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Branching ratio and CP violation of B — Kz decays in a modified
perturbative QCD approach
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We calculate the branching ratios and CP violations for B — Kz decays in a modified perturbative QCD
approach based on ky factorization. The resummation effect of the transverse momentum regulates the end-
point singularity. Using the B meson wave function that is obtained in the relativistic potential model, the soft
contribution cannot be suppressed effectively by the Sudakov factor. Soft scale cutoff and soft BK, B,
and Kz form factors have to be introduced. The most important next-to-leading-order contributions from
the vertex corrections, the quark loops, and the magnetic penguins are also considered. In addition, the
contribution of the color-octet hadronic matrix element is included which is essentially of long-distance
dynamics. Our predictions for all the branching ratios and most CP violations are well consistent with the
experimental data. Especially the theoretical result of the dramatic difference between the CP violations of
BT — K*7° and B - K7~ is in good agreement with the experimental measurement; therefore, the Kz

puzzle in B decays can be resolved in our way of the modified perturbative QCD approach.
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I. INTRODUCTION

Over the past 20 years, there has been a great deal of
interest in B — Kz decays. From B factory experiments, a
large amount of data about B decays has been collected. The
precise data revealed a significant difference between
experiment measurements and theoretical predictions. For
B — Kn decays, the expected CP violations of BT —
K*z° and B — K*z~ decays are roughly equal from
the theoretical point of view [1,2]. The branching ratios and
CP violations of B — Kz decays measured by experiment
are [3]

B(B* — K%)= (2.37 £ 0.08) x 1075,
B(B* - K*12°) = (1.29 £ 0.05) x 1075,
B(B® = K+z~) = (1.96 + 0.05) x 105,
B(B® > K°2%) = (9.9 £ 0.5) x 10°, (1)

)
)
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Acp(B* = K°z) = —0.017 + 0.016,
Acp(B* > K*+2°) = 0.037 +0.021,
Acp(B® = K*77) = —0.083 £ 0.004,
Acp(B® = K°2°) = 0.00 £ 0.13. (2)

One can obtain AAcp =Acp(BT = KT7°) — Agp(BY —
K*77) =0.120 £ 0.021 from the data given in Eq. (2).
The difference deviates from zero by more than 5¢. The
understanding of the experimental data of branching ratios
of B — K decays is also puzzling [4]. This is what is called
the B — Kr puzzle.

The B — Kz puzzle attracted a lot of interest from the
theoretical point of view. Theoretical analysis shows that
the B — Kz puzzle may indicate a significant enhancement
of electroweak (EW) penguin and/or color-suppressed tree
contributions [4-6].

The original predictions for branching ratios and CP
violations of B — Kz, nz decays in the perturbative QCD
(PQCD) approach can be found in Refs. [7-9]. To solve the
Kr puzzle in B decays, the next-to-leading-order QCD
corrections have been taken into account in the PQCD
approach in Refs. [2,10]. A soft factor that enhances the
nonfactorizable amplitudes has been introduced based on the
analysis of soft divergences that appear in higher-order loop
corrections in QCD and used to solve the Kz puzzle in
Refs. [11-13]. The authors of Ref. [14] made an effort to
understand the puzzling problem in the QCD factorization
(QCDF) approach [15-17] by considering scattering and
annihilation contributions. There are also works where
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new physics effects are considered to solve the Kz
puzzle [18-23]. All of these works can reduce the discrep-
ancy between theoretical prediction and experimental data,
and show positive signals to understand the puzzle, but there
is still a possibility to further study the Kz puzzle with a new
point of view.

In this work we study B — Kz decays in a modified
PQCD approach, with which B — zz decays have been
studied very recently in Ref. [24], where both the branching
ratios and CP violations in three B — zz decay modes
are well consistent with experimental data. It is found
that, using a B meson wave function that is obtained by
solving the bound-state equation in a relativistic potential
model [25-29], the suppression to the soft contribution
from the Sudakov factor is not large enough. A soft
truncation has to be introduced in an appropriate momen-
tum scale u.. When the momentum transfer is larger than
this critical momentum scale y.., the contributions to B — =
and B — K transition form factors can be calculated
perturbatively. And soft form factors need to be introduced
to include soft contributions with the momentum transfer
lower than the momentum scale of cutoff. With the soft
cutoff and soft form factors, the calculation of B — 7z and
B — K transition form factors becomes more reliable.

The branching ratios and CP violations of B — Kn
decays are calculated in this work. The amplitudes are
treated perturbatively when the momentum transfer is larger
than the soft cutoff scale. We also consider the important
next-to-leading-order contributions of the hard part from the
vertex corrections, the quark loops, and the magnetic
penguins. As for the soft part with a momentum transfer
lower than the cutoff scale, we introduce the BK and Brn
transition, as well as the Kz production soft form factors.
These factors are nonperturbative input parameters. To
improve the consistency between theoretical calculation
and experimental data, we find that the nonzero color-octet
matrix element (Kz|(57°¢g)(gT“b)|B), which is derived
from the analysis of the color structure of quark-antiquark
current operators, is necessary. With the appropriate input
parameters, our prediction of branching ratio and CP
violation is well consistent with experimental data.

The paper is organized as follows. The perturbative
calculations of leading-order contributions of B — Kz
decays are presented in Sec. II. The important next-to-
leading-order contributions are considered in Sec. III. The
contributions of nonperturbative parameters are investigated
in Secs. IV and V. The numerical results are shown in
Sec. VI. We conclude the analysis in Sec. VIL

II. THE HARD AMPLITUDES OF
LEADING-ORDER CONTRIBUTIONS
IN PERTURBATIVE QCD

When the momentum transfer in the transition process is
larger than the cutoff scale u,., which is used to separate the
contributions of hard and soft parts, the decay amplitude can

be treated perturbatively. Typically, the critical scale u, can
be approximately taken to be 1.0 GeV. In the perturbative
QCD approach, if B meson decays into two light mesons,
the process is dominated by one hard gluon exchanged
diagrams. The decay amplitudes can be arranged as the
convolution of the hard scattering process and meson wave
functions

M :/d3k1 /d3k2/d3k3¢3(k1,,u)c(u)
X H(kl’ k2’ k3’/’t)q)ﬂ(k2vﬂ)q)l((k3nu)’ (3)

where H contains the hard scattering dynamics which is
calculable using perturbation theory, C(u)’s are Wilson
coefficients, and @ (x)2™K are meson light-cone distribu-
tion amplitudes that absorb nonperturbative interactions
related to meson states.
For the b — s transition, the effective Hamiltonian is
given by [30]
G
Hep = =

V2
10
-V, (Z C;0; + cg_qogg>

V.(C,0f + C,0%)

; (4)

i=3

where V,=V,Vi and V,=V,V; are Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements, Gp =
1.16639 x 10~ GeV~2 Fermi constant, and the C;’s are
Wilson coefficients. The operators O; in the effective
Hamiltonian are

Of = (5ar*(1 = vs)ug) (it5r, (1 = 75)ba),
05 = (57" (1 = y5)ug) (igy, (1 = ys)bp), (5)

03 = (anﬂ(l - yS)bu)Z(Q;ﬂ/ﬂ(l - yS)q/ﬂ)7

Oy = (50" (1 - Ys)b/i)Z(EI};Vﬂ(l —75)4y).

/

q

Os5 = (5ar(1 = 75)ba) Y _(@pr,(1+ 15)4)).
q/

Og = (anﬂ(l — 75)b[})2(z];;}’;4(1 + yS)qu)’ (6)
q/
3 _
07 =5 Gar" (1= 15)ba) D e (@r, (1 +75))).
q,
3 _
00 =2 61 = 1)) e a1 + 1))
q/
3 _
09 - E(sayﬂ(l - yS)ba)Zeq/(q;iy#(l - yS)q;})’
q/
3 _
010 = 5 (sa}/”(l — yS)b/))Zeq’(q}ﬂ/ﬂ(l - 75)‘1;:)’ (7)

q
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g _ a
O8g = 8—7;2mbsa0ﬂy(] + yS)T(I/}GZ”bﬁ’ (8)

where a and g are the color indices. The summation of ¢’
runs through u, d, s, ¢, and b quarks.

The matrix element (0|g4(z)[z. 0]b,(0)|B) can be used to
define the B meson wave function

<wmmmm@®=/fw%6mww@,@>

where [z, 0] represents the path-ordered exponential

[z,0] = Pexp [—igsT“ Al daz"Al‘j(aZ)] (10)

We use the B wave function that is obtained by solving the
bound-state equation in the QCD-inspired relativistic
potential model [25-28], where the mass spectrum and
decay constants of the b-flavored meson system calculated
simultaneously with the wave functions are consistent with
experimental data.

In the rest frame of the B meson, the spinor wave

function ®Z,(k) is given by [28]

ot (f) = 18" (k)

{emo G5 3.

k_
+ (ﬁ + %) he — kli?’ﬂ} 75

+ (\%—%) _- k’iyﬂ}ys}a/ (11)

where Q and g represent the heavy and light quarks in the B
meson (bg), respectively. v is the four-speed of the B
meson which satisfies p% = mgv* and v* = (1,0,0,0),
and k is the momentum of the light quark in the rest frame
of the meson. k* and k, are defined by

_E xR

A

n', are two lightlike vectors with n’y = (1,0,0,F 1), and

k:t

K = (0,k',k*,0). (12)

K (l_c') is the function proportional to the B-meson wave
function

-

o 2N ¥y (k)
K(k) = VEEQ(E, +m,)(Eqg+mg)

(13)

with the normalization constant Ny = fLB1 /Wﬁ and the
B

B meson wave function
P, (k) = ayen kP alki+as (14)
where the parameters are [28]

a, = 4.557030 Gev—3/2,

a, = —0.397015 Gev2,

ay = —1.55+0.20 GeV~',

a, = —1.107539. (15)

In B - Kz decays, the mass difference of B and final
state mesons is large. The momenta of the outgoing K and 7
mesons are large, so the wave functions of light mesons can

be defined on the light cone [31-33]

Bb(b)‘g ‘ B E
£ 4
B%% @;ﬁ
d
B>m§< B>W<@<

FIG. 1.

Diagrams that contribute to the B — Kz decays.
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(7(p)2s(x)q;(0)]0)

/dmﬂkq@ expli(up -x—x, k1)), (16)

with the spinor wave function @7 being

CD;;/TrS = lfﬂ |:VYS¢71(”7 qu_)
¢a<u’ qu_)

Haysdp(u kg )

+ MﬂySO-ﬂDpuzv (17)

where f, is the pion decay constant and g, is the chiral
parameter with

Kz = mzzr/(mu + md)' (18)

¢r @p, and ¢ are the twist-2 and twist-3 light-cone
distribution amplitudes. In momentum space, the pion
wave function can be expressed as

fn
@75 =

Prs(u.ky i) — puzysdhp(u.kyy)

+u 75i0’w pypu ¢o’ (uv qu_)
g p-p 6

¢g(u7kql) 0 :|
6 akqlb ]/5’

0¢a (“ qu.)

(19)

— HaV5i0" D,

where ¢ (u, k,, ) = , P is the momentum with the
moving direction 0ppos1te to that of the pion, and the
energy is the same. For the wave function of the K meson,
|

one can get it by just replacing the distribution amplitudes
of the pion with that of the kaon [33].

There are eight diagrams contributing to B — Kz decays
in leading order (LO) in QCD which are shown in Fig. 1.
During the calculation, we keep the transverse momentum of
quarks and gluons. At the end-point region, i.e., when the
momentum fraction of parton x — 0, the transverse momen-
tum cannot be neglected. We encounter double logarithm
divergence such as a,(u)In? (k| /u) when soft and collinear
divergences overlap. These large double logarithms should
be resummed into the Sudakov factor [34,35]. In addition,
there are other double logarithms such as a,(u) In> x from
the QCD corrections of the weak vertex. This double
logarithm can also be resummed into the threshold factor
[36]. The Sudakov factor and threshold factor suppress the
end-point singularity and improve the reliability of the
calculation of B decays in the PQCD approach. For
convenience, we perform the calculation of the decay
amplitudes in b-space where b is the conjugate variable
of transverse momentum k| .

Figures 1(a) and 1(b) are factorizable diagrams.
Figures 1(c) and 1(d) are nonfactorizable diagrams, 1(e)
and 1(f) are nonfactorizable annihilation diagrams, and 1(g)
and 1(h) are factorizable annihilation diagrams. The symbol
of the circled times in these diagrams stands for the four-
quark operator insertions which are given in Egs. (5)—(8).

First, we calculate the diagrams in Figs. 1(a) and 1(b). If
the meson that is factorized out is kaon in diagrams 1(a)
and 1(b), the contribution with the (V — A)(V — A) oper-
ators inserted is

c ki [?\ -
F,=2n fo,,mBNF/kudku/ de/ dx3/ bydb,bydb; <2 B+| Ll )K(kl)(EQerQ)
mp

c

x Jokib) {ay (1) | (v = 2)E, = x5k)balos, ) + 7al(1 = 265 Eq + k)b (v, bs) —

— x3, by, b3)S,(x3) exp[—Sp(1})

x (1= 2x3)E, + k?)¢§‘(x3,b3)}he(xl,l

2xim
1

- Sﬂ'(ti')] + ab‘(l%)2r7r

X (—E, + k)5 (x3. b3)he (1 = x3,x1, b3, by) S, (x;) exp[=Sp(23) — Sn(lg)]} (20)

The contribution related to the (S + P)(S — P) operators that come from Fierz transformation of (V — A)(V + A) operators is

u k 2 o
= 272' fo”mB /klldkll/ dxl/ d.X3/ b db b‘;db3 <2m3 + | ;ll >K(kl>(EQ —I—mQ)

X JO(klib1)2rK{as(té) |:_(Eq + k?)¢7[('x3’ b3) + rir((x3

2x1mp

—3)E, + (1 — x3)k}) 5 (x5, b3) + —

X ((x3 = I)Eq - (I + x3)kf)¢gf(x3, b3)} he(x1, 1 = x3,by,b3)S,(x3) exp[—SB(ti) - Sn(ti)]

+ a(12)2r(=E, + k35 (x3, b3)h (1 — X3, X1, b3, by)S,(x1) exp[—=Sp(23) — Sﬂ(l%)]}' (21)

If the meson factorized out is a pion in diagrams 1(a) and 1(b), the contributions from these two diagrams with the
(V—A)(V—-A)and (V—A)(V + A) operators inserted are
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c xt 1 % 1 K, 2\ -
Foc=2fofini - [hsaias [Man [Fan [ bldblbzdbz(imﬁ' o )K(k1><EQ+mQ>
X

) 2:mg
x Jolkr b a1 [ (2 = 20, + 3k (2. b2) + ricl(1 = 20)E, — KD ea ba) = <7
X (1= 260) By = KD (52, 52) [ o1, 1= 2, by b)) expl=S(thi) = S (1) + et (1)
X 21 (=Ey = KB (52, ba)he(1 = 2,0, ba, b1)S, (x1) expl=S(2) = Sk (%) | (22)
and
Fly = ~Fo. (23)

There are also factorizable annihilation diagrams 1(g) and 1(h), where the B meson is factored out. The results of diagrams
1(g) and 1(h) are

C ©
Foy=2nfxf my— N A dxzdx3A bzdb2b3db3{a$(tcll) {x3¢1<(x27 by) (x5, b3) + 2rira(1 + x3)5 (x2, by)
1
X (3. b3) = 3 71 = 53 )H8 (020 2) 0 (3. 53) | g (1 = 3. 00, B3)S, (x3) exp[=Si (1) = S (1)

1
+ a,(2) [—(1 — X2) P (X0, b2) (X3, b3) = 2rg 1, (2 — X2) P (X0, by ) P (x5, b3) — 3 KX (X0, b))

X @ (x3, bs)} ha(x3.1 = X3, b3, by)S,(x,) exp[—Sk(17) — Sn(ﬁ)]}v (24)

C 1
FE=Anfyf.my N_,:){B A] dxzdxsl) bzdb2b3db3{ (1 )[ X3¢ (X2, by)PF(x3, b3) + grnx3¢1((x2, b)
X QI (x3.b3) = 2rg s (X2, by) (x5, b3)} ho(1 = x5, %3, by, b3)S,(x3) exp[—=Sk (ti) — S;(13)] + ay(13)
1
X |:_2r7r¢K(x27 by) (x5, b3) = rr(1 = x2) 5 (X2, by) (33, b3) — 6’1((1 — )P (X2, b2)pr (x5, b3)}
X ho(x3, 1 = x5, b3, by)S,(x5) exp[=Sk(13) — Sn(ffz)]}- (25)

As for the nonfactorizable diagrams 1(c)-1(f), the amplitudes involve all three meson wave functions. The integral over b
using the § function is necessary. The amplitudes of the nonfactorizable emission diagrams 1(c) and 1(d) are

Cr 2 -
M = 27r2foKf,,mB N /ku_dku_/ dx1 / ddeX3 / b db bzdb2< mp + | ;L| >K(k1)(EQ + WlQ)
c 0

2x7mp
x Jo(ky 1 by) g (X2, bz){as(fclz) [_X2<Eq + k) (x3.by) + 1o (1 = x3)(Ey = k7)) ph (x5, by ) ""_érn:(l - X3)
x (E, — k3 ) (x3, bl)} hy(x1. X2, 1 = x3, by, by) exp[—Sp(1}) — Sk (t}) — Sn(tii)|b3—>b1] + a(13)
x [(2 =32 = 3)Ey = (= X))o, 51) = a1 = x5) (B KD (i3 b1) -] = x3) (4 )

X ¢bF (X3, bl):| ha(x1.1 = x3,1 = x3, by, by) exp[—Sp(13) — Sg(13) — Sn(t§)|b3—>bl]}’ (26)
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C xy 1 0 1 Kk 2 .
ME =22 fuf oy o [ty [P [ v, [ bldblbzdbz(imﬁ' | )K<k1><EQ+mQ>
x”{ 0 0

¢ 2x2my
B Jo(kubl)”K{as(ffz) [_x2(Eq + kD)5 (X2, b)) (x5, by) = (1 + x5 = x3)Ey — (1 = x5 — x3)k7)

1 1
X ¢ (X2, by) P (x5, by) —grn<_(1 =Xy = x3)E, + (1 + X3 = x3)k3 )R (x2, ba)p7 (x5, by) +6x2

1
X (Ey + k)X (x2.b2) (x5, by) + grn(_(l — X2 —x3)E, + (1 + X — x3)k3) K (%2, b)) (x5, by)

1
+%”n((1 +x —x3)E; — (1 —-x, — x3)k}) ik (x2, b2)¢gt(x3vbl)}hd(xlax27 1 —x3,by,b)

x exp[=Sp(1y) — Sk(ty) — Sﬂ<tgll)|b3—>b1] + a,(13) {(1 —0)(Ey + k)8 (x2. b2) (x5, by) + 14

1
grn(—(xz —x3)E, + (2—x — x3)k})

1 1
X pf (X2, by) P (x3,by) + 3 (1= x)(Ey + k3) K (x0. by) (x5, by) + G r(=(x = x3)E,

X ((2=x2 = X3)Ey — (% — x3) k3 ) (X2, b2) P (x5, by) +

1
+ (2 = x3 = x3)k3) K (x0. by )P (x5, by) + 3% ra((2=x = x3)E; — (x5 — x3)k3) K (x5, by)

X e (x3, bl)} ha(xy, 1= x5, 1 = x3,by, b)) CXP[—SB(IZ) - SK<t¢21) - Sfr(tzzi)|h3—>b,]}’ (27)

Mo =220t s o [t [ [ e [ absdos (3my + e
X (Eg +mg)Jo(kiLby)dy(x3, b3){as(t}u<) |:_x3(Eq — k) (x2. 1) + 1k (1= x2) (Ey + k3)pf (x2. by)
+ér1<(1 — 1) (Eq + k) (x2, bl)] ha(x1.%3,1 = X3, b1, b3) exp[=Sp(tyx ) = Sk (tix)1p,-0,
— S, (thx)] + ay (k) [((2 —xy—x3)E, — (X3 — x3)k3 )i (%2, by) — rg (1 — x2) (E,, — k3) g (x2.by)

1
+6rK(1 —X2)(Ey = k) (x, bl)} hg(x1.1=x3.1 = x5, by, bs) exp[—Sp(t3x) — SK(I%KMhZ—»bl - Sﬂ(ti'[()]}’ (28)

Mt =22 ufch ol [t [y [avss [ oy (ymo + L
X (Eq + mo)do(ky 1by)eba (x5, b3){ s (the) [((1 = 0 +65) By + (1= 52 = 53 )b, by) = 7
x (1 =x)(E, - k) (x2. b1) +érk(1 —x)(E, - ky) ::K(x%bl)}hd(xl’x& 1 =Xy, by, b3)
x exp[=Sg(thx) = Sk (th)|p,p, = Sa(thx)] + a5 () [—(1 —x3)(E, — k) g (x2.by) + rg(1 — x3)

1
X (Eq + k)5 (x2, by) +g”K(1 —-x)(E, +k%)¢ﬁrK(x27bl)}hd(xl,1 —x3,1 =Xy, by, b3)

X expl=S(13) = ()5, = o361 }- (29)
The amplitudes of the nonfactorizable annihilation diagrams 1(e) and 1(f) are
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c 0 ! w | K2\ -
My =22 fofcf o [ hsdia, [T s [Fandn | bldblbzdbz<5m3+'2§l' )K(k1><EQ+mQ>
¢ X 0 0 X1Mp

x Jo(lebl){a.s(?,lf) [—xs(Eq — k) (x2,b2) (X3, b3) — rcr (1 = x2 + x3)Eg+ (1 —x — X3)k%)
1 1
X @F (x2.by)pp(x3.by) + ngrzr((l —xy = X3)E, + (1 = x5 + X3)k3 )5 (x0. bo ) plF (x3. by) — g K

1
X (1 =2 = x3)Eg + (1 = x5 + x3)k3) 5 (x2, b)) 9 (x3, by) +%’”K’"n((1 —x+x3)E;+ (1 -x

— x3)k ) (32, bo) iy (x3, bz)} hi(1 = xp, x3, by, by) exp[=Sg (1)) — Sk (}) = Sz (1})],-p,]
+ as(t]%) [(1 -x)(E, + k)i (%2, b2) e (x3,by) + rirp (3 — x5 + x3)E, + (1 —x; — x3)k3)

1
X @f (%2, b2)pp (x5, by) + ngrzr((l —xy —X3)E; — (14 x5 — x3) k7)) (x2. b2 )97 (x3. by)

1 1
- 6’”1(’";:((1 X —=x3)E, +(3—x,+ x3)k3) K (xa, by) P (x5, by) + %”krn((l +x, — x3)E,

= (1= xy = x3)k7) @ (32, Do) i (63, bz)} h%(l — X2, %3, b1, by) eXP[—SB(t,%) - SK(IJZC) - Sn(szf)|b3—>b2]}’ (30)

C a 1 o 1 K. 2
Mg:Z;tszfoﬂm%N—F/kudku /d]dx]/o dxzdx3l bldblbzdb2(5m3+| 1|

1
X JO(li_bl){as(t]l‘) [an3(Eq + k3)px (x2. by) P (x5, ba) + 3 raXs(E, + k3) g (%2, by (x3,by) — rg
1
X (1= x)(E; = k3)pF (%0, by) b (x3. by) + G rk(1 = x2)(Eg = k)X (x2, by) b (x5, bz)}
X hp(1 = X5, X3, b1, by) exp[=Sp(ty) = Sk (t}) = Se(t))|p,—p,] + as(17) [rn((z —3)Ey + x347)

1
X g (X0, Do) p(x3.b3) + =1, ((2 = x3) Ey + x3k7 )i (%2, b2) P (x5, ba) — rg((1 + x0)E, — (1 = x5)k7)

6
1
X @ (X2, b2) (3, by) + g”k((l +x)E, — (1 - X2) k)P (X2, b2) b (%3, bz)} hjzf(l — X3,X3. b1, by)
x exp[=S5(13) = Sk () = S2(13) ]} (31)
|
In Egs. (20)—(31), we have defined p :ﬂ/dk X /xﬁ‘ d lm n k|
B 1K1 y 2"t 2o,
x K(K\)[(E;+mg)(Eg +mo) + K12, (33)
rK,iT - luK.JT/mB = m%(,ﬂ/[(ms,u + md)mB]‘ (32)

which comes from the B to vacuum matrix element with the
(S — P) operator inserted.
To decrease the high-order corrections, the renormaliza-

Cr=4/3 and N. =3 are color factors. The function #’s  tion scales ¢ are taken as the largest virtualities in the decay
are derived from the Fourier transformation of hard  amplitudes

amplitudes. Spx,(7) are Sudakov factors and S,(x) is
the threshold factor. They are all given in Appendix A. The
expressions of h-space wave functions ¢y, (x, b), ¥ (x, b),
and ¢¥(x,b) (M = K, =) can be found in Appendix B.
Particularly, the factor y in Eq. (25) is defined by

th = max( 1 —x3mp, 1/by, 1/b3>,

2 = max (y/Gimg, 1/b1,1/bs ), (34)
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1
teK—max( 1—x2m3,1/b1,1/b2>, ttliK:max<\/x1(l—x2)mB’
K_max(\/x_lmB91/blsl/b2)’ (35) \/ (1—X2)X3m3,1/b1,1/b3),
2
— max (\/x_3m3, 1/bs, 1/b3) k= maX(\/xl(l - x2)mg,
_max( 1 —xszyl/bz’l/bg) (36) (1 _x2)(1_x3)m3’1/b]’1/b3>5 (38)
and t}:max(\/ (1—x2)x3m3,1/b1,1/b2),
= max(\/xl(l — x3)mg, 17 = max(\/(l — X,)X3mp,
\/xz(l—x3)m3,1/bl,l/b2>, \/1—x2+x2x3mB,1/b1,1/b2). (39)
2 _ \/ —
fa = max( (1= x3)ms, In the language of the above matrix elements for
V=) =x) different diagrams, i.e., Egs. (20)—(31), the decay ampli-
(1= x)(1 = x3)mp, 1/by, 1/b2)’ (37) tudes for B — Kn decays can be written as
|
_ C 1Cy 1 C 1C; 1 1% 1
M(B™ = K'77) = _V'<Ni+ Cy —2Ni—clo)fKF <Nf+ Cs —ZNZ—ZCS>fKF5 Niz <C3 —2C9>Me

\% 1 \%
- N_: (Cs - §C7>MP + N, [V.Ci = V,(C5+ Cy)]M, — N_: (Cs + Cy)ME
C C C ] C C
+ |:Vu <Nc +C2> - <NZ +C4+N9+C10> feFa—V, (NS +C6+N7+C8>fBF5’ (40)
C C; C | C C
V2M(B~ - K=2°) = [VM(N—iJrcz) ~V, (N +C4+N—9+C10> fxF. =V, <N5 +C6+N—7+C8>fKF§
C 3V, C, C 1
[ (cl+ N2> - ( G- +Cot le)]fﬂ ex + Nc[vucl—v,<cg+cg>we
Yiesrenme+ L (vie, =iy ) Mg - Y12 comr, [VC—V(C +CoM
Nc 5 7 e Nc u-2 2 10 eK — N D) 8 C uv-l1 t 3 9 a
\% C C C
—N_:(C5+C7)M5+ {VM<N—i+C2> —Vr<N—i+C4+N—j+ Clo)]fBFa
C C
_Vt<N_i+C6+N_Z+C8>fBF5’ (41)
_ C C Cy Cs C;
M(B® - K~ zt) = {V"(N_E—FCZ) -V (Ni+c4+N +C10>:|fKFe_V (N +C6+N +C8>fKF5

1 \%4 \%4 1
A [V.Ci = V(C5 + Co)IM, — —’(c5 + Cy)M?L - N—’ <C3 - §C9> M, - N—’ <c5 — 5c7> ME
C 1 Cy C 1, 1
_VI<N_i+C4_5N_C__CIO)fB (Ni+c6_§N_z_§C8)fBFaa (42)
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_ - C 1Cy 1 c 1C; 1 C
_\/EM(BO g Koﬂ'o) - V <N3 + C4 —EN—Q—EC]())fKFe <N5 ___7_§C8>fKF§ - |:Vu (Cl +N—2>
3V, C C Vv 1 1% 1
3 (emfrer)]rrag(e-g0) g (@ -se

1 3V
- (VMCZ - —TC10>M6K +

N, 2
C; 1C 1

—v(Z2+c,-22-- F

v <Nc +Cy AN, 2C10>f3 a
with N, = 3.
The decay width is calculated by
2md,
I'(B— Kn) = 128 BIM(B - Kn)|>. (44)

And the expressions of branching ratios and direct CP
violations are

Br(B - Kzn) =T'(B —» Knx)/T'g, (45)

Acp(B°(BY) — Kn)
_ I(B°(B™) —» Kn) -T'(B°(B") - Knx)
" I'(B°(B™) - Kn) +T(B*(BT) = Kx)’

(40)

The Sudakov factor suppresses nonperturbative contri-
butions and makes the PQCD approach applicable [34,35].
However, the suppression effect of the Sudakov factor
depends on the end-point behavior of wave functions. With
the B meson wave function obtained by solving the bound-
state equation in the relativistic potential model [25-29],
we find the suppression of the Sudakov factor to the soft
contribution is not strong enough. To restore the reliability
of perturbative calculation, we introduce the momentum
cutoff and soft form factor under a critical scale y, =
1.0 GeV, which corresponds to the strong coupling con-
stant «,/7 = 0.165. The contributions lower than the
cutoff scale u,. are removed and replaced by the relevant
soft form factors. The effect of the soft form factor will be
investigated in Sec. I'V.

III. THE NEXT-TO-LEADING-ORDER
CORRECTIONS

To improve the results, the most important next-to-
leading-order (NLO) corrections to the decay amplitudes
from the vertex corrections, the quark loops, and the
magnetic penguins are included. These contributions have
|

121In(my /) — 18 + [ dxdhiy (x)g(x),
—121In(my/u) + 6 = [y dxgpy (x)g(1 = x),

Vi(M) =
-6+ [} dxgh(x)h(x),

N
V,3 v 1% 1
N—ECSM -t (c3 ——C9>Ma -t (c5 ——C7>Mf,’

Cs 1c; 1
"\, 2N, 2

been considered in the PQCD approach in Ref. [2]. It turns
out that the NLO corrections affect the amplitudes by
changing the Wilson coefficients. For simplicity, we define
the combinations of Wilson coefficients

) = Calp) + S,
) = i) + 22,
() =€) + 1), (@)

with i = 3-10. When i is odd (even), the plus (minus) sign
is taken.

A. Vertex corrections

At first, we consider the vertex corrections. Since the
corrections of nonfactorizable diagrams are negligible and
the annihilation diagrams themselves do not contribute
much to the amplitudes, we concentrate on the vertex
corrections of the factorizable emission diagrams, i.e.,
Figs. 1(a) and 1(b). The vertex corrections modify the
Wilson coefficients as [2,15-17]

Ci(u)
N,

ag(u) . Cop)
L Cp——2V
ar " N,
as(ﬂ)c Cii(u)
4 F N,

() = ar () + ¥ ¢

ay(u) = ax(u) +

ai(u) = a;(u) + Vi(M),  (48)

with i = 3-10, and M represents the meson emitted from
the weak vertex. For V| 4 6510, M is akaon and for V3 579,
M is a pion. In the naive dimensional regularization (NDR)
scheme V;(M) are given by [15]

fori=1-4,9,10,
for i =5,7, (49)
fori =6,8,
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where ¢4, (x) and ¢%,(x) are the twist-2 and twist-3 meson
distribution amplitudes and x is the parton momentum
fraction. The functions g(x) and h(x) are defined by

1-2
g(x) = 3< 1 lnx - m) + [ZLiz(x) — In2x
- X

2Inx
1—x

+ — (34 2irn) lnx—(xel—x)}, (50)

h(x) = 2Li,(x) —In®x — (1 4+ 2iz) Inx — (x <> 1 —x). (51)

B. Quark loops

For the B — Kr decays, the effective Hamiltonian of the
virtual quark loops is given by [2]

e as (U
eff— Z Z\/— qh qs () (q)(/"912)
g=u.ct gq
X (3‘}’/)(1 - yS)Tab) (Z]/},/)Taq/)7 (52)

where 2 is the invariant mass of the gluon. The functions
C9 (u, %) are

@) = [Gw) (0. 1) - ﬂ G, (53)

for ¢ = u, ¢, and

€ (1, 12) = [G@ (1.2) —ﬂ )

+ 3 GO P)Ci) + Colw)). (54)

q"=u,d,s,c

for ¢ = t. The function G(q)(y, ?) shown in Egs. (53)
and (54) for the loop of the quark ¢ is given by

i 2 _x(1=x)PP =i
G (u, I?) = —4/ dxx(1 —x)In my = 5 ) ze’
0 H

(55)

where m,, is the quark mass.

Because the topological structure of quark loops is
similar with the penguin diagrams, its effect can be
absorbed into the Wilson coefficients a, and a4 by

O (;u) qu V;‘
O Vﬂ, V;

q=u,c,t

ClO(u. (1)), (56)

aze(p) = ase(p) +

where (/%) is the mean virtual gluon-momentum squared in
the decay process. In our numerical calculations of B — Kz
decays, (I?) = m%} /4 is taken as an average gluon momen-
tum squared, which is a reasonable value in B decays.

C. Magnetic penguins

Then, we investigate the correction from the magnetic
penguin. The effective Hamiltonian of the magnetic pen-
guin contains the b — sg transition

Gr .
- E th Vts CSgOSg’ (57)

and the magnetic penguin operator is

Heff =

g a apv
08,(] = Q2 mbsl ;w(l +y5)TijG a bj» (58)

with the color indices i and j. Considering the similar
topological structure of the magnetic penguin and quark
loop, we can also absorb the contribution of the magnetic
penguin operator into the Wilson coefficients [2]

ag(u) 2m
Cl4’6 e a4,6 — 9(]7:) <l§> Cgfgf(/,t), (59)

with the effective Wilson coefficient Ceff Cs, + Cs [30].

IV. THE CONTRIBUTION OF THE SOFT BK, Bn
TRANSITION AND Kz PRODUCTION
FORM FACTORS

With Egs. (20)—-(31), we calculate the eight topological
diagrams shown in Fig. 1 numerically, and find that soft
contributions associated with diagrams 1(a), 1(b), 1(g),
and 1(h) are not negligible. For the diagrams 1(a), 1(b), 1(g)
and 1(h), there are more than 40% contributions in the
range of a;/7 > 0.2 which are not in a good perturbative
region. In contrast, the soft contributions are only a few
percent in diagrams 1(c)—1(f). To improve the reliability of
the perturbative calculation, we introduce the momentum
cutoff and soft form factors for scales lower than the critical
scale u. = 1.0 GeV. That means we treat the contributions
with the scale p < u,. as nonperturbative quantities and
replace them with phenomenological soft form factors. The
soft contributions are absorbed into two kinds of soft form
factors, the BK, Br transition form factors and the Kx
production form factor.

With the soft transition form factors, we can express the
B — K and B — r transition form factors as

FBK — pBK 4 gBK
FBr — pbr 4 gb, (60)
where h5X and hE™ represent the hard contributions that can

be evaluated perturbatively in the PQCD approach, and £8X

and &8 are soft BK, Br transition form factors. As a result,
the amplitudes in Egs. (40)—(43) should be modified by

013003-10



BRANCHING RATIO AND CP VIOLATION OF B = Kr ...

PHYS. REV. D 108, 013003 (2023)

M(B - Kr) > M(B = Kn) = 2C,(u.)Vermf 5K
— 41, C(pe)VermS 28"5
—2Ck (pe)Vexmf k€™
— 4rgCle(pe)Vermf k€5, (61)

where V iy represents the relevant CKM matrix elements,
7. . the parameters related with mesons kaon and pion that
have been defined in Sec. II, C, and C the appropriate
combinations of Wilson coefficients for the diagrams with
pion emitted out and with (V —A)(V —A) and (S+ P)
(S — P) operators inserted, respectively, and Cy and C} are
Wilson coefficients for kaon emitted diagrams. These
Wilson coefficients are taken at the cutoff scale y., which
is the critical separation scale of hard and soft contributions.

Furthermore, we also introduce the soft Kz production
form factor £57 to absorb the soft contribution in the
factorizable annihilation Figs. 1(g) and 1(h). The Kz form
factor can be defined by the matrix element of scalar current

1
(Kx[S10) = =3 vixh=F", (©2)
where py , = m¥ ./ (m, + m,). Considering the soft part,
the Kz production form factor can be written as

Ff” N hKﬂ +§K7z, (63)

where hX7 is the hard part that can be calculated perturba-
tively according to the factorizable annihilation diagrams
and £K7 is the soft part of the Kz production form factor.
With the soft Kz production form factor £K7, the ampli-
tudes are changed as

M(B - Kﬂ:) — M(B - Kﬂ.’)
-2y rKrﬂC(/"c')VCKM)(BfBéK”» (64)

where fp is the decay constant of the B meson, yp is the
parameter defined in Eq. (33), and rg , = pg ./ mp.

V. THE CONTRIBUTION OF COLOR-OCTET
MATRIX ELEMENT

To improve the consistency between the theoretical
calculation and experiment data, we take into account
the contribution from the hadronic matrix element of color-
octet operators. By considering the relation for the gen-
erators of the color SU(3) group

1 1
T3 T% = - Wfsikfsjz + §5i/5jk, (65)

we can decompose the four-quark operators with any Dirac
spinor structure into color-singlet and color-octet operators

1
N,
+2(q1iT5q2)(G3;T4q4),  (66)

(91:92j)(@3794) = = (31:92i)(G3)94;)

where the first and second terms correspond to color-singlet
and color-octet operators, respectively, and the specific
Dirac spinor structure is omitted for simplicity.

To make clear how to obtain the contribution of color-
octet operators, let us take the contribution of the tree
operators O% and O% to the decay amplitude of B — K=z
at leading order as an example. The contribution of O} and
0} is

A= <K_7T+|C101it + C20%|BO>
= C (K" |(Sir* (1 = ys)uy) (@17, (1 = v5)b;)|B°
7)

)
+ Co(K™a " |(5ir (1 = ys)u;) (@7, (1 = v5)b;)|BY),

(67)

where the quarks that form the first meson in the final state
are always moved to the first current in the above equation.
If the quarks that form the same meson are not in the same
current in the original Hamiltonian, a Fierz transformation
should be performed. The quark pair in the first current in
the second term of Eq. (67) can form K~ directly at leading
order in QCD, but the first term is not the case. So Egs. (65)
and (66) should be used for the currents in the first term,
and then Eq. (67) becomes

A= (5 &)tk st = rs)u)
x (@7, (1 =7s)b;)|B°) +2C (K~z"|(57#(1 = y5)T"u)
x (ity,(1=y5)T"b)|B°). (68)

The last term is the color-octet contribution, which is
usually dropped previously as a hadronic matrix element of
long-distance quantity, because the mesons should be in
color-singlet states. Note that no hard gluon exchange
between color-octet quark-antiquark pairs should be further
considered in the color-octet matrix element in Eq. (68)
because such a matrix element is a quantity dominated by
long-distance dynamics. Hard gluons can only be trans-
ferred at a short distance, which is higher-order corrections
in perturbative QCD as shown by the nonfactorizable
diagrams in Fig. 1, where the quark-antiquark pairs in
the final state are color-singlet. The results of the short-
distance calculation given in Egs. (20)—(31) do not include
the contribution of the color-octet matrix element. Only the
contribution of color-singlet quark pairs at the hadronic
level should be contained in these equations.

The color-octet hadronic matrix element is defined as a
nonperturbative quantity at the hadronic level, where only a
soft gluon can exchange between the color-octet quark-
antiquark pairs.
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The above procedure can be done in a different way; i.e.,
we can treat the Hamiltonian by using Egs. (65) and (66) at
first, and then use it to decay at the hadronic level. The tree-
level Hamiltonian operator is

C 01 + C,05 = C (57" (1 = ys)u;) (7, (1 = ys)b;)
+ Co(5ir" (1 = ys)u)(@jy, (1 —vs)b;).
(69)

Using Egs. (65) and (66) to decompose the color nonsinglet
operator in the above equation into singlet and octet
operators, then it becomes

C,0" + C,0"

= (;—l—f— C2> Sy (1= ys)u;) (ijr, (1 = y5)b;)

20, (57#(1 = 75)Tu) (7, (1 ~ 5)T°). (70)

The effective Hamiltonian operator in the above form is
only different from the original one by different operator
bases. If we use Eq. (70) to B — K~ z* decay again, we
can obtain exactly the same result as what is given in
Eq. (68). So the color-octet contribution of the hadronic
matrix element actually stems from the relevant color-octet
operator contained in the original Hamiltonian. It is not
difficult for this discussion to be extended to penguin
operators in the effective Hamiltonian and operators with
which Fierz transformation needs to be performed.
Therefore, the treatment for the color-octet contribution
will not cause confusion or double counting.

For the B — Kz decays, at the leading-order approxi-
mation, the hadronic matrix element of the color-singlet
operator can be written as

Tr = (Kx|(57*(1 = 75)q)(@r,(1 = v5)b)|B)
~ —if xkmzF§(0),
TRy = (Ka|(5(1 +75)q)(a(1 —r5)b)|B)
~ —ifKer%Fg”(O), (71)

where g € {u,d} and S and P stand for scalar and
pseudoscalar currents. Up to now there is no reliable
way to estimate the value for the color-octet hadronic
matrix elements, which are defined as

T8, = (Kx|(5T%*(1 - y5)q)(GT"7,(1 — y5)b)|B),
T8 = (Kx|(3T*(1 +v5)q)(gT*(1 — y5)b)|B). (72)

In Egs. (71) and (72), the quarks in the first current make up
the first meson in the final state and the quarks in the second
current involve the meson in the initial state and the second
meson in the final state. Actually there should also be

Tgf)o matrix elements in the calculation, but considering

fxF§™(0) ~ f,FEX(0), the difference between Tl(,(sf " and

Tgf)o can be safely neglected.

The color-octet hadronic matrix elements are usually
dropped previously in the literature, because the hadronic
states should be color-singlet. However, color-octet quark-
antiquark states can change to be color-singlet states by
exchanging soft gluons at a distance of the hadronic scale.
Therefore, the contribution of the color-octet hadronic
matrix element may not be zero from the theoretical point
of view. In this work, we take the color-octet contributions
into consideration. With the approximation in Eq. (71), one
can define the color-octet parameter 5g and &3/ through the
color-octet hadronic matrix elements in the following way:

Ty = —ifxmiF(7(0)8s.
T = —if kremiFEm (005", (73)

so that 5g and 837 can be viewed as a measure of how large
the color-octet matrix element is compared to the color-
singlet matrix element.

In the treatment of the color-octet contribution in the
above, no hard-gluon exchanging effect between the out-
emitting quark-antiquark system and the remaining quark
system is considered. This corresponds to only considering
the color-octet contribution from the factorizable diagrams
in Figs. 1(a) and 1(b). Actually we can consider the color-
octet contributions of both the factorizable and nonfactor-
izable diagrams in Fig. | in a consistent way by separating
the color-singlet and color-octet components in the calcu-
lation of the diagrams in Fig. 1 by a procedure described in
the following. Here we consider the case that the initial B
meson is in the color-singlet state and only the light quark-
antiquark pairs that form the final mesons of pion and kaon
can be in the color-octet state, and treat the momentum-
distribution of the quarks in the color-octet system the same
as that in the pion and kaon; i.e., we define the color-octet
quark-antiquark pair in a state similar to the pion and kaon.
Then the wave functions of the color-octet quark-antiquark
pair are defined in a similar way to Eq. (16) by

(m*, K®(p)|gs(x)T*q;(0)[0)

= /dudquLdJ%K exp[i(up-x—xy k1), (74)

where (7%, K8(p)| denote the color-octet state of the quark-
antiquark system that are finally transferred to pion and
kaon, and the spinor wave function @7 ('3K is taken to be the
same thing as that of the color-singlet case in Eq. (17). For
the case of kaon, the wave functions of the pion should be
replaced by that of the kaon.
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The effect of the color-octet quark-antiquark system
transferring to the color-singlet state by exchanging soft
gluons is considered by introducing a multiplying param-
eter Y8. In the numerical treatment, we find two parameters
are needed to explain the experimental data of B — Kz
decays, Y% and Y3, which are relevant to the factorizable
and nonfactorizable diagrams in Fig. 1, respectively. The
relation between the parameters &g and Y% can easily be
obtained by considering the color-octet contribution of the
factorizable diagrams of Figs. 1(a) and 1(b) in these two
different ways. In the following analysis, we treat the color-
octet effect in terms of the parameters Y% and Y§,.

The color-octet contribution according to each diagram
of Fig. 1 can be calculated by considering the quark-
antiquark pairs in the final states in the color nonsinglet,
which includes both the color-singlet and the color-octet
components. The color-octet component can be separated
from the color-singlet one by analyzing the color factors in
each diagram. To show the analyzing procedure clearly, we
draw the diagrams of Figs. 1(a) and 1(b) again in Fig. 2
with the color indices i, i, J, k, and [ for each quark shown
explicitly in it. As an example, let us consider the case with
the operator (g;b;)()q;) inserted in the diagrams, where i
and j are the color indices, and the current can be either
(V£ A) or (S=£ P), which are not shown explicitly. The
color indices of the quark pairs in the final state are (7, j),
(i, k) in Fig. 2(a) and (i, j), (k, [) in Fig. 2(b), respectively.
All the color indices are summed in the calculation because
they should be summed for both the color-singlet and the
color-octet states for the quark pairs in the initial and final
states.

In the calculation of the hard amplitude according to
Figs. 2(a) and 2(b), the momentum convolutions are just
the same as that for the color-singlet cases given in
Egs. (20)—(31); the only difference is for the color factors.
So we need only to analyze the color factors in the case that
the quark pairs in the final state are in the color nonsinglet
state. For Fig. 2(a), the color factor becomes

Vi

Ta
i b Qi

=

q @i
\JSW
0 9\ /0
b Ti,®, g

J i

l ’Tl‘;e k J

(a) (b)

-
T *

FIG. 2. Factorizable diagrams with operator insertion of
(gib;)(g}q;), where the explicit current type such as (V +A)
or (S £ P) is omitted. The quark-antiquark pairs in the final state
are in nonsinglet color states. The symbols i, , j, k, and [ are all
color indices.

ZT?IT?k = ZCF‘sjk = ZCF5jk5ii’

ijkl ijk ijki’
— ZCF< 80 + 2T;.‘i,T;‘k>, (75)
ijki'

and for Fig. 2(b) the color factor is

1 1
ZTliTjk = Z [_ 2_Ncali5jk + §5lk5ji]
ijkl ijkl

_Z[

1
( 8ij; + 2T, Tb> + 551,(5]-,]

ijkl
C 1
- Z( d 5lk611 - lek >’ (76)
ijkl

where the first terms with two delta factors correspond to the
color-singlet contribution, while the second terms corre-
spond to the color-octet contribution. The first terms give
exactly F, and F? given in Egs. (20) and (21) but with an
extra color-suppression factor 1/N.. The second terms in
Egs. (75) and (76) will give the contribution for the quark
pairs in the final state being in the color-octet state. After
the parameters Y%, and Y3, are introduced that describe the
effect of changing the quark pair of the color-octet into the
color-singlet state by exchanging soft gluons, the color-octet
contribution of each diagram can be obtained. The con-
tributions of Figs. 2(a) and 2(b) for (V —A)(V —A) and
(S+ P)(S — P) operators are

Y3FR, (77)
where

N,

(P)b
Feo . 78

FP® =Nz -

The contribution of the color-octet component in the other
diagrams in Fig. 1 with operator insertion of all kinds of
currents are

vEMPE v M v MPS EDE (79)
where
c NC
M(gP)s — ZN%ME;P ——MEP)
Cr
NZ | P)8 N P
MmPrs = Ne ey MPB = e ()
CF CF
2
FOs = e pn), (80)
Cr

Here the parameter Y%( M) is the parameter that describes the
effect of the color-octet state transferring into the color-
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singlet by exchanging soft gluons for the factorizable

(nonfactorizable) diagrams. The quantities F' £P>“, F E,P)h,

MEP)C, and MEPM are the convolution functions for the
diagrams in Figs. 1(a)-1(d), which will not be given here for
simplicity, while MEP), MEZP), and F EIP) have been given in
Egs. 24)-(31).

From Eq. (77), it is known that the color-octet contri-
bution to the amplitude corresponding to Figs. 2(a) and 2(b)
with the operator insertion of the (V — A)(V — A) current is

VEFE, (81)

2
where a common factor i %% fx, the CKM matrix

element, and Wilson coefficients are omitted. The same
|

quantity can be expressed in terms of the color-octet
hadronic matrix element T}‘(ﬂ in Eq. (73), too, which is

2 -1
(i% K> 278 = —4FE(0)s;. (82)

The quantities of Egs. (81) and (82) can be identified as the
same, so the relation of Y% and &g can be obtained as

Y8FS = —4FB7(0)5g. (83)

Including the color-octet contributions, the amplitudes in
Egs. (40)—(43) are modified by

1

M(B™ = K'z7) - M(B™ - K'z7) + {—V, (Cs _%C9>fKF§ -V <C5 _§C7>fKF58

c C C c c
+ {Vu<—1+C2> - V,(—3+C4+—9+C10>} - fyF8 - V,<—5+C6 +—7+C8>fBF§8}Y§

N,

N, N,

Ne N,
1

1 1 1
+ {—Vz <C3 - §C9> ME—vV, <C4 - §C10> M2 -V, (Cs - §C7>M58 - VI<C6 - ECS)M?S

+ [V,Ci = V,(C5 + Co)]M§ = V,(C5 + C7)M58} Yy (84)

V2M(B~ = K~1°) > V2M(B~ —» K™ n°) + {[Vucl —Vi(Cs + Co)fkFE = Vi(Cs

3V
+ Cy)fkFP® + |:Vuc2 - (-Cy+ CIO):| angk}YSF + {[Vucl -V (C3+ Co)IME+ [V, C,

2

3V
= Vi(Cy + Cyp)]IMB = V,(Cs + C7) M =V, (Cs + Cg) ME™® + (VMCZ - TtCm) MBy

3V,

3V
+ (VMCI —7C9>M;8K -=

2

CsMPER —

3V
TIC7MEII(8 + [V.Cy = V,(C5 + Co)| M

-V, (Cs+ C7)M§8}Y§W, (85)
M(B® - K 7)) - M(B° - K~z*) + {[VMCI —V,(C5 + Co)|fx F8 = V,(Cs + C)
SeFP =V (4 gt =300 ) faPt = V(5 Com 3 =3 G ) A 1
+ {{Vucl — V(Cs + Co)]ME + [V,Cy = V,(Cy + Cy)]ME = V,(Cs + C7) M?
—V,(Cs+ Ca)MEB — v, <C3 —%Cg) M8 —v, <c5 —%C7> Mﬁg}yﬁw, (86)
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—\/EM(BO - K°2%) - —\/EM(BO - K% + {—Vz <C3 —%C9>ko§ -V (Cs _%C7>fKF58

3V,

—~ [VL,CQ - (-Cg + C1o)}fﬂF§K - Vr(

2

C, 1C, 1
N, 2N, 2

2 2

(& 1C 1 1 1
— V,(—5+C6 ———7——C8>fBF58}Y§:+ {_V[<C3 __C9>M§ - VI<C4__C10)M£’8

N, 2N, 2

3V,

1
-V, <C5 - §C7)M58 -V, (C6 - §C8>Mf/8 - <VuC2 - 7C10> M3y

3V

3V,

3V 1
- (qu - 7’@) M+ 5 MR+ GME -V, (03 - 569>M2

1
-V, <C5 - 2c7>M58}Y,8W.

The value of color-octet parameters Y % » can be deter-
mined from experiment data. It is reasonable that the
magnitude of them should not be too large.

VI. NUMERICAL RESULT AND DISCUSSION

In addition to the parameters in B meson, pion, and kaon
wave functions, there are several other numerical param-
eters in the calculation, which are the soft BK, Bx transition
form factors £2K and £87, the soft Kz production form
factors (SK”, and the color-octet matrix element parameters
Y% and Y3,

The hard part of the BK and Br transition form factors
hEX and h§™ can be calculated directly in perturbative QCD
with the momentum cutoff in scale y > u. = 1.0 GeV,
which is relevant to the diagrams in Figs. 1(a) and 1(b). The
results of hard transition form factors are

hBK =0.29 £ 0.02,
hBT = 0.23 £ 0.01. (88)

For the total BK and Bz transition form factors, we take

F§X =0.33 £ 0.04,
F§™ =0.274+0.02. (89)
For the form factor FEX at the large recoil limit, several

calculations of lattice QCD (LQCD) can be found in the
literature [37,38], which are shown in Table I. The values in

2

(87)

the first two columns are from calculations of LQCD, and
the third one is from the light-cone sum rule (LCSR) [39] for
comparison. The value of F§X given in Eq. (89) is the
average of the two results of LQCD. Here only two effective
digits are kept for accuracy consistence in this work.

The value of F57 is taken by considering both the result

of LQCD in [40], which is Fg(’iQCD) =0.27 £0.11, and the

experimental data on the differential branching fraction of
B — nfv decay around ¢> =0 [41], where ¢° is the
invariant mass of the lepton pair. We only take 0.02 as
the variation of the theoretical input in our numerical
calculation without taking the large error given in [40],
because most of the form factor within the large error band
will make the semileptonic decay branching ratio exceed
the experimental upper limit. The value of F§” given in
Eq. (89) is consistent with the experimental data in
Ref. [41] when it is used to calculate the semileptonic
decay branching ratio with the CKM matrix elements given
in PDG [3].

Using Egs. (60), (88), and (89), we can obtain the
following result for the soft part of the transition form
factors:

EBK = 0.04 + 0.02,
EBT =0.04 £ 0.01. (90)
As for the color-octet parameters Y and Y3,, there is not

a systematical way to evaluate the values of them up to now.
We will treat them as free parameters and determine them

TABLE 1. The value of B — K form factor FZX(g*> = 0) = FEK(¢*> = 0).

LQCD-HQPCD [37]

LQCD-FNAL [38] LCSR [39]

FBX(g* = 0) 0.332(12)

0.335(36) 0.331 £0.041
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by experimental data. The nonperturbative parameters Y%,
Y8, and K7 can be written in the following form:

&8 = dy exp(igy),
Y = d, exp(ig).

Y}, = d exp(igs). (91)

where d,,5 and ¢, ,; are the magnitudes and phases of
these parameters, respectively. For B — Kx decays, there
are data for branching ratios and CP violations of four
decay modes, which can be used to determine these
parameters. By fitting to the experimental data, we find
the values of parameters are

dy = 010081 ¢y = (047557,
dy = 012200, ¢ = (1001093,
dy = 005590, 3= (0931w, (92)

where the uncertainties come from the constraint of
experimental data. With the value of Y% in the above
two equations and using Eq. (83), we can get

8 = 0.277092 exp(1.0075%ix), (93)

which shows that the absolute value of the color-octet
hadronic matrix element is indeed not large compared with
the case of the color-singlet one.

Using the parameters given in Eqgs. (91) and (92),
the predictions of B — Kz branching ratios and CP
violations are

B(B* — Kz") = 243113724 x 107,
B(B* —» K*2%) = 12.6 7230 x 1070,
B(B® - K*7™) = 20.0537315 x 107°,
B(BO = KO o) _ 4+17+088 % 1070,
Acp(B* — Kn*) = 0.0122 000/ 0o
Acp(B* = K*2°) = 0.041 558 0015
Acp(B® = K*n™) = 008410533004
Acp(B® — KOz0%) = —0.1121993040036 (94)

where the first uncertainty comes from the uncertainties of
the nonperturbative parameters in Egs. (90) and (92), and
the second one from the uncertainties of the parameters
in the meson wave functions.

The contributions of each theoretical component and the
total results for the branching ratios and CP violations are
listed in Table II. The experimental data are also presented
in the last column for comparison. In Table II, the column
“LO” means the hard contribution of leading order in QCD
with leading-order Wilson coefficients being used,
“LOnLowc” the LO results with NLO Wilson coefficients
being used, “NLO” the hard contribution up to next-to-
leading order in QCD, “+&5X(#)” the contribution of NLO
plus the contribution of the soft transition form factor 2K
and £87, “4£K7> the contribution of NLO plus the con-
tribution of soft production form factor of Kz, “+Y ?,( M) ” the
contribution of NLO plus color-octet matrix element in
factorizable (nonfactorizable) diagrams, and “+&BK(®) 4
gk7 1 ¥8.,,” the total contribution of NLO + £5K(%)
&7 + ¥4 . The difference of the columns labeled by
LO and LOyiowc is only caused by the difference of
LO and NLO Wilson coefficients. The branching ratios
increase much because of the penguin enhancement effect
of NLO Wilson coefficients, which is consistent with what
has been found in [2]. The difference of the column “NLO”
and “LOy; owc” reflects the effects of NLO contributions of

TABLE II. B — Kz branching ratios and CP violations.
Mode LO LOyowc NLO +&BK(® ek 8 4y8 &bk 4 gkr L y8 Data [3]
B(B* - K°z*) x 107°% 85 13.4 13.8 208 140 229 112 243743128 23.7+0.8
B(Bt = K*t2°) x 107° 6.0 9.0 8.4 12.0 76 125 6.8 12,6423+ 11 129+0.5
B(B" -» Kt77) x 10° 8.8 13.7 13.2 18.8 11.5 214 115 20.0534H5 19.64+0.5
B(B" - K°2%) x 107¢ 2.9 4.9 5.2 7.9 5.2 9.6 4.7 9.471 7408 9.9+0.5
Acp(BY = KOzt) —0.006 —0.004  0.010 0.013 0.013 0.006 0.010  (.012:0!+00%0! —-0.017 +£0.016
Acp(BY = K*a0) —0.185 —0.153  —0.039 —0.001 ~ 0.073 —0.032 —0.003  (.04179%34+0012 0.037 4 0.021
Acp(B® = K*z™) —0.239  -0.175 =0.107 —0.063  0.025 —0.195 —0.126  —0.08470%3004  —0.083 £ 0.004
Acp(BY = K%7%) 0.004 0018 —0.036 —0.040 —0.048 —0.147 —0.094  —0.112:0050+0.0% 0.00 +0.13
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the vertex correction, quark-loop, and magnetic penguin in
QCD expansion. The branching ratios are only slightly
changed by these NLO contributions, which show the
efficiency of the perturbative expansion in the modified
PQCD approach. Table II also shows that the branching
ratios of the only hard calculation up to next-to-leading
order are much smaller than experimental data. By intro-
ducing the soft BK and Br transition form factors £2X and
£B7 the branching ratios are increased greatly, but CP
violations still deviate significantly from experimental data.
The soft Kr production form factor ££7 has a small impact
on the branching ratio, but it causes a change in the sign of
the CP violation in B* — K*z°. The contribution of the
color-octet matrix element in factorizable diagrams Y3
significantly increases the branching ratios of all four decay
channels, and the color-octet matrix element in nonfactor-
izable diagrams Y3, increases the CP violation of the B —
K+z° channel. They are essential for explaining the
experimental data. By comparing the last two columns of
Table II, we can find that the theoretical results of all the
branching ratios and most of the CP violations for B - Kn
decays are consistent with the experiment data. CP violation
for BY — K%z is very close to the data considering both
the experimental and the theoretical uncertainties.

A few comments are given here.

(1) As soft quantities, it is possible that EM™> and
Y4 (M M,), where MM, may be any possible
final states such as zz and Kz, depend on the
mesonic final states. The values £&** and 65" obtained
in the study of B — zx decays in Ref. [24] are shown
to be different from the values of &7 and 557
obtained in this work. One possible explanation is
that the soft production form factors may depend
on the center-of-mass energy of the meson pair,
the inner relative moving state between them, and the
wave functions of the mesons. If any one of the
dependences is sensitive, then the soft form factors
can apparently be different between zz and Kz final

2

3

states. So is the hadronic color-octet matrix element
Y%( M) used in this work. To make the method used in
this work predictive, one way is to study these soft
quantities independently by a completely nonpertur-
bative method, or to try to find relations between the
soft quantities with different final states in a phe-
nomenological way, which is beyond the scope of
this paper. But we hope this can be achieved in the
near future.

The soft transition form factors defined in this work
depend on the critical scale that separates the soft
and hard interactions. In principle, such a critical
scale cannot be fixed with an exact value. It can only
be known that it is around 1 GeV in QCD from the
phenomenological point of view. It is indeed needed
to study the behavior of the physical results varying
with the value of the critical scale y.. We study this
effect by slightly varying the value of y,. around
1 GeV with fixing the physical Bz, BK transition
form factors, the total Kz production form factor,
and the scale independence of the contribution of the
color-octet hadronic matrix element. The result is
shown in Table III. It is shown in the table that the
decay branching ratios and CP violations are not
changed very much when varying y. from 0.9 to
1.3 GeV. The change becomes apparent only when
u. > 2.0 GeV, where the soft contribution has been
pushed to a scale of too high. Therefore, u, =
1.0 GeV is an acceptable choice for phenomeno-
logical study. Certainly, it can be varied slightly
around 1 GeV.

The introduction of soft quantities, such as the soft
form factors and color-octet contribution, changes
the power counting rule for the decay amplitudes
in B decays. It is different from both the
PQCD approach in the early stage [7-9] and the
QCDF approach [15-17]. These soft quantities
fully contribute at the soft scale p., which are
crucial to diminish the tension between the theo-

TABLEIIl. B — Kr branching ratios and CP violations varying with the critical cutoff scale y.., where the total form factors are fixed
with FEX(0) = 0.33, F57(0) = 0.27, and FX* = 0.20 exp(—0.47ix)."

Mode e =0.9 GeV 1.0 GeV 1.1 GeV 1.3 GeV 1.5 GeV 2.0 GeV Data [3]
B(BT - K%z%) x 107° 24.5 24.3 243 23.5 23.0 20.9 23.7+£0.8
B(B* —» K*7%) x 107° 124 12.6 12.7 12.5 12.4 11.5 129+0.5
B(B® - K*z7) x 107° 19.5 20.0 20.4 20.5 20.4 19.0 19.6 £0.5
B(B° —» K°2%) x 1076 9.3 9.4 9.5 9.3 9.1 8.4 9.9+0.5
Acp(BT = KOzT) 0.012 0.011 0.011 0.010 0.009 0.008 —0.017 £ 0.016
Acp(BY —» K+a0) 0.055 0.041 0.031 0.012 0.001 —0.011 0.037 £0.021
Acp(B® - Ktn™) —-0.055 —-0.084 —-0.102 —-0.133 —-0.150 —-0.178 —0.083 + 0.004
Acp(B® - K°2°) —-0.100 -0.112 -0.118 -0.128 —-0.133 —0.148 0.00+0.13

*The total form factors should not vary with the critical cutoff scale. So the value of them can be obtained by adding the hard and soft
parts at any value of y,.. Here FX™ is taken by adding the values of #X7 and &7 at u, = 1 GeV. The color-octet contributions are taken as

u.-independent quantities.
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retical predictions and experimental data on B —
Kr decays, and the physical results showed a bit of
stability when varying the critical cutoff scale pu,
around 1 GeV.

VII. SUMMARY

In this work we study the B — Kz decays in a modified
perturbative QCD approach. With the B meson wave
function that is obtained in the relativistic potential model,
we find that the soft contribution cannot be suppressed
enough by the Sudakov factor. It is necessary to introduce
the soft scale cutoff and soft form factors. In addition, we
also introduce the hadronic color-octet matrix element
which plays an important role in explaining the dramatic
difference between the CP violations of B — K*z° and
BY — K*z~ decays. Taking appropriate values for the
input parameters, our calculated results for all the branch-
ing ratios and most CP violations of the B — Kz decay
channels are well consistent with the experimental data,
except for the CP violation in the BY — K%z decay mode,
which is very close to the experimental data.
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APPENDIX A: FORMULAS IN THE HARD
PART CALCULATIONS

The threshold factor S, (x) is usually parametrized as [36]

21+2Cl"(3/2 + C)

St(x> = \/?Z'F(l +C)

(I =x), (Al
with ¢ = 0.3.

The exponentials exp[—Sp g ,(f)] include the Sudakov
factor and single ultraviolet logarithms which are related to
the meson wave functions. The expressions of exponents are

1 1n(t/AQCD)

Sp(t) = s(xy, by, mp) — ﬂ11 (1 (b1Aqe))” (A2)
Sk(t) = s(xp. by, mp) + s(1 = x5, by, mp)
I In(7/Agcp)
b nln(l/(bZAQCD))’ (A3)
Sx(t) = s(x3,b3,mp) + s(1 — x3,b3,mp)
1, In(t/Aqep) ()

E nln(l/(bBAQCD)) '

The explicit form of s(x, b, Q) up to next-to-leading order
is [42]

A g A . A® /g AQ) A e2re—1 g
s(x,0,0)=—qgIn|=x )| —=—=(G-b)+—-—(=—-1]| - |——-—1In In{ =~
0.0) =55 (§) -5 4=+ ) ()| ()
Mg, [in(2g) +1 In(2b) + .
fog [0 £ LGN N AT 0y~ o)
4,8 b 8,6
N ﬂzl ee"\ [In(2g) + 1 In(2b) + (6, [21n(24) +3  2In(2b) +3
8/33 2 q 13 16ﬂ4 q b
—b R +301 +19  18In*(2b) 4 301n(2b) + 19
AYBA=D gy A TISIPCE) +300(g) w(26) + 301n(2)
168° b 1728488 q b
@p24-b . R
24 2
—— 9In°(2b) + 61n(2b) + 2], A5
g 5 b+ 6n(2h) 2 (43)
where ¢ and b are defined as
=In(xQ/(V2Aqep)), b =1n(1/bAgcp). (A6)
The coefficients ; and A in Eq. (A5) are
33 -2n; 153 — 19n,
f f
= = A
1 12 s ﬂz 24 P ( 7)

and
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where y is the Euler constant.
In Egs. (20)—(31), the function /’s are given as

he(x1,%5,b1.by) = Ko(\/X1x,mpby)[0(b,

210 8 vE
ﬂ———nf +—/))1 ln<e—),

— by)Ko(\/Xympby )1y (\/xympb,) + (b, —

(A8)

by)Ko(y/xamghy)Io(\/x3mpgby)],

(A9)
ha(x1. %2, by, by) = Ko(=iy/x1%,mpby )[0(by — by) Ko(—iy/Xampby)Io(—iy/Xampbs)
+ 0(by — b1)Ko(—iy/xympby)lo(—iy/Xympb )], (A10)
ha(x1. %3, x3, b1, by) = Ko(=iy/X2x3mpby)[0(by — by)Ko(y/x1x3mpbi)Io(1/X1x3mpbs)
+ 0(by — by)Ko(\/X1x3mpba)Io(+/X1x3mpby)], (Al1)
h}(xl’xz, b1, by) = Ko(—i/x1x3mpby)|0(b) — by)Ko(—iy/x1Xympby ) o(—iv/X1Xympb,)
+ 0(by — b1)Ko(—iv/x1Xmpb,) o (—iy/x Xympby)], (A12)
h3(x1, %2, by, by) = Ko(V/X) + X3 = x1x0mpb ) [0(by — by) Ko (—in/X1Xamphy ) Io(=iy/X1Xmpb,)
+ 0(by — by)Ko(—iy/x1xmpby) 1o (—iv/x1X3mpby)], (A13)
where Jy, K, and I, are Bessel and modified Bessel functions.
|
APPENDIX B: LIGHT MESON DISTRIBUTION 12 12
AMPLITUDES Oy (x) = 1+ alp + aipCy (1) + a5 Cy (1)
The transverse momentum dependence of ¢y (x, k), + a3PC1/2( 1) + a4PC1/2( 1) + b, In(x)
M M . .
¢!> (ka) and @Y (x,k_L) is assumed to be a G.auss1an + M In(1 - x). (B3)
distribution, where M =z, K. When transforming the
wave function into b-space, the distribution amplitudes
become M (x) = 6x(1 = x)[1 + a + a?2.CY* (1)
+ad (1) + a.CY (1))
2
H(.b) = d(x) exp <_ 4”_ﬂ2> , (B1) +9x(1 = x)[bY In(x) + BY In(1 - x)].  (B4)

for ¢y (x,b), ¢M(x,b), and ¢ (x,b). The oscillation
parameter f can be related to the root mean square
transverse momentum by 8 = 1/1/2(k7) [43]. The rea-
sonable value of the root mean square transverse momen-
tum for the pion is 350 MeV according to the study of the
pion form factor in Ref. [44], which is relevant to
f =40 GeV~!. Here we take = 4.0 GeV~! for both
the pion and the kaon wave functions. The twist-2 and
twist-3 distribution amplitudes ¢y, (x), ¢ (x), and ¢ (x)
are given by [33]

(%) = 6x(1 = x)[1 +al/C}*(1) + ' C3(1)),  (B2)

where t = 2x — 1. The function C’s are Gegenbauer poly-

nomials. The coefficients a%Pﬁ) and b%P‘U) in Egs. (B2)—(B4)

are

ar =0, = 0.25+0.15,
af, = 0.048 £0.017,  a%, = 0.62 +0.20,
afp =0.089 £0.051,  a%p =a%, =0,
b7, = b, = 0.024 + 0.009,

af, =0034+0014,  a% =0.12+0.03,

al, =a5, =0, b =bi =0016+0006, (BS)

for pion, and
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ak = 0.06 + 0.03,
ak, =058+023,  ak, =-057+031,

ak, =079+025  af, =0.18+0.12,

ak, = 0.06 +0.04, (B6)

ak =0.25+0.15,

bK, =056+022,  bK, =0.03+00l,

ak =040+0.19, X =—0.13+0.09,

ak =012+£003, X =0.03 4001,

bK =037+0.14,  bK =0.02+0.01, (B7)

for kaon. All the above parameters are determined at the
renormalization scale ¢ = 1.0 GeV. The Gegenbauer poly-
nomials are given by

Ccl(n) =1,

Cl(n) =332 - 1),

CY (1) =2 (57 -3),

Ci (1) = é (351* = 3012 + 3), (B8)
(1) = 31,

) =2 (52 1),

(1) = %r(m -3),

(1) = g(zm — 142 +1). (BY)
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