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In the light-front quark model (LFQM) amenable to the simultaneous study of both the mass
spectroscopy and the wave function related observables, we examine the decay constants and distribution
amplitudes (DAs) up to the twist-4. The analysis of the heavy pseudoscalar mesons is carried out both in the
1S and 2S states. This investigation involves calculating the local and nonlocal matrix elements h0jq̄ΓqjPi
using three distinct current operators Γ ¼ ðγμγ5; iγ5; σμνγ5Þ. Considering a general reference frame where
P⊥ ≠ 0 and investigating all available current components, we examine not only the frame independence
but also the component independence of the decay constants. The explicit findings from our study provide
the evidence for the equality of the three pseudoscalar meson decay constants obtained from the three
distinct current operators Γ. The notable agreement in decay constants is attained by imposing the
Bakamjian-Thomas construction of the LFQM, namely, the meson state is constructed by the non-
interacting quark and antiquark representations while the interaction is added to the mass operator, which
provides the self-consistency condition replacing the physical mass M with the invariant mass M0 for the
noninteracting quark-antiquark representation of the meson state. In addition to obtaining the process-
independent pseudoscalar meson decay constant, regardless of the choice of current operators Γ, we further
demonstrate its explicit Lorentz and rotation invariance. In particular, we present the analysis conducted on
the twist-4 DA derived from the minus component of the axial-vector current. Finally, we discuss the
various twist DAs and their ξ-moments associated with the 1S and 2S heavy pseudoscalar mesons.

DOI: 10.1103/PhysRevD.108.013006

I. INTRODUCTION

The distribution amplitudes (DAs) of mesons are impor-
tant nonperturbative ingredients in comprehending a range
of the light-cone dominated processes that can be treated
via collinear factorization [1–3], as they offer valuable
insights into the nonperturbative makeup of hadrons and
the distribution of partons in relation to their longitudinal
momentum fractions within these particles. The meson’s
DA is typically defined as a matrix element of a quark-
antiquark bilocal light-cone operator between the vacuum

and the meson state in the light-front dynamics (LFD) [4],
which provides a natural separation of the meson’s
momentum into its longitudinal and transverse compo-
nents. Thus, the LFD appears to be a practical and rigorous
framework for computing the DAs of mesons categorizing
them according to their increasing twist.
While the leading-twist DA describes the longitudinal

momentum distribution of valence quarks inside the meson
providing a straightforward interpretation of the partonic
structure of the meson, the higher-twist DAs are consid-
erably more abundant as they take into account various
effects including the transverse motion of quarks or
antiquarks, the higher Fock states involving extra gluons
and/or quark-antiquark pairs, etc. [5]. In the light-cone
dominated hard processes, the leading-twist DAs give the
dominant contributions and the higher-twist contributions
are suppressed by a power of the hard scale. As a result, the
study of higher-twist DAs has received less attention in
comparison to the leading-twist DAs in the analyses of
the hard processes. However, with the higher statistical
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precision of experimental data expected from KEKII, LHC,
JLAB, and the forthcoming Electron Ion Collider [6,7], the
relevance of the higher-twist effects in hadron structure
increases, accentuating the growing importance of further
exploring higher-twist contributions, e.g., in the formalism
of transverse-momentum-dependent (TMD) factorization
[8], in the wide-angle photoproduction of pions [9], and in
the nonleptonic B-meson decay [10], etc. Thus, the quest to
obtain essential nonperturbative insights into QCD has
spurred numerous theoretical investigations aimed at cal-
culating not only the leading-twist DA but also the higher-
twist DAs using various nonperturbative techniques, such
as the QCD sum rule [5,11–15], the chiral-quark model
derived from the instanton vacuum [16,17], the Nambu–
Jona-Lasinio model [18,19], the Dyson-Schwinger equa-
tion approach [20,21], and the light-front quark model
(LFQM) [22–26].
In particular, the LFQM is the theoretical framework

based on the LFD that has been highly successful in
explaining simultaneously both the mass spectra and the
wave function related observables including the electro-
weak properties of mesons [27–35]. In this model, mesons
are treated as bound states of constituent quarks and
antiquarks. The LFQM typically places the constituent
quark and antiquark on their respective mass shells, and the
spin-orbit (SO) wave function is obtained through the
Melosh transformation [36], which is independent of the
interaction and is uniquely determined from the ordinary
quantum state representation JPC. For the construction of
the more phenomenologically accessible LFQM, we
applied the variational principle with the trial radial wave
function, typically the Gaussian radial wave function, with
the Melosh transformed spin-orbit wave functions for
the on-mass shell constituent quark and antiquark to
provide simultaneous analyses of both the mass spectra
and the wave function related observables such as the decay
constants, form factors, etc. [27–31,34,35]. Our LFQM
follows the Bakamjian-Thomas (BT) construction [37,38],
where the meson state is constructed by the noninteracting
quark and antiquark representations, while the interaction is
added to the mass operator via M ¼ M0 þ VQQ̄, applying
the variational principle with typical Gaussian radial wave
function as the trial wave function for the variational
calculation. Due to the absence of manifest covariance,
however, it is challenging to identify the light-front (LF)
zero-mode contributions in the phenomenological LFQM
by itself. In particular, as the number of DAs proliferates
with the higher twist, the computation of the higher-twist
DAs involves not only the good component (e.g.,
Jþ ¼ J0 þ J3) of the current but also the bad component
(e.g., J− ¼ J0 − J3) of the current to identify the prolif-
erated number of DAs. However, employing the bad
component in the computation is often quite challenging
due to the involvement of the LF zero modes and/or the
instantaneous contributions to restore the Lorentz and

gauge invariance [39–45]. Thus, it is important to conduct
a rigorous study of the higher-twist DAs and address the
challenges involved in order to gain the better under-
standing of the hadron structures.
To pin down the treacherous points involving the LF zero

modes and the instantaneous contributions, one may utilize
the manifestly covariant Bethe-Salpeter (BS) field-theoretic
model. Using the LF projection of the manifestly covariant
BS model, one can provide the corresponding LFQM with
the multipole ansatz for the meson-quark vertex function
[40,44,45]. This type of LFQM is useful for providing the
theoretical guidance on how to analyze the LF zero modes,
although the obtained results are in general semirealistic.
To account for the Lorentz structure of a hadronic matrix
element, the lightlike four-vector ωμ was introduced and
the corresponding covariant approach was developed origi-
nally in Ref. [46].1 Subsequently, the authors of Ref. [47]
developed a method for identifying and separating spurious
contributions, enabling them to determine the physically
meaningful contributions to the hadronic form factors and
coupling constants that are independent of the choice of ωμ.
By employing this covariant methodology as described in
Refs. [46,47], Jaus [43] employed a manifestly covariant
BS model as a reference to devise a fundamentally distinct
technique for addressing this issue. In this approach, Jaus
developed a way of identifying the LF zero-mode con-
tributions by removing spurious contributions proportional
to the lightlike vector ωμ in the physical observables. As the
ω-dependent contributions violate the covariance, they may
be eliminated by including the LF zero-mode contributions
and at the same time restoring the covariance of the current
matrix elements in the solvable BS model. Jaus identified
the LF zero-mode contribution, associating it to the
removal of the spurious ω dependence and then applied
the LF zero-mode contributions identified in the BS model
to the LFQM simply by replacing the multipole type vertex
function in the BS model with the Gaussian radial wave
function.
However, two of us [24] found that Jaus’s prescription to

identify the zero mode is only valid in the BS model with
the multipole type vertex function but not in the LFQM
with the Gaussian radial wave function as it causes a
serious problem of impeding the self-consistency in the
computation of physical observables, e.g., the decay con-
stant of a ρ meson gives different results for different
polarization (longitudinal and transverse) states in the
LFQM. This finding has also been confirmed by others
[48,49], indicating that the LF zero-mode contributions do
depend on the model wave functions. In Ref. [24], we then

1In this formulation, the state vector is defined on a plane
characterized by the invariant equation ω · x ¼ 0, where ω
represents an arbitrary lightlike four vector ω ¼ ðω0; ω⃗Þ satisfy-
ing ω2 ¼ 0. The special choice ω ¼ ð1; 0; 0;−1Þ corresponds to
the LF or null plane ω · x ¼ xþ ¼ x0 þ x3 ¼ 0.
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identified a specific matching condition for the first time
between the manifestly covariant BS model and our
LFQM, which we called the “type II” link [see Eq. (49)
in [24] ]. This unique matching condition ensures the self-
consistency of the LFQM analysis. For example, it was
demonstrated [24] by using the type II link that the two ρ
meson decay constants obtained from the longitudinal and
transverse polarizations exhibit the equivalence in the
LFQM numerical results. One of the key ingredients in
the type II link is the replacement of the physical meson
mass M that appeared in the integrand for the matrix
element calculation with the invariant mass M0, which is
equivalent to imposing the on-mass shell condition of the
constituent quark and antiquark in the LFQM. Enforcing
the on-mass shell condition for the constituents is tanta-
mount to ensuring four-momentum conservation P ¼ p1 þ
p2 at the meson-quark vertex, where the meson and quark
(antiquark) momenta are denoted as P and p1ð2Þ, respec-
tively. Such a replacement (M → M0) is indeed consistent
with the BT construction [37,38], namely, the meson state
is constructed by the noninteracting quark and antiquark
representations while the interaction is added to the mass
operator viaM ¼ M0 þ VQQ̄. This replacement can also be
viewed as an effective way to include the LF zero-mode
contributions and restore the Lorentz symmetry of the
model, in particular the rotational symmetry, when com-
pared to the covariant BS model [24].
Subsequent works using the same type II link [24] have

been made for the analyses of twist-2 and twist-3 DAs of
the light pseudoscalar ðπ; KÞ mesons [25,26] through the
matrix elements h0jq̄ðzÞΓqð−zÞjPi of the nonlocal oper-
ators Γ ¼ ðγμγ5; iγ5; σμνγ5Þ, discussing the link between the
chiral symmetry of QCD and the numerical results of the
LFQM. In a very recent work [50], the decay constant for
the pseudoscalar meson with the axial-vector ðγμγ5Þ current
in the equal quark and antiquark mass case was investigated
in the LFQM and the self-consistent result independent of
the current components was obtained. The decay constant
of the vector meson was also investigated for both
longitudinal and transverse polarizations, obtaining a
self-consistent result independent of all possible combina-
tions of the current components and the polarizations. In
particular, in Ref [50], it was explicitly demonstrated that
the decay constants obtained via the type II link between
the BS model and the LFQM are precisely equivalent to
those obtained directly in the LFQM, where the on-mass
shell condition of the constituents is enforced.
In this work, we extend our previous LFQM analyses

[25,26] for the decay constant and the DAs of the 1S state
light pseudoscalar mesons through the matrix elements
h0jq̄ðzÞΓqð−zÞjPi of the operators Γ ¼ ðγμγ5; iγ5; σμνγ5Þ to
include the 1S and 2S states of both heavy-light and heavy-
heavy pseudoscalar mesons [50]. In particular, we shall
explicitly show that the three pseudoscalar meson decay
constants defined through the three different operators Γ are

all identical numerically in our LFQM constrained by the
on-mass condition of the constituents. Namely, we obtain
the process-independent pseudoscalar meson decay con-
stant regardless of the current operators Γ used at the level
of one-body current matrix element computation, as the
independence of the current operators Γ means the inde-
pendence of the decay process. The new two-particle twist-
4 DA is also obtained from the minus component of the
axial-vector current (Γ ¼ γμγ5). We also investigate the
different helicity contributions to the decay constants
defined through different operators Γ and perform a
quantitative analysis of each helicity component for differ-
ent heavy-light and heavy-heavy pseudoscalar meson
systems. For the numerical calculations, we present the
results both for the ground state (1S) and the radially
excited state (2S) of heavy pseudoscalar mesons, which
were discussed in our recent work [31]. We then scrutinize
the shape of the leading- and higher-twist DAs and their
ξ-moments, where ξ ¼ 2x − 1 with the LF longitudinal
momentum fraction x of the constituent. The type II link
between the covariant BS model and the LFQM is further
discussed for the deeper understanding of the underlying
physics involved.
The paper is organized as follows: In Sec. II, we describe

the LFQM and the light-front wave functions of 1S and 2S
pseudoscalar heavy mesons. In Sec. III, we examine the
pseudoscalar decay constants derived from the three dis-
tinct current operators Γ ¼ ðγμγ5; iγ5; σμνγ5Þ and establish
the process independence and rotational invariance of the
decay constants. In Sec. IV, we discuss the DAs up to the
twist-4 obtained from the three local and nonlocal current
operators Γ and their ξ-moments. Finally, we summarize
our findings in Sec. V. In the Appendix, the type II link
between the manifestly covariant BS model and the LFQM
is demonstrated for completeness.

II. LIGHT-FRONT QUARK MODEL

When applied to meson states reflecting the feature of BT
construction [37,38], the LFQM employs a noninteracting
qq̄ representation to describe the Fock state that is composed
of the constituent quark (q) and antiquark (q̄), while the
interactions are incorporated into the mass operator M ≔
M0 þ Vqq̄ to ensure compliance with the group structure,
satisfying the Poincaré algebraic commutation relations.
The interactions are then encoded in the light-front wave
function (LFWF) Ψqq̄, which satisfies the eigenvalue equa-
tionHqq̄jΨqq̄i ¼ ðM0 þ Vqq̄ÞjΨqq̄i ¼ Mqq̄jΨi of our QCD-
motivated effective Hamiltonian [27–31].
Our LFQM for the 1S state [27–31] and 2S state [31]

pseudoscalar and vector mesons is based on the central
concept of using the radial wave function as a variational
trial function for the QCD-motivated effective Hamiltonian
Hqq̄, which results in the determination of the mass
eigenvalues Mqq̄. Once the values of the model parameters
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are determined by thevariational analysis of themass spectra,
those determined model parameters are used to describe
different observables including decay constants and electro-
magnetic and weak form factors, etc. [23,27–31,51]
For the self-consistent analysis of the decay constants

and the higher-twist DAs for the 1S and 2S states of heavy
pseudoscalar mesons performed in this work, we provide a
brief overview of the LFWFs for the corresponding heavy
pseudoscalar mesons presented in Ref. [31], focusing on
the important aspects of LFWFs constrained by the on-
mass shell condition of the constituents.
The four-momentum P of the meson in terms of the LF

components is defined as P ¼ ðPþ; P−;P⊥Þ, where Pþ ¼
P0 þ P3 and P− ¼ P0 − P3 are the LF longitudinal
momentum and the LF energy, respectively, and P⊥ ¼
ðP1; P2Þ are the transverse momenta. Here, we take the
metric convention as P2 ¼ PþP− − P2⊥. The meson state
jMðP; J; JzÞi of momentum P and spin state ðJ; JzÞ can
then be constructed as follows [34,52,53]:

jMi ¼
Z

½d3p̄1�½d3p̄2�2ð2πÞ3δ3ðP̄ − p̄1 − p̄2Þ

×
X
λ1;λ2

ΨJJz
λ1λ2

ðx;k⊥Þjqλ1ðp1Þq̄λ2ðp2Þi; ð1Þ

where pμ
i and λi are the on-mass shell (p2

i ¼ m2
i ) momenta

and the helicities of the constituent quark (i ¼ 1) and
antiquark (i ¼ 2), respectively,with theLF three-momentum
defined by p̄ ¼ ðpþ;p⊥Þ and ½d3p̄�≡ dpþd2p⊥=ð16π3Þ.
The LF internal relative variables ðx;k⊥Þ are defined by
xi ¼ pþ

i =P
þ and ki⊥ ¼ pi⊥ − xiP⊥, where

P
i xi ¼ 1 andP

i ki⊥ ¼ 0 and we set x ¼ x1 and k⊥ ¼ k1⊥. This meson
state satisfies the following normalization:

hMðP0; J0;J0zÞjMðP;J;JzÞi ¼ 2ð2πÞ3Pþδ3ðP̄0− P̄ÞδJ0JδJ0zJz :
ð2Þ

In momentum space, the LFWF Ψqq̄ðx;k⊥Þ of a meson
can be decomposed as

ΨJJz
λ1λ2

ðx;k⊥Þ ¼ Φðx;k⊥ÞRJJz
λ1λ2

ðx;k⊥Þ; ð3Þ

where Φðx;k⊥Þ is the radial wave function that was used
as our trial function for the mass spectroscopic analysis
[27–31] and RJJz

λ1λ2
is the SO wave function obtained by the

interaction-independent Melosh transformation [36] for the
corresponding meson quantum number JPC.
We should note that one crucial aspect of the LF

formulation for a bound state, as depicted in Eq. (1), is
the frame independence of the LFWF [4]. In other words,
the hadron’s internal variables ðx;k⊥Þ of the wave function
remain unaffected by boosts to any physical ðPþ;P⊥Þ
frame, which is not the case in the instant formulation.

We shall explicitly show this boost invariance of the decay
constant computed in general P⊥ ≠ 0 frame.
The SO wave function for a pseudoscalar meson

obtained from the interaction-independent Melosh trans-
formation can be written as the covariant form [32,33]
consistent with the BT construction, which is given by

R00
λ1λ2

¼ ūλ1ðp1Þγ5vλ2ðp2Þffiffiffi
2

p
M̃0

; ð4Þ

¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2⊥

p �
−kL A

−A −kR

�
; ð5Þ

where M̃0
2 ¼ M2

0 − ðm1 −m2Þ2 ¼ ðA2 þ k2⊥Þ=xð1 − xÞ,
kRðLÞ ¼ k1 � ik2, and A ¼ ð1 − xÞm1 þ xm2. The boost-
invariant meson mass squared is given by

M2
0 ¼

k2⊥ þm2
1

x
þ k2⊥ þm2

2

1 − x
: ð6Þ

Note that the SO wave function satisfies the unitary
condition,

P
λ0s R

†R ¼ 1. It is worth noting that the
LFWF Ψ depends on the interaction-independent invariant
mass M0 that follows the BT construction as the meson is
constructed in the noninteracting representation.
For the 1S and 2S state radial wave functions Φns of

Eq. (3), we allow the mixing between the two lowest order
harmonic oscillator (HO) wave functions ðϕ1S;ϕ2SÞ by
writing [31]

�Φ1S

Φ2S

�
¼

�
cos θ sin θ

− sin θ cos θ

��
ϕ1S

ϕ2S

�
; ð7Þ

where

ϕ1Sðk⃗Þ ¼
4π3=4

β3=2
e−k⃗

2=2β2 ;

ϕ2Sðk⃗Þ ¼
4π3=4ffiffiffi
6

p
β7=2

ð2k⃗2 − 3β2Þe−k⃗2=2β2 : ð8Þ

Here, k⃗ ¼ ðkz;k⊥Þ is the three-momentum and β represents
a parameter that serves as the variational parameter in our
mass spectroscopic analysis [31]. The rotationally invariant
HO wave functions ϕnSðk⃗Þ in Eq. (8) satisfy

Z
d3k⃗

2ð2πÞ3 jϕnSðk⃗Þj2 ¼ 1: ð9Þ

Sustaining this rotationally invariant property of the wave
function, one can transform the normalization of ϕnSðk⃗Þ
to that of ϕnSðx;k⊥Þ via the variable transformation
ðkz;k⊥Þ → ðx;k⊥Þ as follows:
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Z
1

0

dx
Z

d2k⊥
2ð2πÞ3 jϕnSðx;k⊥Þj2 ¼ 1: ð10Þ

We note that the wave functions ϕnSðx;k⊥Þ include the
Jacobian factor ∂kz=∂x as

ϕnSðx;k⊥Þ ¼
ffiffiffiffiffiffiffi
∂kz
∂x

r
ϕnSðk⃗Þ ð11Þ

because of the variable transformation ðkz;k⊥Þ → ðx;k⊥Þ
and kzð¼ k3Þ and x are related by [34]

x ¼ E1 − kz
E1 þ E2

; 1 − x ¼ E2 þ kz
E1 þ E2

; ð12Þ

where Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ k⃗2
q

. We then have M0 ¼ E1 þ E2 and

kz ¼
�
x −

1

2

�
M0 þ

m2
1 −m2

2

2M0

: ð13Þ

The Jacobian factor is then given by

∂kz
∂x

¼ E1E2

xð1 − xÞM0

; ð14Þ

or in terms of ðx;k⊥Þ,

∂kz
∂x

¼ M0

4xð1 − xÞ
�
1 −

ðm2
1 −m2

2Þ2
M4

0

�
: ð15Þ

It should be noted that the total LFWF Ψ given by Eq. (3)
meets the same normalization given by Eq. (10). This is due
to the meson state jMðP; J; JzÞi fulfilling the condition of
Eq. (2) and the SO wave function adhering to the unitary
condition. Especially, the inclusion of the Jacobian factor
in defining ϕnSðx;k⊥Þ is the key aspect to retaining the
rotational invariance of the model wave function and
obtaining the self-consistent, i.e., current component and
boost-invariant, results of physical observables. The quan-
titative effects of the Jacobian factor on the decay constants,
twist-2 DAs, and electromagnetic form factors of mesons
were also discussed in Ref. [54].

III. DECAY CONSTANTS

For the decay constants and the leading- and higher-twist
DAs of pseudoscalar mesons, one may obtain them from
the matrix elements h0jq̄ðzÞΓqð−zÞjPi of the following
three possible nonlocal operators Γ ¼ ðγμγ5; iγ5; σμνγ5Þ,
where zμ is the lightlike vector (z2 ¼ 0). For the calculation
of the decay constant fP, while fP can be defined by using a
local operator with axial-vector ðΓA ¼ γμγ5Þ and pseudo-
scalar ðΓP ¼ iγ5Þ current as [5,11]

h0jq̄ð0Þγμγ5qð0ÞjPðPÞi ¼ ifPPμ; ð16Þ

h0jq̄ð0Þiγ5qð0ÞjPðPÞi ¼ fPμM; ð17Þ

it can also be computed by utilizing the nonlocal matrix
element in the case of the pseudotensor current ðΓT ¼
σμνγ5Þ as defined by the subsequent equation [11],

h0jq̄ðzÞσμνγ5qð−zÞjPðPÞi ¼ −
i
3
fPð1 − ρþÞμM

× ðPμzν − PνzμÞ

×
Z

1

0

dx eiζP·zψ3;PðxÞ; ð18Þ

where σμν ¼ i
2
½γμ; γν�, μM ¼ M2=ðm1 þm2Þ, ρþ ¼

ðm1 þm2Þ2=M2, and ζ ¼ 2x − 1. In this definition of
Eq. (18), the two-particle twist-3 DA ψ3;PðxÞ is normalized
to unity

R
1
0 dxψ3;PðxÞ ¼ 1. As a reference, in Ref. [5],

defining the matrix element h0jq̄ðzÞσμνγ5qð−zÞjPðPÞi, the
authors removed the term ð1 − ρþÞ on the right-hand side
(rhs) of Eq. (18) by normalizing ψ3;PðxÞ in such a way thatR
1
0 dxψ3;PðxÞ ¼ 1 − ρþ. In the previous LFQM analysis
[26] for ψ3;PðxÞ, two of us used the definition of Ref. [5]
rather than Eq. (18). However, in this study, we opt to use
Eq. (18) as we observe that this definition yields the same
decay constant as those obtained from Eqs. (16) and (17) in
which the same normalization for the leading- and higher-
twist DAs is used as ψ3;PðxÞ defined in Eq. (18).

A. Process independence

In this subsection, we shall first compute the decay
constants defined by the three different operators Γ ¼
ðΓA;ΓP;ΓTÞ and show their equivalence, i.e., process-
independent decay constant in our LFQM. As the different
decay operators are used for the different decay processes,
the decay constant’s independence of the current operators
Γ means the independence of the decay process for the
decay constant as a physical observable. The leading- and
higher-twist DAs obtained from the matrix elements
h0jq̄ðzÞΓqð−zÞjPi will be analyzed separately in the next
section.
In the LFQM, the decay amplitudes for the operators

Γ ¼ ðΓA;ΓPÞ given by Eqs. (16) and (17) can be defined at
the level of one-body local current matrix element as

h0jq̄ΓqjPi ¼
ffiffiffiffiffiffi
Nc

p Z
1

0

dx
Z

d2k⊥
16π3

Φðx;k⊥Þ

×
X
λ1;λ2

R00
λ1λ2

�
v̄λ2ðp2Þffiffiffiffiffi

x2
p Γ

uλ1ðp1Þffiffiffiffiffi
x1

p
�
; ð19Þ

where Nc ¼ 3 arises from the color factor implicit in the
wave function [33,34]. Denoting the decay constants fP
corresponding to the current operators ðΓA;ΓP;ΓTÞ as
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ðfA; fP; fTÞ, we may provide the generic form for the
decay constants fAðPÞ obtained from the two local operators
ΓAðPÞ as [50]

fAðPÞ ¼
ffiffiffiffiffiffi
Nc

p Z
1

0

dx
Z

d2k⊥
16π3

Φðx;k⊥Þ

×
1

PAðPÞ

X
λ1;λ2

R00
λ1λ2

�
v̄λ2ðp2Þffiffiffiffiffi

x2
p ΓAðPÞ

uλ1ðp1Þffiffiffiffiffi
x1

p
�
; ð20Þ

where we incorporate the Lorentz structures PAðPÞ ¼
iPμðμMÞ on the rhs of Eqs. (16) and (17) into the integral.
This incorporation of Lorentz structures into the integral is
to assure the consistent one-body current level of approxi-
mation in the computation of the decay constant, which is
the crucial aspect of our recently developed LFQM analysis
[24–26,50,51] to obtain the self-consistent, i.e., current
component and boost invariant as well as the process
(e.g., ΓAðPÞ)-independent physical observables by repla-
cing all physical mass M appearing in Eq. (20) with the
invariant mass M0. So far, most LF calculations of the
decay constant, e.g., fA from ΓA, used μ ¼ þ or ⊥ since
ðPþ;P⊥Þ do not involve any physical mass M. On the
other hand, the minus component of the axial-vector
current involves P− ¼ ðM2 þ P2⊥Þ=Pþ and one fails to
produce the same result as the one obtained from the
currents with ðμ ¼ þ;⊥Þ if one uses the physical mass
in the calculation. The difference between μ ¼ − and
μ ¼ ðþ;⊥Þ was identified as the LF treacherous points
such as the instantaneous and zero contributions to the
minus current in the solvable covariant model [24].
However, in our LFQM consistent with BT construction,
we showed [50,51] that the result from the minus com-
ponent of the axial-vector current gives the same result as
the one obtained from the currents with ðμ ¼ þ;⊥Þ if
we replace M with M0. In this work, we shall show
that the result obtained from ΓP also gives the same result
as the one obtained from ΓA as far as we use M → M0

prescription. This may be regarded as the effective LF
zero-mode inclusion at the level of the one-body matrix
element calculation in the LFQM consistent with BT
construction.
For the pseudotensor current (Γμν

T ¼ σμνγ5), since the
decay constant can be computed only in the nonlocal limit
(i.e., zμ ≠ 0), the calculation incorporating ψ3;PðxÞ is
inevitably required in the process of deriving the decay
constant from the pseudotensor current. From the lightlike
vector zμ with zþ ¼ z⊥ ¼ 0, there are two possible ways
to compute the nonlocal matrix element by choosing
μν ¼ þ− or ⊥−.
As for an example, let us choose μν ¼ þ−. We first

integrate Eq. (18) on both sides using the dummy variable
x0 (and ζ0 ¼ 2x0 − 1) with respect to z− as

Z
∞

−∞

dz−

2π
e−iζ

0P·zh0jq̄ðzÞΓþ−
T qð−zÞjPi

¼ CPþ
Z

1

0

dx
Z

∞

−∞

dz−

2π
z−e−iðx0−xÞPþz−ψ3;PðxÞ; ð21Þ

where C ¼ − i
3
fTð1 − ρþÞμM. Then, we obtain the rhs of

Eq. (21) viaZ
∞

−∞

dz−

2π
z−e−iðx0−xÞPþz−ψ3;PðxÞ

¼ i
Pþ

∂

∂x0

Z
∞

−∞

dz−

2π
e−iðx0−xÞPþz−ψ3;PðxÞ

¼ i
Pþ

∂

∂x0
½δððx0 − xÞPþÞψ3;PðxÞ� ð22Þ

as follows:

rhs of Eq: ð21Þ ¼ 1

3Pþ fTð1 − ρþÞμM
∂

∂x0
ψ3;Pðx0Þ: ð23Þ

On the other hand, the left-hand side (lhs) of Eq. (18) can be
rewritten as

lhs of Eq: ð21Þ

¼
ffiffiffiffiffiffi
Nc

p Z
1

0

dx
Z

d2k⊥
16π3

Z
∞

−∞

dz−

2π
e−iζ

0P·ze−iðp2−p1Þ·z

×
X
λ1;λ2

Ψ00
λ1λ2

ðx;k⊥Þ
�
v̄λ2ðp2Þffiffiffiffiffi

x2
p Γþ−

T

uλ1ðp1Þffiffiffiffiffi
x1

p
�
; ð24Þ

where e−iζ
0P·ze−iðp2−p1Þ·z ¼ e−iðx0−xÞPþz− and the z− integra-

tion gives the δ½ðx0 − xÞPþ� and then it is trivially integrated
by dx. Integrating Eqs. (23) and (24) over x0, we obtain
ψ3;PðxÞ as

ψ3;PðxÞ ¼
3

ffiffiffiffiffiffi
Nc

p
fT

Z
x

0

dx0
Z

d2k⊥
16π3

Φðx0;k⊥Þ

×
1

PT

X
λ1;λ2

R000
λ1λ2

�
v̄λ2ðp0

2Þffiffiffiffiffi
x02

p Γþ−
T

uλ1ðp0
1Þffiffiffiffiffi

x01
p �

; ð25Þ

where PT ¼ ð1 − ρþÞμM and the prime ( 0) in ðR; piÞ
implies that they are functions of x0. By integrating both
sides with respect to dx and using the normalization of the
DA,

R
1
0 dxψ3;PðxÞ ¼ 1, we obtain the decay constant fT

from the pseudotensor channel as

fT ¼ 3
ffiffiffiffiffiffi
Nc

p Z
1

0

dx
Z

x

0

dx0
Z

d2k⊥
16π3

Φðx0;k⊥Þ

×
1

PT

X
λ1;λ2

R000
λ1λ2

�
v̄λ2ðp0

2Þffiffiffiffiffi
x02

p Γþ−
T

uλ1ðp0
1Þffiffiffiffiffi

x01
p �

: ð26Þ

We should note that the term PT including the physical
mass M is also incorporated into the integral so that M is
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replaced with M0. The same results for ψ3;PðxÞ in Eq. (25)
and fT in Eq. (26) can be obtained with Γ⊥−

T . We also note
that the main update on the calculation of pseudotensor
current compared to Ref. [26] is the inclusion of the term
ð1 − ρþÞ, which leads to the process independence of the
decay constant, i.e., fA ¼ fP ¼ fT, as we discuss below.
Here, we explicitly demonstrate that all three decay

constants ðfA; fP; fTÞ, as defined by Eqs. (20) and (26),
yield identical numerical results. Using the Dirac helicity
spinors [1,32] and the SO wave function defined in Eq. (4),
it is straightforward to compute ðfA; fP; fTÞ, especially in
terms of different helicity contributions for different usage
of current operators. The final results of ðfA; fP; fTÞ in the
most general P⊥ ≠ 0 frame are summarized as follows:

fAðPÞ ¼
ffiffiffi
6

p Z
1

0

dx
Z

d2k⊥
16π3

Φðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2⊥

p OAðPÞðx;k⊥Þ;

ð27Þ

and

fT ¼
ffiffiffi
6

p Z
1

0

dx
Z

x

0

dx0
Z

d2k⊥
16π3

Φðx0;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A02 þ k2⊥

p OTðx0;k⊥Þ;

ð28Þ

where A0 ¼ Aðx → x0Þ. The operators O given by
Eqs. (27) and (28) are obtained from the sum of each
helicity contribution Hλ1λ2 , i.e.,

O ¼
X
λ1;λ2

Hλ1λ2 : ð29Þ

The results of each helicity contributionHλ1λ2 and their sum
O defined by Eq. (29) for different current operators
Γ ¼ ðΓA;ΓP;ΓTÞ together with different components of
the currents for Γ ¼ ðΓA;ΓTÞ are summarized in Table I.
We should note that all the physical massesM are replaced
with the invariant mass M0 in the final results presented in

Table I. We confirmed that the three decay constants
given by Eqs. (27) and (28) are the same as each other,
i.e., the pseudoscalar meson decay constant in our LFQM
can be obtained in the process-independent manner (i.e.,
fA ¼ fP ¼ fT) regardless of the current operators ðΓ ¼
ΓA;ΓP;ΓTÞ used for the local and nonlocal matrix elements.
In the Appendix, we also discuss the type II link [24]

between the covariant BS model and our LFQM, which is
the alternative method to obtain the self-consistent LFQM
results for the decay constants given by Eqs. (27) and (28).

B. Lorentz and rotation invariance

In this work, we also compute the decay constant with
the nonvanishing P⊥ frame. As one can see from Table I,
the operators OP, O

μν
T , and Oþ;⊥

A are completely indepen-
dent of P⊥. Although the operator OA obtained from the
minus component of the current Γ−

A depends on P⊥, which
is originated from P− associated with the Lorentz factor Pμ

on the rhs of Eq. (16), we confirm that the decay con-
stant itself is P⊥ independent as long as the replacement
M → M0 is made in P−.
In this subsection, we shall explicitly prove not only the

P⊥ independence but also the rotational invariance of the
decay constant fAðPÞ given by Eq. (27). This can be shown
explicitly by converting Eq. (27) into the integral form of
the ordinary three vector k⃗ ¼ ðkz;k⊥Þ using Eqs. (9) and
(10) together with the Jacobi factor given by Eq. (14),
which results in

fAðPÞ ¼
ffiffiffi
6

p Z
d3k⃗
16π3

ffiffiffiffiffiffiffiffiffiffiffi
M0

E1E2

s
Φðk⃗Þ
M̃0

OAðPÞðk⃗Þ; ð30Þ

where Φðk⃗Þ now becomes the wave function mixed with
ϕ1Sðk⃗Þ and ϕ2Sðk⃗Þ given by Eq. (8). For the pseudoscalar
current case, the rotational invariance of the operator
OP ¼ M̃2

0=μ
0
M is evident. For the axial-vector current case,

the operators Oðþ;⊥Þ
A ¼ 2A can be converted into

TABLE I. Various helicity contributions Hλ1λ2 to the current operators O for all possible components of the
currents, where A ¼ ð1 − xÞm1 þ xm2, B ¼ ð1 − xÞm1 − xm2, Δ1 ¼ ðm2

1 þ k2⊥Þ=x, Δ2 ¼ ðm2
2 þ k2⊥Þ=ð1 − xÞ,

M̃2
0 ¼ ðk2⊥ þA2Þ=xð1 − xÞ, μ0M ¼ M2

0=ðm1 þm2Þ, and ρ0þ ¼ ðm1 þm2Þ2=M2
0. We should note that the primed

symbols in pseudotensor results represent functions of x0 rather than x.

O Current H↑↑ þH↓↓ H↑↓ þH↓↑ O ¼ P
Hλ1λ2

Oμ
A Γþ

A ;Γ⊥
A 0 2A 2A

Γ−
A

2ðm1þm2Þk2⊥
xð1−xÞðM2

0
þP2⊥Þ

2A½xð1−xÞP2⊥−k2⊥þm1m2�
xð1−xÞðM2

0
þP2⊥Þ

2ðm1Δ2þm2Δ1þAP2⊥Þ
ðM2

0
þP2⊥Þ

OP ΓP k2⊥
xð1−xÞμ0M

A2

xð1−xÞμ0M
M̃2

0

μ0M

Oμν
T Γþ−

T ;Γ⊥−
T

ð1−2x0Þk2⊥
2x0ð1−x0Þð1−ρ00þÞμ00M

A0B0
2x0ð1−x0Þð1−ρ00þÞμ00M

−12M0
0
k0z

μ00Mð1−ρ00þÞ
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Oðþ;⊥Þ
A ðk⃗Þ ¼ 2

M0

½m1E2 þm2E1 þ ðm1 −m2Þkz�; ð31Þ

where the last kz-term vanishes for the kz integration in
Eq. (30) and the rest of the terms are rotationally invariant.
Finally, the operator O−

A satisfies

Oþ
Aðk⃗Þ −O−

Aðk⃗Þ ¼
4ðm2 −m1ÞM0

ðP2⊥ þM2
0Þ

kz; ð32Þ

which is an odd function of kz. Equation (32) indicates that
the decay constant obtained from the minus current is not
only independent of P⊥ but also completely equivalent to
the one obtained from the plus (and perpendicular) com-
ponent of the current. It is worth noting that the utilization
of a factorized form of the LFWFs, such as ΨðxÞ ¼
Ψ1ðxÞΨ2ðk⊥Þ [55], would result in breaking this rotational
invariance.
In the numerical section, we will conduct a quantitative

analysis to examine the P⊥ independence of O−
A through

the P⊥ dependence of the helicity contributions.

IV. DISTRIBUTION AMPLITUDES

In this section, we discuss the two-particle DAs up to
twist-4 obtained from the three different pseudoscalar meson
decay modes. We summarize in Table II the twist classi-
fication based on the choice of the currents ðγμγ5; iγ5; σμνγ5Þ
and all possible components of the currents.
The DAs up to twist-4 accuracy for the pseudoscalar

meson with axial-vector current ΓA are defined in terms of
the following matrix element of gauge-invariant nonlocal
operators as [5]

Aμ
A ¼ h0jq̄ðzÞγμγ5qð−zÞjPðPÞi;

¼ ifA

Z
1

0

dx eiζP·z
�
Pμðϕ2;PðxÞ þ z2ð� � �ÞÞ

þM2

2

zμ

P · z
ðϕ4;PðxÞ − ϕ2;PðxÞÞ

�
: ð33Þ

In order to make a connection between the DAs and the
LFWFs of the meson, we utilize the equal LF time con-
dition on the lightlike vector zμ (i.e., z2 ¼ z−zþ − z2⊥ ¼ 0)
with zþ ¼ z⊥ ¼ 0. We then obtain

Aμ
Ajzþ¼z⊥¼0 ¼ ifA

Z
1

0

dx eiζP·z
�
Pμϕ2;PðxÞ

þM2zμ

Pþz−
ðϕ4;PðxÞ − ϕ2;PðxÞÞ

�
: ð34Þ

To isolate the twist-2 DA, ϕ2;PðxÞ, one may take either the
plus or transverse component of the current and obtain

Aðþ;⊥Þ
A ¼ ifAPðþ;⊥Þ

Z
1

0

dx eiζP·zϕ2;PðxÞ: ð35Þ

This explains why the two decay constants fðþÞ
A and fð⊥Þ

A

have the same operator OðþÞ
P ¼ Oð⊥Þ

P . On the other hand,
the twist-4 DA ϕ4;PðxÞ can be obtained from the minus
component of the current in the P⊥ ¼ 0 frame as

A−
A ¼ ifAP−

Z
1

0

dx eiζP·zϕ4;PðxÞ: ð36Þ

Here it is shown that the higher-twist DAs are associated
with the bad current, while the leading-twist DAs corre-
spond to the good current.
For the twist-3 case, there are two different DAs that are

related to pseudoscalar (ΓP) and pseudotensor (ΓT) cur-
rents. For pseudoscalar current, the twist-3 DA ϕ3;PðxÞ is
uniquely determined by [5]

APjzþ¼z⊥¼0 ¼ h0jq̄ðzÞiγ5qð−zÞjPðPÞi;

¼ fPμM

Z
1

0

dx eiζP·zϕ3;PðxÞ; ð37Þ

without choosing a particular component of current. For
pseudotensor current, the DA is computed as [5]

Aμν
T jzþ¼z⊥¼0 ¼ h0jq̄ðzÞσμνγ5qð−zÞjPðPÞi;

¼ −
i
3
fTð1 − ρþÞμMðPμzν − PνzμÞ

×
Z

1

0

dx eiζP·zψ3;PðxÞ: ð38Þ

In this case, the nonvanishing components are μν ¼ þ−
and ⊥− and they give the same ψ3;PðxÞ as we have shown
for the computation of the decay constant fT.
In our notation, all DAs ϕn;PðxÞ (n ¼ 2, 3, 4) and ψ3;PðxÞ

are normalized to unity as

Z
1

0

dxfϕn;PðxÞ;ψ3;PðxÞg ¼ 1: ð39Þ

From Eqs. (27) and (28) together with Eq. (39), we
obtain ϕn;PðxÞ (n ¼ 2, 3, 4) from the axial-vector (n ¼ 2, 4)
and pseudoscalar (n ¼ 3) channels as

TABLE II. Twist classification based on the choice of the
current and its component.

Current Comp Twist DAs

γμγ5 þ;⊥ 2 ϕ2;P

− 4 ϕ4;P

iγ5 � � � 3 ϕ3;P

σμνγ5 þ−;⊥− 3 ψ3;P
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ϕn;PðxÞ ¼
ffiffiffi
6

p

fP

Z
d2k⊥
16π3

Φðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2⊥

p OAðPÞ: ð40Þ

Here, we have Oþ
A ¼ O⊥

A corresponding to n ¼ 2, O−
A

corresponding to n ¼ 4, and OP corresponding to n ¼ 3.
For ψ3;PðxÞ from the pseudotensor channel, we obtain

ψ3;PðxÞ ¼
ffiffiffi
6

p

fP

Z
x

0

dx0
Z

d2k⊥
16π3

Φðx0;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A02 þ k2⊥

p OT; ð41Þ

where OT ¼ Oþ−
T ¼ O⊥−

T .

V. NUMERICAL RESULTS AND DISCUSSION

The model parameters m and β used in the present work
are summarized in Table III, which were determined from
the spectroscopic study in our previous work [31].

A. Light-front wave function

We first discuss the LFWFs Ψ00
λ1λ2

ðx;k⊥Þ defined in
Eq. (3) for the ground state (1S) and the radially excited
state (2S) of heavy pseudoscalar mesons. Figure 1(a) shows
the two-dimensional (2D) plots of Dð1SÞ and Dð2SÞ
mesons as a function of ðx; k⊥Þ, respectively, as an example
of the unequal-mass case while Fig. 1(b) shows the 2D
plots of ηcð1SÞ and ηcð2SÞ heavy quarkonia, respectively,
as an example of the equal-mass case. In Fig. 1, the LFWFs
Ψ00

λ1λ2
are presented in terms of the helicity configuration

λ1λ2, where we denote λ ¼ þ1=2 and −1=2 as ↑ and ↓,
respectively. Note that the longitudinal momentum fraction
x is carried by the lighter quark with mass m1. The LFWFs
can be compared with those obtained in Ref. [55].
There are several salient features related to the LFWFs in

Fig. 1. (i) The center of the LFWF (k⊥ → 0 and kz → 0),
which is associated with its extremum point, is located at

x ¼ m1

m1 þm2

; ð42Þ

which is obtained by solving Eq. (13). For the equal-mass
case, Ψðk⊥ → 0; kz → 0Þ is located at x ¼ 1=2, as can be
seen in Fig. 1. But, for the unequal-mass case (i.e., m1 ¼
muðdÞ; m2 ¼ mc) in Fig. 1, the center moves to the value of
x < 1=2, and therefore, the LFWF is somewhat distorted
on the ðx; k⊥Þ plane. (ii) The LFWF correctly represents
the pseudoscalar meson as Ψ00

↑↓ðx;k⊥Þ ¼ −Ψ00
↓↑ðx;k⊥Þ.

In addition to the ordinary helicity ð↑↓;↓↑Þ, there is also
a nonvanishing contribution from the higher helicities
ð↑↑;↓↓Þ that couple to the quark orbital angular momen-
tum as the sign is different in the positive and negative
domain of k⊥. This configuration is possible in relativistic
dynamics. However, such contribution is suppressed as the
quark mass increases and vanishes in the heavy-quark limit
(m → ∞). Therefore, at the heavy-quark or nonrelativistic
limit, the LFWF will take only the contribution from the
ordinary helicity without involving the orbital angular
momentum. (iii) It is also shown that the 2S state has a
nodal structure represented as a white circle/oval, where the
center of LFWF has a dip represented as a blue region for
the case of ordinary helicity. One may notice that the shape
of the LFWFs is largely reflected in the DAs.

B. Decay constant

First of all, the numerical values of decay constants for
1S and 2S state heavy pseudoscalar mesons obtained
from the axial-vector current are presented in our previous

TABLE III. The constituent quark masses m (GeV) and
variational parameters β (GeV) for θ ¼ 12° adapted from our
previous work [31].

mq ms mc mb βqc̄ βsc̄ βqb̄ βsb̄ βcc̄ βcb̄ βbb̄

0.22 0.45 1.68 5.10 0.424 0.455 0.495 0.538 0.592 0.767 1.167

(a)

(b)

FIG. 1. Two-dimensional plot of LFWF of (a) D and (b) ηc
mesons for each helicity configuration. Note that the longitudinal
momentum x is carried by the light quark.
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work [31]. In this work, we confirm that the decay
constants obtained from the pseudoscalar and pseudotensor
channels also produce the same results as those obtained
from the axial-vector channel, regardless of the currents,
as well as all possible current components. Namely, we
obtain the process-independent pseudoscalar meson
decay constants in the LFQM. For the sake of complete-
ness, we display again the results of 1S and 2S state
heavy pseudoscalar mesons for the case of mixing angle
θ ¼ 12° in Table IV.
In addition, we examine in Fig. 2 the contributions

of helicity to the decay constants for 1S and 2S state
heavy pseudoscalar mesons, as they are contingent upon
the current component, as indicated in Table I. Notably,
as observed in Fig. 2, the helicity contributions exhibit
variation across different currents and current components.
Despite these variations, however, the resulting decay
constant remains unaltered.
For the γþγ5, the contribution denoted by H↑↓ þH↓↑

is entirely from the ordinary helicity wave function

Ψ00
↑↓−↓↑ðx;k⊥Þ without involving the orbital angular

momentum. This is one of the reasons why we call the
plus current ðμ ¼ þÞ as the good current where the
dynamics becomes much simpler and it is also related to
the leading-twist DAs as explained in Sec. IV. For the γ⊥γ5,
the contribution is still entirely from the ordinary helicity.
However, when we use γ−γ5 or the bad current, the higher
helicity contributions denoted by H↑↑ þH↓↓ arise and the
dynamics becomes more complicated. It is clearly shown
that the higher helicity contribution is suppressed when the
constituent quark mass becomes heavier. A similar behav-
ior is also observed for the iγ5 case. When we use σþ−γ5
(or σ⊥−γ5), the ordinary helicity contribution appears
more than expected, as shown in the bottom left panel
of Fig. 2 for some cases. However, the higher helicity
contribution compensates for it and keeps the decay
constant the same. It is also worth mentioning that the
behaviors of helicity contribution for the ground state and
the radially excited state are similar. The difference is that
the higher helicity contribution is more pronounced for the
radially excited state.
In Fig. 3, we show the P⊥ independence of the decay

constants for the 1S and 2S state heavy pseudoscalar
mesons. While each helicity contribution shows the P⊥
dependence when one uses the minus component of the
axial-vector current, the sum of all helicity contributions is
completely independent of P⊥ as it should be. It is also
evident from Fig. 3 that the higher (ordinary) helicity
contributions dominate at the low (high) P⊥ region con-
sistent with the previous observation for the equal quark
mass case [50]. We can also see that higher helicity is more
enhanced for the 2S state, similar to that in Fig. 2.

TABLE IV. Decay constants of heavy pseudoscalar mesons
predicted in the LFQM [31]. The results are given in MeV.

State ftheo fexp State ftheo fexp

Dð1SÞ 208 206.7(8.9) Dð2SÞ 110 � � �
Dsð1SÞ 246 257.5(6.1) Dsð2SÞ 133 � � �
ηcð1SÞ 348 335(75) ηcð2SÞ 214 � � �
Bð1SÞ 190 188(25) Bð2SÞ 126 � � �
Bsð1SÞ 228 � � � Bsð2SÞ 150 � � �
Bcð1SÞ 394 � � � Bcð2SÞ 268 � � �
ηbð1SÞ 628 � � � ηbð2SÞ 443 � � �

FIG. 2. Helicity contributions to decay constant for 1S and 2S heavy pseudoscalar mesons. The pattern histogram represents
subtracted contribution. Since the contribution fromH↑↓ ¼ H↓↑, we sum them up for simplicity. It also applies toH↑↑ ¼ H↓↓. Here we
set P⊥ ¼ 0 for the case of γ−γ5. For the σμνγ5 case, the helicity contribution depends on the choice of assigning x to light or heavy quark,
see Sec. V C for details.
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Finally, we also examine the rotational invariance of the
decay constant by investigating the wave function ψμðk⃗Þ
defined in Eq. (30) with fA ¼ R

d3k⃗ψμðk⃗Þ for the axial-
vector ðΓμ

A ¼ γμγ5Þ current. For the equal-mass case, the

ψμðk⃗Þ has a spherical shape since the obtained operator
Oμ

A ¼ 2m regardless of the current component μ. For the
unequal-mass case such as D meson, the wave functions
ψþ;⊥
D ðk⃗Þ and ψ−

Dðk⃗Þ are slightly deformed and shifted to the
negative and positive kz domains,2 respectively, as depicted
in the upper panels of Fig. 4. It is also shown that the wave
functions ψμðk⃗Þ are more separated in the kz direction for
the Dð1SÞ state compared to those of the Dð2SÞ state. The
shifting in kz direction can be understood by the appearance
of the odd function of kz for O

þ;⊥
A ðk⃗Þ in Eq. (31), although

such an odd kz term does not actually contribute to the
decay constant. The wave functions ψþ;⊥ðk⃗Þ and ψ−ðk⃗Þ
become a sphere centered at the origin and coincide
with each other if the kz term is removed, as shown in
the middle panels of Fig. 4. Moreover, the difference
defined as ψ̃Dðk⃗Þ ¼ ψþ

Dðk⃗Þ − ψ−
Dðk⃗Þ is displayed in lower

panels of Fig. 4 showing that the integration over kz will
give a vanishing result. Therefore, it is evident that the
decay constant with μ ¼ þ;⊥;− is the same. As for the
pseudoscalar current, the wave functions are spherical as
also implied from its operator OPðk⃗Þ.

C. Distribution amplitude

Figure 5 presents the DAs of different twists for the 1S
and 2S state heavy pseudoscalar mesons. Note here that the
longitudinal momentum x is carried by the lighter quark.
As a result, the DAs forDðsÞ and BðsÞ are more concentrated
in the lower x region. For the equal-mass case such as ηc
and ηb, the ϕ2;PðxÞ, ϕ3;PðxÞ, and ϕ4;PðxÞ have the same

shape since the corresponding operators are the same as
shown in Table VII. The key reason for this is the utilization
of the self-consistent condition for the replacement of M
with M0 when obtaining the aforementioned results. But,
the ψ3;PðxÞ has a different shape with a narrower and higher
peak. In addition, the distance between the peaks becomes
closer for ψ3;PðxÞ of the 2S state. For the unequal-mass case
such as D or B meson, the peak is shifted to the lower x

FIG. 3. The P⊥ dependence of the helicity contribution of γ−γ5 for 1S and 2S pseudoscalar heavy mesons with jP⊥j ¼ P⊥. The solid
line represents the contributions from H↑↓ þH↓↑, while the dashed line represents H↑↑ þH↓↓.

FIG. 4. The 3D plots of wave functions for Dð1SÞ mesons
defined by fA ¼ R

d3k⃗ψμðk⃗Þ: (a) ψμðk⃗Þ with various current

component, (b) ψμðk⃗Þ without the kz term, and (c) ψ̃ðk⃗Þ ¼
ψþ;⊥ðk⃗Þ − ψ−ðk⃗Þ. Displayed in (d)–(f) are those of Dð2SÞ
mesons.

2The shifting to either positive or negative domain depends on
the choice of m1 and m2 since O−

Aðk⃗Þ ∝ ðm1 −m2Þkz in Eq. (31).
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region for the higher-twist DAs where the ϕ4;PðxÞ has
the highest peak. For the 2S state, the peak near x ¼ 0 is
more enhanced for the higher twist, while the peak near
x ¼ 0.5 is suppressed and shifted to the lower x region.
Furthermore, the dip between the peaks is enhanced for the
higher twist.

In order to gain a deeper understanding of the structure
of DAs, we construct a 2D plot illustrating the DAs,
ϕðxÞ≡ fϕn;P;ψ3;Pg, using the following definition:

ϕðxÞ ¼
Z

∞

0

d2k⊥ψðx;k⊥Þ ¼
Z

1

0

dyϕðx; yÞ; ð43Þ

FIG. 5. Two-particle DAs with various twists for 1S and 2S heavy pseudoscalar mesons with various quark flavor contents where the
longitudinal momentum x is carried by the light quark.

FIG. 6. Two-dimensional plot of the DAs of Dð2SÞ for various twist. Here we define k2⊥ ¼ y=ð1 − yÞ to make a rectangular domain.
The longitudinal momentum x is carried by the light quark.
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where the wave function ϕðx; yÞ ¼ πψðx; yÞ=ð1 − yÞ2
is obtained by using the variable transformation k2⊥ ¼
y=ð1 − yÞ so that y ranges from 0 to 1. For the sake of
demonstration, we show the 2D plot of ϕðx; yÞ only for
Dð2SÞ as shown in Fig. 6. One can clearly see that the
ϕðx; yÞ bears resemblance to the LFWF shown in Fig. 1(a).
The two-peak structure in the DAs of the 2S state clearly
originated from the nodal structure shown as the white
bands. It appears that the ϕ2;Pðx; yÞ, ϕ3;Pðx; yÞ, and
ϕ4;Pðx; yÞ have a similar shape. But, the DAs with the
higher twist are more concentrated in the lower x region.
On the other hand, ψ3;Pðx; yÞ has a smaller nodal structure
so that it shows slightly different behavior in Fig. 5.
Figure 7 shows the helicity contributions to DAs of

ηcð1SÞ for various twist. The dashed and dotted lines
represent the ordinary H↑↓ þH↓↑ and higher H↑↑ þ
H↓↓ helicity contributions, respectively. The solid lines
represent the full results. As mentioned earlier, the DAs of
twist-2, twist-3, and twist-4 for equal-mass cases are the
same. However, these DAs exhibit distinct helicity con-
tributions. Specifically, the twist-2 DAs are exclusively
composed of the ordinary helicity component, while the
higher-twist DAs incorporate a finite contribution from the
higher helicity component. This observation is in accor-
dance with the result presented for helicity contribution to
the decay constant in Fig. 2.
Although the helicity contribution to DAs generally

remains unchanged regardless of whether the light quark
is assigned to x or (1 − x), it is crucial to acknowledge that
the specific choice between x and 1 − x does impact the
helicity contribution to the DA ψ3;PðxÞ obtained from
the nonlocal matrix element. In particular, when assigning
the light quark to either x or (1 − x), the helicity contri-
bution to ψ3;PðxÞ exhibits markedly distinct behaviors.
Figure 8 illustrates, as an example, the discrepancy in
helicity contributions to ψ3;PðxÞ for Dð1SÞ when the light
quark is assigned to carry either x or (1 − x). The upper and
lower panels in Fig. 8 represent the results obtained when
the light quark is assigned to x and 1 − x, respectively, and

the same line codes are used as in Fig. 7. One can clearly
see from Fig. 8 that the ordinary helicity exhibits a negative
contribution when the light quark carries the value of x
(upper panel), while it yields a positive contribution when
the heavy quark carries the value of x (lower panel). This
distinct behavior observed can be attributed to the integra-
tion over x0, where the behavior depends on the specific

FIG. 7. Helicity contribution to DAs with various twist. Although the total DAs of twist-2, twist-3, and twist-4 are the same, they
consist of different helicity contributions. We note that the total DA of twist-3 with σþ−γ5 is different from the others.

FIG. 8. The difference in the helicity contribution depending on
the choice of assigning the LF longitudinal momentum fraction x
to the light or heavy quark. The dashed and dotted lines represent
the ordinary and higher helicity, respectively.
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choice of x. It indicates that each individual ordinary and
higher helicity contribution to ψ3;PðxÞ depends on whether
the light quark or the heavy quark carries the specific light-
front longitudinal momentum fraction x. However, it is
important to note that the total DA remains unchanged

whether we assign x to the light or heavy quark.
Furthermore, it is worth noting that there is a substantial
cancellation between the ordinary and higher helicity
contributions when x is associated with the light quark,
whereas the cancellation is comparatively smaller when x is
assigned to the heavy quark.
As we previously explained in the definition of ψ3;PðxÞ

provided by Eq. (18), there exist two variations in the QCD
sum rules for defining ψ3;PðxÞ, namely, with the inclusion
of ð1 − ρþÞ [11] or without it [5]. In the previous work [26],
the ψ3;PðxÞ DA was computed without the term ð1 − ρþÞ.
However, we found that the inclusion of ð1 − ρþÞ is as
pivotal in obtaining the identical decay constants from the
nonlocal pseudotensor channel as those derived from the
local axial-vector and pseudoscalar channels.
Figure 9 depicts a comparison of ψ3;PðxÞ obtained with

the term ð1 − ρþÞ (solid lines) and without it (dashed lines),
for the cases of heavy ηcð1SÞ (upper panel) and the light
πð1SÞ (lower panel) mesons. We note that the same model
parameters are used as in [26] for the plots of π. The
analysis reveals that the inclusion of the term ð1 − ρþÞ in
ψ3;PðxÞ leads to the narrower and higher shape compared to
the case where ð1 − ρþÞ is absent. The quantitative impact
of ð1 − ρþÞ on ψ3;PðxÞ is found to be more significant in the
heavy-quark sector compared to the light-quark sector.
Finally, we also compute the ξ-moment up to n ¼ 6

defined by

hξni ¼
Z

1

0

dx ξnϕðxÞ; ð44Þ

where ξ ¼ x − ð1 − xÞ ¼ 2x − 1. The results are shown in
Tables Vand VI for the 1S and 2S state heavy pseudoscalar
mesons, respectively. Here, we note that x is carried by the

FIG. 9. Comparison of ψ3;PðxÞ with and without the inclusion
of ð1 − ρþÞ factor.

TABLE V. The ξ-moment up to n ¼ 6 for the 1S state heavy pseudoscalar mesons. Here we define the x carried by the lighter quark.
Therefore, the odd power of hξi has an opposite sign to our previous work [31].

ð1SÞ Twist D Ds ηc B Bs Bc ηb

hξ1i 2 −0.337 −0.294 � � � −0.644 −0.614 −0.390 � � �
3p −0.445 −0.365 � � � −0.713 −0.670 −0.419 � � �
4 −0.553 −0.436 � � � −0.781 −0.726 −0.447 � � �
3t −0.445 −0.365 � � � −0.713 −0.670 −0.417 � � �

hξ2i 2 0.226 0.197 0.088 0.453 0.417 0.201 0.049
3p 0.312 0.242 0.088 0.545 0.487 0.223 0.049
4 0.397 0.288 0.088 0.636 0.558 0.246 0.049
3t 0.273 0.202 0.053 0.533 0.475 0.205 0.029

hξ3i 2 −0.145 −0.114 � � � −0.337 −0.302 −0.113 � � �
3p −0.222 −0.154 � � � −0.435 −0.373 −0.129 � � �
4 −0.299 −0.193 � � � −0.534 −0.445 −0.146 � � �
3t −0.177 −0.116 � � � −0.413 −0.350 −0.108 � � �

(Table continued)
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light quark, so the sign is opposite for the odd ξ-moment as
compared to our previous work [31]. Note that “3p” and
“3t” indicate the results from pseudoscalar and pseudo-
tensor currents, respectively. For the unequal-mass case, we
observe that the absolute value of the odd ξ-moment is
getting larger for the higher twist, indicating the DAs have
more deviated from the center. The minus sign shows that
the DAs are shifted to the lower x region. We also note that

the absolute value of the even ξ-moments increases for the
higher twist. The absolute values of ξ-moments for the
ψ3;PðxÞ are generally smaller than those of ϕ3;PðxÞ.

VI. SUMMARY

We have investigated the decay constants and the DAs up
to the twist-4 for the 1S and 2S state heavy pseudoscalar

TABLE VI. The ξ-moment up to n ¼ 6 for the 2S state heavy pseudoscalar mesons. Here we define the x carried by the lighter quark.
Therefore, the odd-power of hξi has an opposite sign to our previous work [31].

ð2SÞ Twist D Ds ηc B Bs Bc ηb

hξ1i 2 0.042 −0.015 � � � −0.426 −0.411 −0.275 � � �
3p −0.161 −0.155 � � � −0.549 −0.518 −0.333 � � �
4 −0.363 −0.296 � � � −0.672 −0.625 −0.390 � � �
3t −0.161 −0.155 � � � −0.549 −0.518 −0.333 � � �

hξ2i 2 0.052 0.132 0.179 0.198 0.202 0.160 0.099
3p 0.164 0.199 0.179 0.344 0.322 0.201 0.099
4 0.275 0.266 0.179 0.491 0.442 0.241 0.099
3t 0.081 0.115 0.107 0.320 0.295 0.163 0.059

hξ3i 2 0.004 −0.055 � � � −0.094 −0.112 −0.101 � � �
3p −0.099 −0.121 � � � −0.237 −0.225 −0.131 � � �
4 −0.202 −0.187 � � � −0.380 −0.337 −0.161 � � �
3t −0.029 −0.061 � � � −0.194 −0.180 −0.092 � � �

hξ4i 2 0.012 0.065 0.048 0.043 0.070 0.071 0.016
3p 0.091 0.113 0.048 0.175 0.171 0.093 0.016
4 0.171 0.161 0.048 0.307 0.272 0.115 0.016
3t 0.018 0.048 0.021 0.120 0.116 0.057 0.007

hξ5i 2 −0.006 −0.047 � � � −0.017 −0.048 −0.051 � � �
3p −0.076 −0.089 � � � −0.137 −0.138 −0.067 � � �
4 −0.146 −0.131 � � � −0.257 −0.228 −0.084 � � �
3t −0.011 −0.035 � � � −0.075 −0.078 −0.037 � � �

hξ6i 2 0.010 0.044 0.016 0.004 0.036 0.038 0.003
3p 0.070 0.079 0.016 0.112 0.116 0.050 0.003
4 0.129 0.113 0.016 0.220 0.196 0.063 0.003
3t 0.009 0.028 0.005 0.047 0.056 0.025 0.001

TABLE V. (Continued)

ð1SÞ Twist D Ds ηc B Bs Bc ηb

hξ4i 2 0.108 0.083 0.018 0.261 0.228 0.068 0.006
3p 0.173 0.112 0.018 0.360 0.296 0.080 0.006
4 0.238 0.142 0.018 0.458 0.364 0.092 0.006
3t 0.124 0.072 0.008 0.329 0.265 0.061 0.003

hξ5i 2 −0.082 −0.058 � � � −0.209 −0.178 −0.043 � � �
3p −0.138 −0.082 � � � −0.304 −0.241 −0.052 � � �
4 −0.195 −0.106 � � � −0.399 −0.304 −0.060 � � �
3t −0.090 −0.048 � � � −0.267 −0.206 −0.035 � � �

hξ6i 2 0.065 0.044 0.005 0.172 0.143 0.029 0.001
3p 0.115 0.063 0.005 0.262 0.200 0.035 0.001
4 0.165 0.083 0.005 0.352 0.258 0.041 0.001
3t 0.068 0.033 0.002 0.220 0.162 0.021 0.0004
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mesons in the LFQM, computing the local and nonlocal
matrix elements h0jq̄ΓqjPi with three different current
operators Γ ¼ ðγμγ5; iγ5; σμνγ5Þ.
In our LFQM, we performed a comprehensive analysis

utilizing a general reference frame where P⊥ ≠ 0 and
explored all possible components of the currents.Our explicit
results demonstrate the equality of the three pseudoscalar
meson decay constants derived from the three distinct current
operators Γ. This remarkable consistency in decay constants
is achieved when we enforce the self-consistency condition,
i.e., the replacement of the physicalmassMwith the invariant
mass M0, within the LFQM. This condition stems from the
Bakamjian-Thomas construction, inwhich themeson state is
based on a noninteracting quark-antiquark representation.
It is important to note that the inclusion of the ð1 − ρþÞ factor
in the definition of the nonlocal matrix elements
h0jq̄ðzÞσμνγ5qð−zÞjPi is crucial in order to obtain the same
decay constant as those derived from the axial-vector and
pseudoscalar currents. In addition to secure the process-
independent pseudoscalar meson decay constant, regardless
of the choice of current operators Γ, we also demonstrated its
explicit Lorentz and rotation invariance.
We also examined the helicity contributions to the decay

constants, offering additional insights into the structural
aspects of the decay constant. While the decay constant
remains unchanged regardless of the choice of currents, the
helicity contributions to the decay constant exhibit varia-
tions depending on the specific current and its components,
as illustrated in Table I. As illustrated in Fig. 2, while the
good (plus) current only receives the ordinary helicity
contributions (↑↓;↓↑), the other components including the
bad (minus) current receive the higher helicity contributions
ð↑↑;↓↓Þ. We further explored the impact ofP⊥ dependence
on the helicity contributions when considering the axial-
vector current with the minus current component. Notably, it
becomes evident that the higher helicity contributions play a
more prominent role in the lowP⊥ region, particularly for the
2S state. These observations are depicted in Fig. 3.
According to the classification provided in Table II,

employing various current operators and different compo-
nents of the currents leads to distinct twists in the DAs. In
particular, we explored the twist-4 DA derived from the
minus component of the axial-vector current.
The various twist DAs for the 1S and 2S heavy

pseudoscalar mesons are exhibited in Fig. 5. It is evident
that the higher-twist DAs for the unequal-mass case are
more concentrated in the lower x region. The ξ-moments
are also computed for the various twist DAs. One of the
notable results is that the odd ξ-moment is getting larger for
the higher twist.
We expect that our result is useful for the calculation of

hard exclusive processes based on the QCD factorization.
Especially, the higher-twist DAs may be important in the
low Q2 region [56,57]. It would be of great importance
to extend our analysis to the vector mesons with the

longitudinal and transverse polarizations for further test
of our methodology [50]. Moreover, the investigation of the
decay constant for the excited scalar, axial-vector, and
tensor mesons would be also interesting to confirm whether
our LFQM based on the BT construction can universally be
applicable regardless of the meson quantum numbers
[48,52]. Finally, the extension of our approach to encom-
pass three-point functions, such as elastic or transition form
factors, deserves a thorough investigation to explore the LF
zero-mode effects.
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APPENDIX: LINK BETWEEN THE COVARIANT
BS MODEL AND THE LFQM

As we explained in the Introduction, our self-consistent
LFQM results, e.g., Eqs. (27) and (28) in this work, can also
be obtained from the type II link between the manifestly
covariant BS model and the LFQM, which was first
introduced in [24]. This is another approach to arrive at
the self-consistent LFQM. Since the detailed analysis for the
link between the manifestly covariant BS model and the
LFQMhas already beenmade in the previous works [25,26],
we shall briefly discuss the essential feature of the type II link
starting from the covariant BS model in this appendix.
The matrix element AAðPÞ ≡ h0jq̄ΓAðPÞqjPi for the local

operators ΓAðPÞ in the covariant BS model is given in the
one-loop approximation as

AAðPÞ ¼ iNc

Z
d4k
ð2πÞ4

H0SAðPÞ
ðp2

1 −m2
1 þ iϵÞðp2

2 −m2
2 þ iϵÞ ;

ðA1Þ

where SAðPÞ ¼ Tr½ΓAðPÞðp1 þm1Þγ5ð−p2 þm2Þ� is the
trace term with p1 ¼ P − k and p2 ¼ k. To regularize
the loop, we use the usual multipole ansatz H0 ¼ g

D2
Λ
with
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DΛ ¼ p2
1 −m2

Λ þ iϵ, where mΛ plays the role of the
momentum cutoff.
In this exactly solvable manifestly covariant BS model,

the decay constants for the axial-vector and pseudoscalar
currents can be obtained from the manifestly covariant
calculation using the Feynman parametrization and the
final results are given by

fA ¼ gNc

4π2

Z
1

0

dx
Z

1−x

0

dy
ð1 − x − yÞB1

C2
; ðA2Þ

fP ¼
gNc

4π2μM

Z
1

0

dx
Z

1−x

0

dy
ð1 − x − yÞðB2 − 2CÞ

C2
; ðA3Þ

where C ¼ yð1 − yÞM2 − xm2
1 − ym2

2 − ð1 − x − yÞm2
Λ,

B1 ¼ m2 þ ð1 − yÞðm1 −m2Þ, and B2 ¼ yð1 − yÞM2 þ
m1m2. We should note, at this point, that the two pseudo-
scalar meson decay constants fA and fP obtained in the BS
model are not the same as each other, e.g., fA ¼ 208 MeV
vs fP ¼ 225 MeV for Dð1SÞ meson with the value of
mΛ ¼ 1.673 GeV. This contrasts with our LFQM in which
we obtain the process-independent decay constant.
In parallel with the manifestly covariant calculation, we

perform the LF calculation of Eq. (A1) by doing the LF
energy integration p−

2 , picking up the on-mass shell pole
p2
2 ¼ p2

2on ¼ m2
2, and obtain

fAðPÞ ¼ Nc

Z
1

0

dx
Z

d2k⊥
8π3

χðx;k⊥Þ
1 − x

OAðPÞ
BS ; ðA4Þ

where χðx;k⊥Þ ¼ 1=ð½xðM2 −M2
0Þ�½xðM2 −M2

ΛÞ�2Þ is the
vertex function with M2

Λ ¼ M2
0ðm1 → mΛÞ and OAðPÞ

BS ¼
iSAðPÞ=2PAðPÞ.
In contrast to the LFQM constrained by the on-mass

shellness of the constituents, the LF calculation of the
BS model allows the off-mass shell quark propagators. For
the axial-vector current Γμ

A ¼ γμγ5 with the current com-
ponent μ ¼ ðþ;⊥Þ, we find that only the on-mass shell
quark propagators contribute and the full result of the
operator is obtained as ½OA

BS�full ¼ ½OA
BS�þon ¼ ½OA

BS�⊥on ¼ 2A.
On the other hand, the minus component of the axial-vector
current receives not only the instantaneous but also the
zero-mode contributions in addition to the on-mass
shell contribution, i.e., ½OA

BS�full ¼ ½OA
BS�−on þ ½OA

BS�−inst þ
½OA

BS�−z:m: ¼ 2A, where

½OA
BS�−on ¼

2ðm1Δ1 þm2Δ2 þAP2⊥Þ
M2 þ P2⊥

;

½OA
BS�−inst ¼

2m2ðM2 −M2
0Þ

M2 þ P2⊥
;

½OA
BS�−z:m: ¼

2ðm1 −m2ÞZ2

M2 þ P2⊥
; ðA5Þ

with Δj¼ðm2
j þk2⊥Þ=xj (j¼1, 2) and Z2¼xðM2−M2

0Þ þ
m2

1−m2
2þð1−2xÞM2.

For the pseudoscalar current ΓP ¼ iγ5, the full opera-
tor is obtained from the sum of the three nonvanishing
contributions, i.e., ½OP

BS�full¼2½m1ðm2−m1ÞþxM2
0�=

μM¼½OP
BS�onþ½OP

BS�instþ½OP
BS�z:m:, where

½OP
BS�on ¼

M̃2
0

μM
;

½OP
BS�inst ¼

ð1 − xÞðM2 −M2
0Þ

μM
;

½OP
BS�z:m: ¼ −

Z2

μM
: ðA6Þ

With those full operators ½OAðPÞ
BS �full, the LF results for fAðPÞ

given by Eq. (A4) are the same as the corresponding
covariant ones given by Eq. (A2).
The basic idea of Ref. [24] in obtaining the LFQM result

given by Eq. (27) from the BS model amplitude given by
Eq. (A4) is to replace not only the vertex function χðx;k⊥Þ
in Eq. (A4) with the Gaussian wave function Φðx;k⊥Þ, but
also all the physical massM that appeared in the BS model
with the invariant mass M0 via the type II link between the
BS model and the LFQM as we coined in [24],

ffiffiffiffiffiffiffiffi
2Nc

p χðx;k⊥Þ
ð1 − xÞ →

Φðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ k2⊥

p ;

M → M0: ðA7Þ

The first immediate action for the replacement of
M → M0 in the LFQM is to remove the instantaneous
contribution (∝ M2 −M2

0), which may appear in the covar-
iant BS model but is absent in the LFQM consistent with the
BT construction. The only spurious effect, which may
appear in the LFQM, is the LF zero mode. Furthermore,
a crucial feature when utilizing the type II link between the
BS model and the LFQM is solely to employ the on-mass
shell BS operator. In other words, the LFQM operator,
denoted as O≡OLFQM and defined by Eq. (27), can be
directly derived by substituting ½OBS�onðM → M0Þ.
For the axial-vector current case, the full BS opera-

tor ½OA
BS�full ¼ 2A obtained from ½OA

BS�þon ¼ ½OA
BS�⊥on ¼

½OA
BS�−full is shown exactly the same as the OA

LFQM. The
plus and perpendicular components of the current are free
from the instantaneous and zero-mode contributions, and
they are indeed the “good” components of the current.
While the full operator derived from the minus component
of the current shares the exact same form as those derived
from the good currents, this feature can be considered
extremely rare. It should be noted that the full operator
obtained by including the zero mode does not generally
align with the full operator derived solely from the on-mass
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shell contribution, as evident in the case of the pseudoscalar
current in which the full operator ½OP

BS�full is different from
the on-mass shell operator ½OP

BS�on and one finds that fP in
Eq. (27) does not match with fA if the full operator ½OP

BS�full
is used for the replacement of M → M0 instead of ½OP

BS�on.
A similar observation has also been made in the previous
analysis for the vector meson decay constant [24]. This
indicates that the zero mode found in the BS model is no
longer applicable to the LFQM. Instead, the replacement of
M → M0 for the on-mass shell operator ½OBS�on, e.g.,
½OA

BS�−onðM → M0Þ and ½OP
BS�onðM → M0Þ, can be regarded

as an effective zero-mode inclusion in the LFQM.
For the pseudotensor current, the local matrix element

h0jq̄ð0ÞΓTqð0ÞjPi defined by Eq. (A1) in the covariant BS
model is zero in the manifestly covariant calculation.
Performing the LF calculation for this local matrix element,
we also confirm that the full operator ½OT

BS�full is zero if
and only if we include both nonvanishing instantaneous
and zero-mode contributions, i.e., ½OT

BS�full ¼ ½OT
BS�on þ

½OT
BS�inst þ ½OT

BS�z:m: ¼ 0. Because of this, the decay con-
stant for the pseudotensor current needs to be defined only
through the nonlocal matrix element h0jq̄ðzÞΓTqð−zÞjPi
defined by Eq. (18).
Defining zμ ¼ τημ using the lightlike vector η ¼

ð1; 0; 0;−1Þ and multiplying ðPμην − PνημÞ on both sides
of Eq. (18), one can rewrite Eq. (18) as (see Ref. [26] for
more detailed derivation)

h0jq̄ðτηÞið=P=η − P · ηÞγ5qð−τηÞjPðPÞi

¼ i
3
fTμ̃MðP · ηÞ2

Z
1

0

dxeiζτP·ηψ3;PðxÞ; ðA8Þ

where μ̃M ¼ μMð1 − ρþÞ.3 We then obtain

ψ3;PðxÞ ¼ −
12

fTμ̃M

Z
∞

−∞

dτ
2π

Z
x

0

dx0 e−iζ0τðP·ηÞMT; ðA9Þ

where MT ¼ h0jq̄ðτηÞið=P=η − P · ηÞγ5qð−τηÞjMðPÞi is
given by the following momentum integral in the same
covariant BS model as Eq. (A1):

MT ¼ Nc

Z
d4k
ð2πÞ4

e−iτðp2−p1Þ·ηH0

ðp2
1 −m2

1 þ iϵÞðp2
2 −m2

2 þ iϵÞ ST;

ðA10Þ

with the trace term ST ¼ Tr½ið=P=η − P · ηÞγ5ðp1 þm1Þ×
γ5ð−p2 þm2Þ�. It is worth noting that the explicit covariant
calculation of Eq. (A9) is challenging due to the nonlocal
nature of the matrix element. For the LF calculation of
Eq. (A9), we apply the equal LF time condition zþ ¼ 0 and
choose the LF gauge Aþ ¼ 0 so that the path-ordered gauge
factor becomes unity. We should note that the valence
contribution, i.e., ½ST�valðx0;k⊥Þ ¼ ½ST�on þ ½ST�inst, has the
same form as the one for the local current matrix element.
However, the possible zero-mode contribution ½ST�z:m: is
different from the one obtained in the local current case
since the trace term, as well as the vertex function, should
be integrated over x0 before the integration over x. The
nonlocal nature of the matrix element introduces a dis-
crepancy in the power counting of the singular term (1=x),
which is an essential procedure to identify any possible
zero modes, compared to the local current matrix element
calculation. As a consequence, this discrepancy gives rise
to distinct zero modes in the nonlocal current case. The
identification of the zero mode in this nonlocal matrix
element calculation is not yet known. However, our type II
link between the covariant BS model and the LFQM
applying only to the on-mass contribution works also for
the nonlocal matrix element calculation regardless of the
existence of the LF zero mode.
Thus, considering only the on-mass shell contribution to

the trace term, we obtain from Eqs. (A9) and (A10)

ψ3;PðxÞ ¼ −
3Nc

fT

Z
x

0

dx0
Z

d2k⊥
8π3

χðx0;k⊥Þ
ð1 − x0Þ

½ST�on
Pþμ̃M

;

ðA11Þ

TABLE VII. BS and LFQM operators of decay constant with various currents and their corresponding DA for
both unequal and equal masses of the constitutes. Here we have defined A ¼ ð1 − xÞm1 þ xm2,
Δ1 ¼ ðm2

1 þ k2⊥Þ=x, Δ2 ¼ ðm2
2 þ k2⊥Þ=ð1 − xÞ, μ0M ¼ M2

0=ðm1 þm2Þ, and ρ0þ ¼ ðm1 þm2Þ2=M2
0. It is evident

that the BS operator will be the same with the LFQM operator if we apply the M → M0 replacement.

O Current Oon
BSðm1 ≠ m2Þ OLFQMðm1 ≠ m2Þ Oon

BSðmÞ OLFQMðmÞ
Oμ

A Γþ
A ;Γ⊥

A 2A 2A 2m 2m
Γ−
A

2ðm1Δ2þm2Δ1þAP2⊥Þ
ðM2þP2⊥Þ

2ðm1Δ2þm2Δ1þAP2⊥Þ
ðM2

0
þP2⊥Þ

2m
ðM2

0
þP2⊥Þ

ðM2þP2⊥Þ
2m

OP ΓP M̃0
2

μM

M̃0
2

μ0M
2m

M2
0

M2
2m

Oμν
T Γþ−

T , Γ⊥−
T

−12M0
0
k0z

μMð1−ρþÞ
−12M0

0
k0z

μ00Mð1−ρ00þÞ
12mð1−2x0ÞM02

0

M2−4m2

12mð1−2x0ÞM02
0

M02
0
−4m2

3In Ref. [26], the term 1 − ρþ in Eq. (A9) is absent but the
inclusion of this term in this work guarantees the process-
independent decay constant in the LFQM.
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where ½ST�on ¼ 4PþM0
0k

0
z. Now, from the normalization of

ψ3;PðxÞ, i.e.,
R
1
0 dxψ3;PðxÞ ¼ 1, we obtain

fT ¼ Nc

Z
1

0

dx
Z

x

0

dx0
Z

d2k⊥
8π3

χðx;k⊥Þ
1 − x

½OT
BS�on; ðA12Þ

where ½OT
BS�on ¼ −12M0

0k
0
z=μ̃M.

Finally, applying the type II link given by Eq. (A7) to
Eqs. (A4) and (A12), we obtain our LFQM results for
ðfA; fP; fTÞ defined by Eqs. (20) and (26). The on-mass
shell BS and LFQM operators Oon of the three decay
constants with all possible current components are sum-
marized in Table VII.
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