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In the phenomenology of strong interactions most physical states acquire a substantial width, and thus
can only be defined in a model-independent way by pole positions and residues of the S-matrix. This
information is incorporated in the Killén-Lehmann representation, whose spectral function characterizes
the shape of the resonance and can be constrained by the dominant decay channels. Here, we argue that
similar effects become important whenever beyond-the-Standard-Model particles possess a sizable decay
width—as possible for instance in cases with a large branching fraction to a dark sector or strongly coupled
scenarios—and show how their widths can be incorporated in the calculation of loop observables. As an
application, we consider the anomalous magnetic moment of the muon, including both the direct effect of
new physics and the possible indirect impact of a broad light Z’ on e*e™ — hadrons cross sections.
Throughout, we provide results for a general spectral function and its reconstruction from the one-loop
imaginary part, where the latter captures the leading two-loop effects.
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I. INTRODUCTION

While the existence of physics beyond the Standard Model
(BSM) is established by experimental observations, in
particular of neutrino masses and dark matter at cosmological
scales, the properties of the required new particles and
interactions remain unclear. Therefore, these observations
are insufficient to construct the fundamental theory super-
seding the SM. Anomalies in precision experiments, see,
e.g., Refs. [1-3] for recent reviews, suggest certain patterns
for the novel interactions, most notably the violation of
lepton-flavor universality, but only the ratio of couplings over
masses can be accessed and the widths of the new states
remain elusive. Nonetheless, for a given fixed effect in low-
energy observables, the couplings must increase with the
mass, leading unavoidably to larger widths of the new states.
In fact, bounds on the couplings of new particles from
perturbativity and unitarity have been derived in this context
[4—6]. Importantly, even below these bounds the width of the
new particles is sizable and such large widths were used in
several models to avoid or weaken collider bounds [7-9], in
particular by decays to invisible final states [10-21].
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Examples include eTe™ — utp~ + invisible, ete™ — y +
invisible searches [22] as well as monophoton and monojet
searches at the LHC [23-25]. Therefore, the question arises
how to properly include broad width effects—in particular in
strongly coupled regimes, as arise naturally in composite
[26,27] or extradimensional [28—-30] models—into the cal-
culation of low-energy observables. In fact, this problem has,
to the best of our knowledge, so far not been addressed in the
context of BSM physics.

Here we argue that this outstanding problem can be
solved via the application of the Kallén-Lehmann (KL)
spectral representation [31,32], which describes the general
form of a time-ordered two-point function of an interacting
quantum field theory. It can be derived on general grounds
by inserting a complete set of states and using Lorentz
invariance, with a result that makes the analytic structure of
the two-point function manifest. The KL representation for
a scalar particle is given by

Ay(p?) = /0oo ds

where the propagator of the free theory with squared mass s
is convolved with a general spectral density p(s) [subject
to the normalization condition [ dsp,(s) = 1 and positivity
constraint p,(s) > 0]. A one-particle state corresponds to
an isolated pole in p,(s), multiparticle states to a branch cut
starting at the respective threshold sg,, and bound states to

Py(s)
p*—s+ie’

(1)
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FIG. 1. Generic form of the KL spectral function p(s). Single-
particle poles show up as § functions at the respective mass,
s = M?, while multiparticle states lead to a continuum that starts
at some threshold sy, below which bound states are possible
(indicated by the narrow lines).

additional poles below sy, (see Fig. 1). While the existence of
such spectral representations is a general nonperturbative
result, a practical application concerns the incorporation of
width effects in the phenomenology of strong interactions,
e.g., by improving Breit-Wigner (BW) parametrizations [33]
through variants with good analytic properties [34-36],
which can then be used in loop calculations without gen-
erating spurious imaginary parts. As an added benefit, the
denominator of the KL representation can be efficiently
integrated in higher-order computations as it resembles the
standard Feynman propagator with s = M2, so that merely
the final result has to be convolved with the spectral function.

In general, once a resonance is located deep in the
complex plane—the f((500) [37—41] and the K{(700)
[42,43] being typical examples—only a description in
terms of the pole position and its residues is viable.
However, for moderate widths—such as the p(770), with
I',/M, ~20%—a KL representation with spectral function
derived from the main decay channels (potentially supple-
mental by centrifugal-barrier factors [44,45] to dampen the
high-energy behavior) is often phenomenologically suc-
cessful, with resonance properties close to the actual pole
parameters [39,46,47]. In particular, representations of the
form (1) can be used to implement resonance effects in loop
observables without introducing unphysical imaginary
parts below the respective thresholds [36,48].

The main point of this article is that a similar strategy can
also be applied to physics beyond the SM, whenever the new
particles acquire a sizable width. In general, the results are
formulated in terms of a spectral function that needs to be
determined from experiment—a prime example in the SM
being hadronic vacuum polarization (HVP). In the absence of
data, the spectral function can still be constrained from the
perturbative imaginary part once a given decay channel is
assumed, especially, the threshold behavior and the func-
tional form in the vicinity of the resonance, and systematic
improvements are possible by going to subleading orders in
perturbation theory [49-51]. In the following, we will first
present the general formalism, including the explicit form of
the one-loop spectral functions for different quantum num-
bers of all particles involved, before turning to the application

to the exemplary case of the anomalous magnetic moment of
the muon.

_IL SPECTRAL FUNCTIONS AND
KALLEN-LEHMANN REPRESENTATION

While the form of the KL representation in Eq. (1) holds
in general for a scalar particle, for practical applications the
spectral function is required. In principle, in the case of a
broad resonance its form can be extracted experimentally,
e.g., from scattering processes involving the decay products
that give rise to the continuum in Fig. 1, but already for
hadronic reactions a complete measurement of spectral
functions is complicated. However, useful approximations
to p(s) can be obtained for instance by analytically
improved versions of BW parametrizations [34-36], in
which case the energy dependence can be constrained via
the imaginary part of the self-energy, matching the imagi-
nary part of Eq. (1) to the imaginary part of the resummed
Dyson series. The result for the decay of a scalar ¢ with
mass M, derived in Appendix A, can be written in the form

zZ V/sC(s)

7 (s—M?)? +s[(s)?

S e a6 s, @)

¢p—K 2
K=¢1$.F\ Fs Yok (M)

py(s) =

I'(s) =

with total width I'=Ty_4 4 +Ty_pr,. The energy
dependence is described by

M2 (s, M2, M3)

Vit (8) = Ik :
M2 (s,m3, m3)
YpF Fy(8) = ST —
X (s —m}—m3 —2Eymimy),  (3)

with the Killén function A(a,b,c) = a*>+ b> + > —
2(ab + ac + bc), masses M; (m;) for the scalar (fermionic)
decay products ¢; (F;), and a parameter &, = [(Ch)? -
(C€)2/1(C%)? + (€%)?] € [-1.1] that describes the chi-
rality of the couplings, see Appendix B. The thresholds
are s 4, = (M + M,)?%, sp,r, = (m; + my)?. Finally, the
parameter Z is to be determined from the normalization
condition [ dsp,(s) =1, and Eq. (2) generalizes accord-
ingly when further decay channels contribute. In the form
of Eq. (2), mass and width of the resonance (together with
branching fractions and masses of the decay products) need
to be provided as input. If the width is sizable but not too
large, it can also be calculated perturbatively, see Eq. (B8),
in which case inserting the KL representation into a one-
loop diagram captures the leading two-loop effect, and
similarly at subleading orders [49-51].
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For nonchiral fermions the KL representation generalizes

to [52]
Ar(p) —/0

involving two spectral functions with positivity conditions
for p;(s) and v/sp;(s) — p»(s) as well as the normalization
J dspi(s) = 1. The determination of the spectral function
in terms of the imaginary part of the self-energy is accurate
up to terms of second order O((s — m?)?) in the expansion
around the resonance mass m. At the same level of
precision we find that p(s) = p2(s)/+/s = pr(s), while
the generalization to chiral fermions, given in Appendix A,
can potentially introduce a first-order correction. The result
for a broad fermion F with decays to fermion (F’) and
scalar (¢") or vector (X") becomes

ﬂpl(_)—i_pZ( )’ (4)
p>—s+ie

. _g mI'(s)
Pr) = T T ms TGP
0= T T O

with total width I' = 'y gy + I'p_, iy, thresholds sy =
(mpr + My)?*, spy =(mp +My)?, and energy dependence

M2 (s, M, M3,
Yr—rg (S) :T
X (s—i—m%, —Mi/ +2§(/)/mp/\/§),

A (s,mE, M%)
Yr-rx (8) = g2

+3M3, (s +m2, — My —2Eymp/s)],  (6)

A(s.m2,. M2,)

where &y =(CE-CR)/(CR+CR).  &x=(CE-CP)/
(C2+C%) again determine the chirality of the couplings
(see Appendix B) and Z follows from the normaliza-
tion [dspp(s) = 1.

Finally, the generalization of the KL representation to the
spin-1 case becomes complicated by the presence of
unphysical degrees of freedom in the covariant formulation,
and thus the need to specify the choice of gauge [52]. In
Feynman gauge, the Goldstone part can be evaluated using
Eq. (2), while the spectral function for the transverse
component

v «© pX(S)
A (p) =g | ds—2XT 7
K =g [TasS20 )

takes the form

zZ VsT(s)
px(s) =— 23\2 2
m (s —My)* + s[[(s)]
Yx—k(s
I(s) = Fer 250 g5 5. (8)
K= ,.F\F, yX—)K( X)
with
PP (s, M3, M3)
yX—’¢1¢2(S) = T’
A2 (s, m?, m3
YX—F P, (S) = % [—A(s, m% m%)

s
+ 3s(s —mj —m3 +2mymyéyx)], (9)

and & = [(CY)? - (CH2)/[(CL)* + (CX)2)

In the application of the preceding expressions in loop
integrals, one additional subtlety concerns the high-energy
behavior. To ensure the required decoupling limit for large
momenta, Eq. (1) needs to behave as A, (p?) ~ 1/ p?, which
reproduces the normalization condition [ dsp,(s) = 1asa
superconvergence relation [53]. However, the exchange of
limits here is delicate, and in general subtractions may be
necessary [54]. Given that our derivation of the spectral
functions p,, pp, px is only accurate up to terms
O((s — M?)?) in the first place, a convenient way to ensure
convergence is based on the observation that multiplication
by the factor

E) = (Z’M)" S O((s— M), (10)

s+ M?

changes the high-energy behavior, without affecting the
resonance physics at the claimed accuracy. Similar relations
have already been used in the derivation of Eq. (5), see
Appendix A, so that in this case the superconvergence relation
is already well defined, while for the bosonic cases n = 1 is
sufficient to ensure convergence. Physically, the necessity to
introduce modifications of the high-energy behavior as in
Eq. (10) originates from the momentum factors associated
with higher spins. In hadronic physics, the same effect can be
achieved by adding centrifugal-barrier factors [44,45], but, in
either case, ultimately the behavior of the spectral function off
the resonance needs to be extracted from experiment.

The expressions presented here determine the amount of
information that can be gleaned from resumming the 1-loop
self-energy diagrams, most importantly, the correct thresh-
old behavior of the spectral function. We illustrate the
spectral functions for scalars and spin-1 particles for the
minimal integer n required to achieve convergence in
Fig. 2, but emphasize that the formalism is much more
general, and becomes most powerful in cases in which the
spectral function can be constrained from experiment.
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FIG. 2. Spectral functions for the decay of scalars and spin-1
particles to a pair of fermions or scalars with mass m/M = 0.4
and a width I'/M = 0.2 for &y 4 = £1.

III. ANOMALOUS MAGNETIC MOMENT
OF THE MUON

Broad new states will also leave their imprint in low-
energy precision observables. As a specific and very
relevant example we consider here the anomalous magnetic
moment of the muon a, (see, e.g., Refs. [55-67] for the
analysis of generic BSM scenarios). In Appendix C we give
the expressions for BSM effects in a, [56], generalized to
the case of sizable widths using the KL representation.
Depending on the size of the width such effects could
significantly alter the parameter space required to explain
the current 4.2¢ discrepancy between experiment [68—72]
and the prediction in the SM [73-97] when HVP is derived
from ete~ — hadrons cross section data. In fact, in this
data-driven evaluation a KL representation is used to
implement, in a model-independent way, the effect of
hadronic resonances.

The leading-order HVP contribution to a
represented by the master formula [98,99]

2 fo K
a/l;lVP—(%) / ds%Rhad(s),

h

L can be

3s
Rhad(s) = WU(€+€_ — hadrons(—i—y)), (11)

where K (s) is an analytically known kernel function and
the integration threshold sy, = M,2,0 is determined by the
7% channel. Its derivation starts from a dispersion relation
for the subtracted vacuum polarization function

2 e
(k%) = k—/ ds
m Js,

which amounts to a KL representation for the two-point
function of two electromagnetic currents with a spectral
function determined by the imaginary part

ImTI(s)

o-my W

ImII(s) = =5 Ryua(5) (13)

The kernel function K(s) is obtained by performing the
Feynman-parameter integral in a,, but the derivation via
Eq. (12) also admits a spacelike master formula

2
Xmmy,

afVP = g/O1 dx(1 — x)I(s,), (14)

T

In this form, Eq. (14) can be formally evaluated for any
polarization function I1(s) regardless of its analytic proper-
ties without running into obvious inconsistencies, but the
numerical result can be altered dramatically. As an exam-
ple, the calculation of the 7y contribution from Ref. [100]
using an asymptotic expansion misses the correct value by
a factor 10, which can be traced back to the assumed form
of I(s) that does not fulfill the dispersion relation (12).
This illustrates the importance of working with a repre-
sentation of the two-point function with good analytic
properties, see Appendix D for a more detailed analysis. In
particular, the 7%y example shows that the mistake incurred
when violating analyticity properties is not always sup-
pressed by the width of the states, since in this case the
correct imaginary part actually scales with the inverse of the
small width of the @, which ultimately produces the sizable
enhancement of the 7’y contribution.

A simple example for a broad new state in a,, is a neutral
gauge boson (Z'). In particular, an L, — L, symmetry
[101-104] constitutes an anomaly-free extension of the
SM and is known to be capable of explaining the tension in
a, [105-108] while avoiding the bounds related to elec-
trons (e.g., from (g,), and eTe™ — e™e™). Furthermore, it
can serve as a portal to dark matter [109—115], which at the
same time weakens collider bounds by introducing decays
into invisible final states. In fact, a Z’ with such a sizable
invisible width was also studied in the literature as a
possible solution to the b — s£7¢~ anomalies [10-21].
We therefore consider

Ez/ = CX‘(]/)_(]/”}{Z}Q + H.C., (15)

with a generic mass M, as an example to illustrate
the impact of a large width." As can be seen from Fig. 3,
the contribution to a, decreases compared to the narrow-
width limit, with the amount of the suppression depending
on the mass of the decay products and the assumption for the
high-energy behavior of the spectral function.

Another possible application concerns the determination
of the HVP contribution itself, given that the global 2.1¢
tension between et e~ data and the lattice-QCD calculation

'While we are assuming that the related U(1) symmetry is
broken spontaneously, the details of the scalar sector are not
relevant for our purpose.
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FIG. 3. Relative effect of taking into account a nonzero width,

compared to the case in which it is neglected, of a Z’ boson in a,
for M, = 1 GeV as a function of I',,/M, for different powers
(n=1, 2) in Eq. (10).

by BMWc [116] has now been confirmed at the level of
about 4¢ for the intermediate window in Euclidean time
[117] by several lattice collaborations [118—122]. While
independent lattice-QCD calculations of the entire HVP
integral will require more time, some first conclusions can
be drawn about the energy range in which changes to the
ete™ — hadrons cross section would need to occur; first,
the changes cannot occur too high in center-of-mass
energy, otherwise serious tensions in the global electroweak
fit would arise via the hadronic running of the fine-structure
constant [123-126], and this condition is confirmed by
direct lattice-QCD calculations of the hadronic running
itself [116,127]. On the other hand, the deviation in the
intermediate window shows that not all modifications can
occur below 1 GeV [128], suggesting a more complicated
pattern. In particular, already for the leading 2z channel
large changes beyond the quoted experimental uncertain-
ties would be required, and much larger relative changes for
the subleading hadronic channels. In this situation, one
could be inclined to entertain a BSM solution [129,130].
However, arguably the most promising candidate, a broad
7' interfering destructively with the SM signal, was shown
to be excluded by other observables in Ref. [129], assuming
a modification of the ete™ — z7x~ cross section accord-
ing to

2

SM-+NP
Cn €78
o =1+ L , (16)
On s =M%, +iMyT'y

where €, = ¢g¢(gi — ¢d)/e* collects the Z' couplings
[129]. Since the interference before and after the resonance
is opposite in sign (and cancels in the limit of a narrow
resonance), the required net destructive interference mostly
relies on the energy dependence of o3M and the kernel
function in Eq. (11). This effect can be enhanced by
replacing the standard Z’ propagator via a KL representa-

tion. An example is shown in Fig. 4, which illustrates how

-10

-12+

- -14
TS’ —- constant 'z
x -16r
S]\ _18V—r:3withn:1
—7r=>5
20 =7

0.1 0.2 0.3
A/fl [GeV]

FIG. 4. Shift Aa, due to a BSM effect in HVP for My =
0.8 GeV, 'y =0.2 GeV, and ¢, = 0.02, as a function of M,
for spectral functions with y, (s) = (s —4M?)"/?/s. The case
r =3, see Eq. (9), requires n = 1 in Eq. (10), while the other
variants, illustrating the impact of modifying the threshold
behavior, converge for n = 0. The reference point for a constant

width as in Eq. (16) (dashed line) should be treated with care due
to the spurious imaginary parts below threshold.

the asymmetry induced by increasing the threshold or
changing the functional form above can substantially
increase the change Aa, for the same set of couplings.
We emphasize that the constraints derived in Ref. [129]
remain severe (see Appendix E for the pion mass difference
and Appendix F for LEP bounds), so that one would likely
have to push the Z’ mass beyond 1 GeV (including the
effect on a variety of hadronic channels), introduce a large
width, and tune the energy dependence of its spectral
function to try and find a viable model.

IV. CONCLUSIONS

In this work we presented a general framework how
sizable width effects of new resonances can be consistently
and efficiently incorporated into loop calculations. In
particular, we showed how the underlying Kaillén-
Lehmann representation can be matched to the Dyson
series to constrain the properties of the spectral function
from the perturbatively calculated one-loop self-energy,
capturing the leading two-loop effect in the case of a broad
resonance. We calculated these spectral functions for
several cases and showed how the calculation needs to
be modified if new particles in one-loop diagrams acquire a
large width, giving the general results for a, as an example.
As a concrete application, we discussed how the effect of a
broad Z' could be included both directly in the calculation
of a, and indirectly via its impact on the e™e™ — hadrons
cross section. Our results are applicable in quite general
circumstances, reducing the calculation to the narrow-
width limit for general masses together with a subsequent
convolution with the spectral function, and can therefore be
applied to a wide class of processes.
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APPENDIX A: DYSON SERIES AND KL
REPRESENTATION

Writing the one-particle-irreducible self-energy of a scalar
particle with bare mass M|, as X(p?), the resummation of all
self-energy insertions into a geometric series gives

i
pP=Mi+2(p*)’

iAp(p?) = (A1)

To recast this resummation into a KL representation (1), one
can proceed as follows: absorbing the real part of the self
energy into the mass renormalization (up to quadratic
corrections) by means of a Z factor defined by

p? = M§+ReX(p?) = Z7'(p? = M?) + O[(p* = M?)?],
(A2)
one finds the well-known expression
iz
p? = M? +iZImZ(p?)

iAD(Pz) = (A3)

for the resummed propagator in terms of the on shell
renormalized mass M, which is valid up to higher orders
in the expansion around the pole.2 Equation (A3) reproduces
a BW parametrization [33] once the energy-dependent width
I'(s) is identified via ZIm X(s) = +/sI'(s). The key idea in
deriving the spectral function from such BW parametriza-
tions is that, while the analytic properties of the resummed
result (A3) are at odds with the KL representation (1), the
imaginary part does provide a useful approximation as long
as the resonance does not become too broad. Matching the
imaginary parts then gives

_ZJATG)
P8 = L I ST

where Z can be determined from the normalization condition
[ dspy(s) = 1. In particular, p,(s) vanishes below the first
threshold sy, starting at which a nonvanishing imaginary part
is generated in the self energy, as required by analyticity, and

(A4)

2At higher orders in perturbation theory additional subtleties
arise in the definition of the resonance parameters, see
Refs. [49-51] for the W and Z propagators in the SM.

the correct threshold behavior is inherited from Im X(s) as

well. In the limit of a narrow resonance, I'(s) =T — 0,
Eq. (A4) collapses to a & function,
py(s) = 8(s — M?), (AS5)

where we used that the normalization determines Z = 1 in
this case, and Eq. (1) reduces to the free propagator with
mass M.

In the spin-1/2 case, the KL representation generalizes
to Eq. (4). To derive expressions for the spectral functions
p1/2(s) from the imaginary part of the self energy we again
start from the Dyson series

i

iAp(p) :ﬂ—mo +7Z(p

SESOE

where we separated the self-energy, X(p)=pZ(p?)+
%,(p?) in analogy to the spectral function. Up to higher
orders in the expansion around the renormalized mass m this
gives

iz
y—m+iZ(pImX(p

iAp(p) = (A7)

?) +ImE,(p?))
where the narrow-width limit suggests the identification of an
energy-dependent width T'(p) = p T (p?) + I',(p?) with
I(s) =2ZImZ(s), T[y(s) =2ZImX,(s). Neglecting
higher orders in the T';(s), this gives the matching relations

ZE2T (5) + mDa(s)
2

P = L ST
(s) = stl“l(s)—k‘*ml"(s)
P T s S

PR = S (o () + T (0))

+ 2msT ()5 (s). (A8)

In particular, in the limit s = m? one can read off I' =
ml(m?) +T,(m?) to make the identification with the
constant width of the resonance. The positivity constraints

translate to

s + m?

L'y (s) +mly(s) 20,
Vs (s)

and Z can again be determined from the normalization
condition for p;(s). ForI'(s) =" — 0, Eq. (A8) reduces to

—T(s) 20, (A9)

pi(s) = 8(s=m?).  pa(s) > md(s —m?).  (Al0)
where Z = 1 follows from the normalization of p; (s). In the
narrow-width limit one thus has /sp;(s) — p,(s) = 0 and

Eq. (4) reduces to the free propagator with mass m.
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For the case of chiral fermions, Eq. (4) generalizes to

where the spectral functions follow from the matching
relations

R/L Zs+m [y (s) 75 m AP [y (s) +mI(s)
) =D P
+

ZmsT(s) + =T (s)
P2 = TSP
s—l—m

5— (ST ()P + [N (s)P)

’

s[C(s))* =

BICLR NS RINTS

+2msT ()T, (s) >

with

Ty = (TF(s) +T7(5)),

N = ] =

ATy = - (Pf(s) = TE(s)), (A13)

decomposing X (s) and T'j(s) into their left- and right-
handed components accordingly. This results shows that, as
long as I'; is replaced by the mean of left- and right-handed
contributions, the chirality difference enters always sup-
pressed by a kinematical factor s — m?, so that its effect
vanishes on the resonance. For most situations with
moderate widths in which a KL representation with spectral
functions reconstructed from the self energy applies, it
should therefore be sufficient to work with Eq. (4).

By the same argument, we can reexamine the relations
(A8). If corrections that scale with (s — m?)? areignored, e.g.,

S m2
*2 ([T (5)]2 + [Ta(5)]?) + 2msTy (5)Ta(s)
= m/s[V/sT (s) + T (s)]?
V1) e 1O Y (A14)

2(V5 + m)?

the spectral functions simplify to

_pals) = 2/
Vin() =pls) = A AT

[(s) = VAT (s) + Ta(s),

(A15)

where again the constant width is identified as ' =
[(m?) = mI'j(m?) + T5(m?), and both positivity con-
straints are automatically fulfilled as long as I'(s) > 0.

APPENDIX B: SELF-ENERGIES

For the decay of a scalar particle ¢ according to

Ly = A¢¢¢1¢§ + F\(C} + Chys)Fop + He.,  (BI)
the imaginary part of the self-energy is given by
m=? = —L_(4(C)2[s — (my + my)?]
87y/s S
+4(Chs = (my —my)? +243),  (B2)
with center-of-mass momentum

for the decay into particles with masses m, m,, and step
functions O(s — sg,), sq, = (m; + m,)? implied in Eq. (B2)
and the following. Since we are mainly interested in the
energy dependence, as input for Eq. (2), we only give a
minimal variant of Eq. (B2) for distinguishable complex
scalars ¢, ¢, and Dirac fermions F;, F,; symmetry factors
may need to be added for other cases.
For the fermion Lagrangian

Ly = F[Cyr* + Clyy'ys|F'X,,

+ F[Cs + Cpys|F'¢' +He., (B4)
we get
ImiF:L C/2 1 +(\/E_mF/)2 S—i—m%/_M?(/
BICCA N ST s
2
+ 2 S+ mp - M,
§ 2s
+{C¥ - C3.C¢ - Cp.mp — —mp},
q (\/E— mpl)2

ImX} = <C/V2[ -4 +C? ) mp

8/ M2,

+{C¥ = C;.C§ - Cp.mp — —mp},  (BS)
where the spin-1 contribution has been evaluated in
Feynman gauge together with the appropriate Goldstone-
boson contributions. We checked explicitly in general R,
gauge that the linear combination /s Im £ (s) + Im =4 (s),
which enters in Eq. (A15), is indeed gauge invariant.

Finally, for the decay of a spin-1 particle we use the
Lagrangian

Lx = iCx(¢10,3 — p10,1) X"

+ F,(C¥r* + CXy*rs)F2X, + Hee., (B6)

leading to
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ImIX =

8r/5 \3

4 (8 P+ 8mm[(CE)2 — (€] +4[(CH? + (€1 (s—m% —

(B7)

)

where XX is defined by the coefficient of the ¢** term, as required for the calculation in Feynman gauge. The spectral
function for the Goldstone-boson contribution can be derived as for the scalar case above.
For completeness, we also provide the explicit perturbative expressions for the partial decay widths as they arise in the

narrow-width approximation

AV (MG, MT, M3)

I’ —, - )
P—=r 8ﬂ'M3 [
AVE(MG, mi, m3)
Cpmrirs =gy (COPIMG = (my b ma)?] o (CRPIMG = (my = ma))),
A2 (m, mF”M /) ” 2 2 ” 2 2
Lropy = 16m3. (Cs[(mp +mp)” = M,,;/] + Cpl(mp —mp)* - M¢/])’
M2 (m%, m2,, M2,)
Cpopy = 16an;/12 (CPA(mE, m%, M%) + 3M3%, ((mp — mp)* — M;,)]
+ CR[A(mz, m% ?{/) +3M35 ((mp + mp)? = Mé/)])
PP
Xohd: = D4My, x
MM m2, m2
Py = DT (GO + (my + o ) (M~ (o) = )
12nM%
+ (C?2M5 + (my = my)?) (M = (my + my)?)), (B8)
where again symmetry factors may need to be applied for L = p[Cyy* + Cay*ys|FX,
cases other than distinguishable complex scalars ¢; and + E[Cs + Cpys]F + Hee., 1)

Dirac fermions F;.

APPENDIX C: GENERAL EXPRESSIONS
FOR (g-2) u

General expressions for a, have been derived in
Ref. [56] for new interactions of the form

_ —0pm;Cy, /1 dx
0

Ay = 472
2 i d 2A

+me’; V/ 5 x2 5 {x2<1—x+—>
4n o AP (x,mp, M) my
m2C% [1 dx m

_<r £ S/ 0 — xz(l—x+—F>+
87 o AW(x, mF,M¢) m,

+{Cy = C3.C5 = Cp,mp — —mp},

where

A (e 02) {x(l - X) (x + ZA)

including new fermions F, (pseudo)scalars ¢, and (axial-)
vectors X, with masses mp, My, My, respectively. For
completeness, we reproduce the result

2A2
1 -
s (143

x(1 —x)A2< mp>}
o (e B
2M% my,

m2C% [1 d
Co 5 S/ @ x2 2 x(l—x)<x+ﬂ)
87 0o A (x,mF,M¢) my,
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(U(x’ mZF’ M2) — m/%XQ + (m% — mﬁ)x + M2(1 — x), Eq. (C2) it is straightforward to read off how the full result
emerges from summing the spin-1 part in Feynman gauge
@, mi M?) = mﬁxz + (M2 - mﬁ)x +mi(1=x), and tﬁe additional (pseﬁdo)scslar copntributionypropor%iongal
A=mp—m,, (C3)  to A? (for Qx > O there are also mixed diagrams with both
spin-1 and Goldstone-boson propagators). The matching of
the couplings, C3 = C}A?/M%, can be derived independ-
and the charges Qr, Qx, Oy, are given in conventions in  ently by demanding that the tree-level u—F scattering
which Q, = Qp + Ox = Qr + Q4 = —1. In Ref. [56] amplitude be gauge independent.
these relations were derived in unitary gauge for the As a first generalization we consider the case in which
(axial-) vector contribution, but in the form given in  the fermion width is neglected. This gives
|

a, = _Qszcz /ds/ ™ mF’s) {x(l —Xx) <x+%)px(s) +x22?2 (1 —x+nnz—:>PG(S)]

QXm /dsdt/ deS, X, mF)[ (1 —x+%>ﬂx( )Px(f)‘f’%Px(s)PG(t)

“ u

(1-x)A? mg _ 0pm;Cy ! dx 2(1_ oM
+—F \/7 (x—i—m—ll)ﬂc(s)PG(t)} 872 /dqus(S)A A(l)(x,m%,s)x 1 x+m—#
m2
7
2

C? 1
+ Q[ dsapy (gt [ (1= (x+ ) £ ) + (65 = GG Chme = o). ()
0 my,

|
where and py, pg, py are the respective spectral functions (pg
denotes the Goldstone-boson part). As a final step, we
provide the general result when also a finite width in the

Lg) (x, m%) = - Ly (C5) fermion propagators is admitted,
|
—Qpm,C? 1 _
=2 [ dsrdu [ de{(1 =)L) (r9)m, = 2)0f (00 () + 2plox(5)
xAA, A,
+ 55 my (1= )l (0pf () + pulLia) (v, )p6(5) + =5 Ao B (5)L4 (x. ) = xlpa(s)}

; Q"%;C% [asaran [ a1 {x B P () = m, <x T %) pf(u)] px(s)px(6) + 232 (Wpx()p6 (1)

*%Wﬂl( )+ 5 >>pG<s>pG<r>}
m, 2
— QFgﬂzc /dsp(/) /dtdu/ dx{x[m (1 —x)pl (t )pl (1) + po)L gu)(x s) + Apm[ASu)( )Lﬁ,i)(x, 5) — ]}
G [ dsaips(sipyo) [ au [t = x)mnof )+ pE LY (0
+{C} = C3.C5 = Ch.pf = —ph}, (©8)

with fermionic spectral functions p{, p4, Ay = /s —m,, as well as
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AS)) (xt3)
LE;)(x, S) = Z‘A%;IM) ’
AL(s) = %(Nl)(x, £5) + A0 (x, u, 5),
Ap,, = PLOPE) = pTwpE (1)
t—u
Pru %(pl (0)p3 (u) + pi (w)p5 (1)) ©

APPENDIX D: 7y CONTRIBUTION TO HVP

In a vector-meson-dominance (VMD) picture, the cross
section for e*e™ — 7%y can be expressed as

2 2.3 ]M2
alere = 20) =250 (122 ) Iy (.00
Fo,
Y }’ =1 ,
”},y(() 0) +2 Z M2 —s—lMVFV
1
Fro,,(0,0) = (D1)

Fon = 42F,
pa

which upon insertion into Eq. (11) produces a,'foy:

4.23 x 1071, close to the full result @’/ ~ 4.38(6) x 1010
[84]. In contrast, the asymptotic expansion from Ref. [100],

also based on a VMD model for F .-, (s,0), gives aﬁoyz
0.37 x 10710, an order of magnitude smaller than the correct
result. The reason for this mismatch can be traced back
to the analytic structure; the VMD model employed in
Ref. [100] does provide a realistic description in the
spacelike region, but it does not properly include the
imaginary part of the HVP function. Setting M, =

M, = My, the VMD model produces

(12 212 pgé My N\

(k) = —a*F7, My, KMz _k2> 1(k )—1(0)},
4

1 1-x y
I(K*)= [ d d .
(&) A x% ylezzO—l—yM%,—kzx(l—x)

Extracting the imaginary part from /(k?), this diagrammatic
calculation reproduces Eq. (D1) by means of Eq. (13), but,
crucially, with widths 'y, = 0. The resulting function IT(k?)
as defined by the VMD model, Eq. (D2), therefore cannot be
continued into the timelike region. However, good analytic
properties are important for the correct evaluation of the loop
integral, and it is therefore no surprise that the phenomeno-
logical value is severely underestimated. Indeed, plugging in
[1(k?) from Eq. (D2) into the spacelike master formula (14)
gives a value of 0.41 x 10719, very close to the result quoted
in Ref. [100]. As the derivation of Eq. (14) assumed the
validity of the dispersion relation (12), this illustrates how the

(D2)

evaluation of loop integrals can fail if the correct analytic
structure is not respected. In this case, it is ultimately the
narrow width of the @ meson that leads to a sizable
enhancement of the 7%y contribution.

APPENDIX E: PION MASS DIFFERENCE

A key constraint on the couplings of a Z’ to the light
quarks in Ref. [129] derives from the pion mass difference.
In the SM, most of the difference [131-133]
AM2 = M;‘;+ —Mio =1.26116(13) x 107> GeV?, (El)

comes from electromagnetic interactions, with strong iso-
spin breaking suppressed by (m, — my)% This QCD effect
can be estimated as [134]

20,M% (m, —my\?2
F72[ m, + mgy

= 0.024(13) x 1073 GeV?,

AM72t|QCD =
(E2)

where we used [; = 2.5(1.4) x 1073 [135] (in line with
Refs. [134,136]). With M+ — M o|qpp = {4.622(95),
4.534(60} MeV obtained in Refs. [137,138], respectively,
we conclude that

AM72r|Z’ = AM% - AM72z|QCD - AMizr|QED

= {-0.032(29), —-0.008(21)} x 1073 GeV?* (E3)
could still originate from a Z’ contribution. The biggest effect
for M, < 1 GeV comes from the elastic contribution, which

can be evaluated within the Cottingham approach [139-147].
Following Ref. [147], one has

M |3k ——/ ds[FY (-

=133

<4W +— " (W— 1))

) x 1073 GeV?, (E4)
where W = /1 4+ 4M2 /s, i.e., the elastic part saturates the
observed mass difference within uncertainties. The analo-
gous formula for the Z’ contribution reads

u /d\2 0
M2 e]/ — <9/V _gV) / d FV 2
T N +M2, Fr(=s)]

<4W+W(W—l)>, (E5)
notably of the opposite sign as Eq. (E3). Allowing for a Z’
contamination at the level of the uncertainty in Eq. (E3)
produces bounds

| — ¢d] <0.05...0.08, My = (0...1

) GeV,  (E6)
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corroborating the estimate from Ref. [129]. The limit
becomes weaker with increasing Z’' mass according to the
decoupling with 1/(s + M?2,), but in the mass range inter-
esting for e*e~ — hadrons data it remains very stringent.

APPENDIX F: LEP BOUNDS FOR Z' COUPLINGS

Including, compared to Ref. [129], the contribution from
the SM Z boson, we find for the modification of the
ete™ — gq cross section due to a light Z’ at LEP [148]

e 44
SM-+NP Iq 1 — v s
99 =14+ Zg/\ﬁgv 4Q,c%, 5%, s—M%, (Fl)
oot 0y | B s [(y”v)“r(y;)z][(y“’/)“r(yi)2]( s )2’
20,353, s—M>2, (40,c%,s3,)* =M,

where sy, = sinfy, cy = cosfy, and the Z-boson cou-
plings gy 4, gi’/’ 4 are given in the conventions of Ref. [131]
(no summation over quark flavors is implied). Assuming
again at most a 1% change in the cross section, the
Z-boson contribution tends to weaken the limits, with
les| <3.3(1.7) x 107 changing to |ey| <5.1(5.9) x
1073 for g =u (¢ =d) at \/s ~200 GeV (for smaller

|

center-of-mass energies probed at LEP the Z-boson
contribution becomes more important and thus the limit
weaker). Moreover, the measured cross sections are the
sum of ¢ = u, d, s, ¢, b, and therefore the limit is further
diluted if the Z’ does not couple in a flavor-universal way,
by a factor of 5 if only the coupling to a single flavor is
assumed.
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