2→γγ ¼ 1.0� 0.1; ð46Þ

which are given in units of KeV. The above values are now
in perfect agreement with the experimental inputs in
Eq. (38), and in the meantime the tensor mixing angle
appearing in the T → γγ decay widths is completely fixed
by the tensor mass analysis.

V. SUMMARY AND CONCLUSIONS

In this work we rely on resonance chiral theory to
study the lowest tensor nonet, including f2; a2; K�

2, and
f02. Their masses and the decay widths from the
T → PP0, T → Pγ, and T → γγ channels are calculated
by including pertinent higher-order resonance chiral
operators. By properly performing the chiral extrapola-
tions at different quark masses, we have successfully
fitted not only the relevant experimental data but also the
corresponding lattice simulation results at unphysically
large quark masses.
Via the joint fit to the tensor masses from experiment

and lattice, the f2-f02 mixing angle is precisely deter-
mined to be θT ¼ ð29.0� 0.4Þ° at physical meson
masses, which can be easily extrapolated to other
unphysical masses. Apart from the leading-order inter-
action operator, we also construct higher-order
Lagrangians by including the quark-mass and 1=NC
corrections to study the various T → PP0 decay processes
from experiments and lattice simulations. In the fits to the
T → PP0 decay widths, we have fixed the tensor mixing
angle θT from the mass analysis and exploited both one-
mixing-angle and two-mixing-angle scenarios for the η-η0
mixing in the processes involving η or η0. The qualities of
the two fits turn out to be similar. Two different types of

tensor radiative decays, i.e., T → Pγ and T → γγ, are
studied as well. For the T → Pγ case, the two decay
widths of a�2 → π�γ and K��

2 → K�γ can be well
described by the single leading-order resonance chiral
operator. While for the T → γγ case, it is possible to
simultaneously reproduce the three decay widths of
f2 → γγ, f02 → γγ, and a2 → γγ with the single leading
operator cTγγ and tensor mixing angle θT . However the
resulting value of tensor mixing angle θT is somewhat
inconsistent with the determination from the tensor mass
analysis. Therefore our preferred description of the T →
γγ decays needs to introduce at least one extra higher-
order resonance chiral operator in addition to the leading
one, while fixing the tensor mixing angle from the mass
analysis. Our studies in this work provide useful ingre-
dients for future calculations of the tensor contributions
to various scattering processes and also offer analytical
tools to perform chiral extrapolations involving tensor
resonances for future lattice simulations at different quark
masses.
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APPENDIX: THE DECAY WIDTHS
OF T → P1P2 PROCESSES

By using the RχT Lagrangians in Eqs. (8) and (9), it is
straightforward to calculate the T → P1P2 decay widths.
Their explicit expressions are

Γf2→ππ ¼
�
4 cos θT þ 2

ffiffiffi
2

p
sin θT

F2
π

gT þ ð16 cos θT þ 8
ffiffiffi
2

p
sin θTÞm2

π

F2
π

fT þ 6 cos θT
F2
π

g0T

þ ð8 cos θT þ 4
ffiffiffi
2

p
sin θTÞm2

π

F2
π

f0T

�2 p5ðmf2 ; mπ; mπÞ
30πm2

f2

; ðA1Þ

Γf2→KK ¼
�
8 cos θT − 2

ffiffiffi
2

p
sin θTffiffiffi

3
p

F2
K

gT þ 32m2
K cos θT − 8

ffiffiffi
2

p ð4m2
K − 3m2

πÞ sin θTffiffiffi
3

p
F2
K

fT

þ 12 cos θTffiffiffi
3

p
F2
K

g0T þ 16m2
K cos θT þ 4

ffiffiffi
2

p ð2m2
K − 3m2

πÞ sin θTffiffiffi
3

p
F2
K

f0T

�2 p5ðmf2 ; mK;mKÞ
30πm2

f2

; ðA2Þ
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Γf2→ηη ¼�
2

3
ffiffiffi
3

p
F2
0F

2
8cos

2ðθ0 − θ8Þ
f− sin θT ½

ffiffiffi
2

p
F2
0½3gT þ 2ð2fT þ f0TÞð8m2

K − 5m2
πÞ�cos2θ0

þ 2F0F8½6gT þ 8fTð4m2
K −m2

πÞ� cos θ0 sin θ8 þ 8
ffiffiffi
2

p
F2
8ð2fT þ f0TÞðm2

K −m2
πÞsin2θ8�

þ cos θT ½F2
0½6gT þ 8fTð4m2

K −m2
πÞ�cos2θ0 þ 16

ffiffiffi
2

p
F0F8ð2fT þ f0TÞðm2

K −m2
πÞ cos θ0 sin θ8

þ F2
8ð6gT þ 9g0T þ 16fTm2

K þ 8f0Tm
2
K þ 8fTm2

π þ 4f0Tm
2
πÞsin2θ8�g

�
2 p5ðmf2 ; mη; mηÞ

30πm2
f2

; ðA3Þ

Γf0
2
→ππ ¼

�
−4 sin θT þ 2

ffiffiffi
2

p
cos θT

F2
π

gT þ ð−16 sin θT þ 8
ffiffiffi
2

p
cos θTÞm2

π

F2
π

fT −
6 sin θT
F2
π

g0T

þð−8 sin θT þ 4
ffiffiffi
2

p
cos θTÞm2

π

F2
π

f0T

�2 p5ðmf0
2
; mπ; mπÞ

30πm2
f0
2

; ðA4Þ

Γf0
2
→KK ¼ ½8 sin θT þ 2

ffiffiffi
2

p
cos θTffiffiffi

3
p

F2
K

gT þ 8
ffiffiffi
2

p ð4m2
K − 3m2

πÞ cos θT þ 32m2
K sin θTffiffiffi

3
p

F2
K

fT

þ 12 sin θTffiffiffi
3

p
F2
K

g0Tþ
16m2

K sin θT − 4
ffiffiffi
2

p ð2m2
K − 3m2

πÞ cos θTffiffiffi
3

p
F2
K

f0T �
2 p5ðmf0

2
; mK;mKÞ

30πm2
f0
2

; ðA5Þ

Γf0
2
→ηη ¼�

2

3
ffiffiffi
3

p
F2
0F

2
8cos

2ðθ0 − θ8Þ
fcos θT ½

ffiffiffi
2

p
F2
0½3gT þ 2ð2fT þ f0TÞð8m2

K − 5m2
πÞ�cos2θ0

þ 2F0F8½6gT þ 8fTð4m2
K −m2

πÞ� cos θ0 sin θ8 þ 8
ffiffiffi
2

p
F2
8ð2fT þ f0TÞðm2

K −m2
πÞsin2θ8�

þ sin θT ½F2
0½6gT þ 8fTð4m2

K −m2
πÞ�cos2θ0 þ 16

ffiffiffi
2

p
F0F8ð2fT þ f0TÞðm2

K −m2
πÞ cos θ0 sin θ8

þ F2
8ð6gT þ 9g0T þ 16fTm2

K þ 8f0Tm
2
K þ 8fTm2

π þ 4f0Tm
2
πÞsin2θ8�g

�
2 p5ðmf0

2
; mη; mηÞ

30πm2
f0
2

; ðA6Þ

Γa2→KK ¼
�
2
ffiffiffi
2

p

F2
K

gT þ 8
ffiffiffi
2

p
m2

π

F2
K

fT þ 2
ffiffiffi
2

p ð4m2
K − 2m2

πÞ
F2
K

f0T

�2 p5ðma2 ; mK;mKÞ
30πm2

a2

; ðA7Þ

Γa2→πη ¼
�

2ffiffiffi
3

p
FπF0F8 cosðθ0 − θ8Þ

f
ffiffiffi
2

p
F0½gT þ 2ð2fT þ f0TÞm2

π� cos θ0

− F8½2gT þ 4ð2fT þ f0TÞm2
π� sin θ8g

�
2 p5ðma2 ; mπ; mηÞ

15πm2
a2

; ðA8Þ

Γa2→πη0 ¼
�

2ffiffiffi
3

p
FπF0F8 cosðθ0 − θ8Þ

f
ffiffiffi
2

p
F0½gT þ 2ð2fT þ f0TÞm2

π� sin θ0

þ F8½2gT þ 4ð2fT þ f0TÞm2
π� cos θ8g

�
2 p5ðma2 ; mπ; mη0 Þ

15πm2
a2

; ðA9Þ

ΓK�
2
→Kπ ¼

�
2
ffiffiffi
3

p

FπFK
gT þ 8

ffiffiffi
3

p
m2

K

FπFK
fT þ 4

ffiffiffi
3

p
m2

π

FπFK
f0T

�2 p5ðmK�
2
; mK;mπÞ

30πm2
K�

2

; ðA10Þ
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ΓK�
2
→Kη ¼

�
1ffiffiffi

3
p

FKF0F8 cosðθ0 − θ8Þ
f
ffiffiffi
2

p
F0½gT þ 4fTm2

K þ f0Tð8m2
K − 6m2

πÞ� cos θ0

þ 2F8½2gT þ 4ð2fT þ f0TÞm2
K� sin θ8g

�
2 p5ðmK�

2
; mK;mηÞ

15πm2
K�

2

; ðA11Þ

where for the T → P1P2 process the three-momentum p in the tensor rest frame is given by

pðmT;m1; m2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

T − ðm1 þm2Þ2�½m2
T − ðm1 −m2Þ2�

p
2mT

: ðA12Þ

It is noted that we have introduced different Fπ and FK factors for different decay processes involving pion and kaon. In the
one-mixing-angle scenario, both Fπ and FK reduce to the chiral limit value F.

[1] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 92,
052003 (2015); 93, 039906(E) (2016).

[2] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 94,
072005 (2016).

[3] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 98,
072003 (2018).

[4] L. Y. Dai and M. R. Pennington, Phys. Rev. D 90, 036004
(2014).

[5] I. Danilkin and M. Vanderhaeghen, Phys. Rev. D 95,
014019 (2017).

[6] A. Gérardin, J. Green, O. Gryniuk, G. von Hippel, H. B.
Meyer, V. Pascalutsa, and H. Wittig, Phys. Rev. D 98,
074501 (2018).

[7] V. Shklyar, H. Lenske, U. Mosel, and G. Penner, Phys. Rev.
C 71, 055206 (2005); 72, 019903(E) (2005).

[8] B. G. Yu, T. K. Choi, and W. Kim, Phys. Lett. B 701, 332
(2011).

[9] B. G. Yu, T. K. Choi, and W. Kim, Phys. Rev. C 83, 025208
(2011).

[10] D. V. Bugg and B. S. Zou, Phys. Lett. B 396, 295 (1997).
[11] D. M. Li, H. Yu, and Q. X. Shen, J. Phys. G 27, 807

(2001).
[12] Z. C. Ye, X. Wang, X. Liu, and Q. Zhao, Phys. Rev. D 86,

054025 (2012).
[13] B. A. Li, Phys. Rev. D 86, 017501 (2012).
[14] D. Toublan, Phys. Rev. D 53, 6602 (1996); 57, 4495(E)

(1998).
[15] G. Ecker and C. Zauner, Eur. Phys. J. C 52, 315 (2007).
[16] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.

Phys. 2020, 083C01 (2020).
[17] R. Molina, D. Nicmorus, and E. Oset, Phys. Rev. D 78,

114018 (2008).
[18] L. S. Geng and E. Oset, Phys. Rev. D 79, 074009

(2009).
[19] D. Gülmez, U. G. Meißner, and J. A. Oller, Eur. Phys. J. C

77, 460 (2017).
[20] M. L. Du, D. Gülmez, F. K. Guo, U. G. Meißner, and Q.

Wang, Eur. Phys. J. C 78, 988 (2018).

[21] D. J. Wilson, J. J. Dudek, R. G. Edwards, and C. E. Thomas,
Phys. Rev. D 91, 054008 (2015).

[22] J. J. Dudek et al. (Hadron Spectrum Collaboration), Phys.
Rev. D 93, 094506 (2016).

[23] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J. Wilson,
Phys. Rev. D 97, 054513 (2018).

[24] G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys.
B321, 311 (1989).

[25] V. Cirigliano, G. Ecker, H. Neufeld, and A. Pich, J. High
Energy Phys. 06 (2003) 012.

[26] F. Giacosa, T. Gutsche, V. E. Lyubovitskij, and A. Faessler,
Phys. Rev. D 72, 114021 (2005).

[27] G. ’t Hooft, Nucl. Phys. B72, 461 (1974).
[28] E. Witten, Nucl. Phys. B160, 57 (1979).
[29] A. V. Manohar, arXiv:hep-ph/9802419.
[30] J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465

(1985).
[31] E. Witten, Nucl. Phys. B149, 285 (1979); B156, 269 (1979);

S. R. Coleman and E. Witten, Phys. Rev. Lett. 45, 100
(1980); G. Veneziano, Nucl. Phys. B159, 213 (1979).

[32] T. Feldmann, P. Kroll, and B. Stech, Phys. Lett. B 449, 339
(1999).

[33] R. Escribano and J. M. Frere, J. High Energy Phys. 06
(2005) 029.

[34] Y. H. Chen, Z. H. Guo, and H. Q. Zheng, Phys. Rev. D 85,
054018 (2012).

[35] Y. H. Chen, Z. H. Guo, and B. S. Zou, Phys. Rev. D 91,
014010 (2015).

[36] L.W. Yan, Y. H. Chen, C. G. Duan, and Z. H. Guo, Phys.
Rev. D 107, 034022 (2023).

[37] R. Escribano, P. Masjuan, and P. Sanchez-Puertas, Eur.
Phys. J. C 75, 414 (2015).

[38] P. Bickert and S. Scherer, Phys. Rev. D 102, 074019 (2020).
[39] K. Ottnad et al. (ETM Collaboration), Phys. Rev. D 97,

054508 (2018).
[40] G. S. Bali, V. Braun, S. Collins, A. Schäfer, and J. Simeth

(RQCD Collaboration), J. High Energy Phys. 08 (2021)
137.

CHEN, CHENG, YAN, DUAN, and GUO PHYS. REV. D 108, 014002 (2023)

014002-12

https://doi.org/10.1103/PhysRevD.92.052003
https://doi.org/10.1103/PhysRevD.92.052003
https://doi.org/10.1103/PhysRevD.93.039906
https://doi.org/10.1103/PhysRevD.94.072005
https://doi.org/10.1103/PhysRevD.94.072005
https://doi.org/10.1103/PhysRevD.98.072003
https://doi.org/10.1103/PhysRevD.98.072003
https://doi.org/10.1103/PhysRevD.90.036004
https://doi.org/10.1103/PhysRevD.90.036004
https://doi.org/10.1103/PhysRevD.95.014019
https://doi.org/10.1103/PhysRevD.95.014019
https://doi.org/10.1103/PhysRevD.98.074501
https://doi.org/10.1103/PhysRevD.98.074501
https://doi.org/10.1103/PhysRevC.71.055206
https://doi.org/10.1103/PhysRevC.71.055206
https://doi.org/10.1103/PhysRevC.72.019903
https://doi.org/10.1016/j.physletb.2011.05.067
https://doi.org/10.1016/j.physletb.2011.05.067
https://doi.org/10.1103/PhysRevC.83.025208
https://doi.org/10.1103/PhysRevC.83.025208
https://doi.org/10.1016/S0370-2693(97)00091-9
https://doi.org/10.1088/0954-3899/27/4/305
https://doi.org/10.1088/0954-3899/27/4/305
https://doi.org/10.1103/PhysRevD.86.054025
https://doi.org/10.1103/PhysRevD.86.054025
https://doi.org/10.1103/PhysRevD.86.017501
https://doi.org/10.1103/PhysRevD.53.6602
https://doi.org/10.1103/PhysRevD.57.4495
https://doi.org/10.1103/PhysRevD.57.4495
https://doi.org/10.1140/epjc/s10052-007-0372-x
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.78.114018
https://doi.org/10.1103/PhysRevD.78.114018
https://doi.org/10.1103/PhysRevD.79.074009
https://doi.org/10.1103/PhysRevD.79.074009
https://doi.org/10.1140/epjc/s10052-017-5018-z
https://doi.org/10.1140/epjc/s10052-017-5018-z
https://doi.org/10.1140/epjc/s10052-018-6475-8
https://doi.org/10.1103/PhysRevD.91.054008
https://doi.org/10.1103/PhysRevD.93.094506
https://doi.org/10.1103/PhysRevD.93.094506
https://doi.org/10.1103/PhysRevD.97.054513
https://doi.org/10.1016/0550-3213(89)90346-5
https://doi.org/10.1016/0550-3213(89)90346-5
https://doi.org/10.1088/1126-6708/2003/06/012
https://doi.org/10.1088/1126-6708/2003/06/012
https://doi.org/10.1103/PhysRevD.72.114021
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1016/0550-3213(79)90232-3
https://arXiv.org/abs/hep-ph/9802419
https://doi.org/10.1016/0550-3213(85)90492-4
https://doi.org/10.1016/0550-3213(85)90492-4
https://doi.org/10.1016/0550-3213(79)90243-8
https://doi.org/10.1016/0550-3213(79)90031-2
https://doi.org/10.1103/PhysRevLett.45.100
https://doi.org/10.1103/PhysRevLett.45.100
https://doi.org/10.1016/0550-3213(79)90332-8
https://doi.org/10.1016/S0370-2693(99)00085-4
https://doi.org/10.1016/S0370-2693(99)00085-4
https://doi.org/10.1088/1126-6708/2005/06/029
https://doi.org/10.1088/1126-6708/2005/06/029
https://doi.org/10.1103/PhysRevD.85.054018
https://doi.org/10.1103/PhysRevD.85.054018
https://doi.org/10.1103/PhysRevD.91.014010
https://doi.org/10.1103/PhysRevD.91.014010
https://doi.org/10.1103/PhysRevD.107.034022
https://doi.org/10.1103/PhysRevD.107.034022
https://doi.org/10.1140/epjc/s10052-015-3642-z
https://doi.org/10.1140/epjc/s10052-015-3642-z
https://doi.org/10.1103/PhysRevD.102.074019
https://doi.org/10.1103/PhysRevD.97.054508
https://doi.org/10.1103/PhysRevD.97.054508
https://doi.org/10.1007/JHEP08(2021)137
https://doi.org/10.1007/JHEP08(2021)137


[41] L. Gan, B. Kubis, E. Passemar, and S. Tulin, Phys. Rep. 945,
1 (2022).

[42] S. Bellucci, J. Gasser, and M. E. Sainio, Nucl. Phys. B423,
80 (1994); B431, 413 (1994).

[43] C. K. Chow and S. J. Rey, J. High Energy Phys. 05 (1998)
010.

[44] H. Leutwyler, Nucl. Phys. B, Proc. Suppl. 64, 223 (1998).
[45] R. Kaiser and H. Leutwyler, Eur. Phys. J. C 17, 623

(2000).
[46] X. K. Guo, Z. H. Guo, J. A. Oller, and J. J. Sanz-Cillero,

J. High Energy Phys. 06 (2015) 175.
[47] X.W. Gu, C. G. Duan, and Z. H. Guo, Phys. Rev. D 98,

034007 (2018).

[48] R. Gao, Z. H. Guo, J. A. Oller, and H. Q. Zhou, J. High
Energy Phys. 04 (2023) 022.

[49] Z. H. Guo and J. A. Oller, Phys. Rev. D 84, 034005 (2011).
[50] Z. H. Guo, L. Liu, U. G. Meißner, J. A. Oller, and A.

Rusetsky, Phys. Rev. D 95, 054004 (2017).
[51] N. H. Christ, C. Dawson, T. Izubuchi, C. Jung, Q. Liu,

R. D. Mawhinney, C. T. Sachrajda, A. Soni, and R. Zhou,
Phys. Rev. Lett. 105, 241601 (2010).

[52] E. B. Gregory et al. (UKQCD Collaboration), Phys. Rev. D
86, 014504 (2012).

[53] J. J. Dudek, R. G. Edwards, B. Joo, M. J. Peardon, D. G.
Richards, andC. E. Thomas, Phys. Rev.D 83, 111502 (2011).

[54] B. Kubis and J. Plenter, Eur. Phys. J. C 75, 283 (2015).

REVISITING THE TENSOR-MESON NONET IN RESONANCE … PHYS. REV. D 108, 014002 (2023)

014002-13

https://doi.org/10.1016/j.physrep.2021.11.001
https://doi.org/10.1016/j.physrep.2021.11.001
https://doi.org/10.1016/0550-3213(94)90566-5
https://doi.org/10.1016/0550-3213(94)90566-5
https://doi.org/10.1016/0550-3213(94)90111-2
https://doi.org/10.1088/1126-6708/1998/05/010
https://doi.org/10.1088/1126-6708/1998/05/010
https://doi.org/10.1016/S0920-5632(97)01065-7
https://doi.org/10.1007/s100520000499
https://doi.org/10.1007/s100520000499
https://doi.org/10.1007/JHEP06(2015)175
https://doi.org/10.1103/PhysRevD.98.034007
https://doi.org/10.1103/PhysRevD.98.034007
https://doi.org/10.1007/JHEP04(2023)022
https://doi.org/10.1007/JHEP04(2023)022
https://doi.org/10.1103/PhysRevD.84.034005
https://doi.org/10.1103/PhysRevD.95.054004
https://doi.org/10.1103/PhysRevLett.105.241601
https://doi.org/10.1103/PhysRevD.86.014504
https://doi.org/10.1103/PhysRevD.86.014504
https://doi.org/10.1103/PhysRevD.83.111502
https://doi.org/10.1140/epjc/s10052-015-3495-5

