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The electroweak gauge symmetry cannot be broken in a literal sense due to Elitzur’s theorem. Thus,
asymptotic states need to be manifestly and nonperturbatively gauge invariant with respect to the
electroweak symmetry. To take this suitably into account perturbation theory augmented by the Fröhlich-
Morchio-Strocchi mechanism can be used. We show that this restores the Bloch-Nordsieck theorem
in electroweak processes in the standard model. This has potentially substantial impact at, e.g., future
lepton colliders, but has only negligible effects at lower energies. We also demonstrate an alternative
implementation using parton distribution functions, which allows an approach with manifest electroweak
Bloch-Nordsieck theorem also at hadron colliders.
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I. INTRODUCTION

Gauge symmetries can never be broken spontaneously
due to Elitzur’s theorem [1–3]. As a consequence, the
electroweak gauge symmetry is actually intact, and its
apparent breaking is only a consequence of a gauge
choice [4]. In fact, it is possible to define gauges in which
it remains unbroken [4,5], at the expense of the applicability
of perturbation theory [4]. Hence, as has been realized
early on [2,6–8], physical, observable states need to be
manifestly nonperturbatively gauge invariant, rather than
only perturbatively Becchi-Rouet-Stora-Tyutin (BRST)
invariant,1 also with respect to the electroweak symmetry
[2,3]. This requires one to consider composite states rather
than elementary ones as asymptotic in states and out states,
very much like hadrons in QCD.
At first sight this seems to be in contradiction to the

highly successful description of experiments in terms of the
elementary states in perturbation theory. This is explained
by the Fröhlich-Morchio-Strocchi (FMS) mechanism [2,3].
It shows that in the gauges usually employed in perturba-
tion theory many quantities are dominated, up to correc-
tions suppressed by powers of the ratio of the relevant

energy scale to the Higgs vacuum expectation value, by
their usual perturbative expression. Augmenting perturba-
tion theory with the FMS mechanism appears to allow one
to take the remaining deviations manifestly into account
analytically2 [15,16]. This approach has been supported by
lattice calculations, and is reviewed in [12].
In Sec. II we will briefly review the mechanism and then

apply it to fermionic 2-to-2 processes at lepton colliders.
We will extend here [17] to formulate the full FMS
expression of the relevant matrix elements. We thereby
show how systematically at low energies the ordinary
results will appear, while at the same time cancellations
ensure at high energies that the violation encountered in
standard perturbation theory [18,19] of the Bloch-
Nordsieck theorem (BNT) [20,21] is absent. We will briefly
discuss the implications for future lepton colliders in a
sample processes.
The same is true, in a more involved way, for hadronic

initial states [12,17]. The strongly interacting nature does
not allow a purely perturbative approach as in the lepton
case. Rather, we expand the usual parton distribution
function (PDF) language developed for pp collisions in
a gauge-invariant way in Sec. III, making the BNT
manifestly maintained. This yields a few surprising features
of its own as to what the actual PDFs represent at high
energies, and what kind of sum rules they need to obey.
We note that similar considerations will also apply to

violations [22] of the Kinoshita-Lee-Naunberg theorem
(KLNT) [21,23,24]. Moreover, beyond leading order, it is
in general insufficient to satisfy only the BNT to achieve
infrared-safe observables, but the KLNT needs to be
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1The reason for BRST invariance to be insufficient is the
Gribov-Singer ambiguity [9,10], which explicitly invalidates
perturbative BRST [11]; see [12] for a review.

2Similar considerations have been followed already in [13,14].
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satisfied instead [21,25,26]. While this is beyond the scope
of the present work, we briefly comment on consequences
and necessary steps in Sec. IV.
We wrap up the discussion in Sec. V with a number of

possible further steps. Some preliminary results have been
made available in [27].

II. LEPTON SCATTERING

A. Weakly gauge-invariant leptons

We consider in the following the usual standard model
Lagrangian, supplemented for simplicity by right-handed
neutrinos, following [2,3,17,28]. The existence of right-
handed neutrinos is not essential for this work, but they
simplify considerably the technicalities. Also, they allow
for a very straightforward transfer of results between quarks
and leptons.
As emphasized in the Introduction, field-theoretical

arguments highlight that the weak gauge symmetry is
never spontaneously broken, and what is usually called
the Brout-Englert-Higgs (BEH) effect is a particularly
suited choice of gauge, which allows for a technically
advantageous treatment of the dynamics [1–4,6–8]. A full
discussion of the details and background can be found in
the review [12].
The most important consequence is that weakly gauge-

dependent states, especially the Higgs, theW and Z bosons,
and all left-handed fermions cannot be physical. Rather, just
like in QCD, only manifestly gauge-invariant composite
states can be physical asymptotic states [2,3,6]. We will
concentrate here on the fermions, and refer for the bosons
again to the review [12]. In this context, it is useful to write
the complex doublet Higgs field ϕ before separating off the
vacuum expectation value (vev) as

X ¼
 

ϕ�
2 ϕ1

−ϕ�
1 ϕ2

!
ð1Þ

and thus the standard Higgs fluctuation mode as well as the
fact that the three would-be Goldstone bosons are still
contained in X.
Fermions come now in two varieties. One are the left-

handed Weyl spinors ψL, which are gauged under the weak
interaction in the fundamental representation, i.e., they
form doublets

ψL ¼
 
νL

eL

!
ð2Þ

of which there are six, three for the lepton generations and
three for the quark generations. In addition, there are 12
right-handed Weyl spinors, representing the six ungauged
leptons and quarks of which always two can be paired,

e.g. νR and eR, as an ungauged set corresponding to the
left-handed Weyl doublet. Besides the strong interactions
separating quarks and leptons, the other differences arise
due to the Yukawa couplings, hypercharge, and CKM/
PMNS values for the, in total, 18 fermion fields.
At vanishing hypercharge and Yukawa couplings, there

are several symmetries in the weak sector of the standard
model. First, there is the local weak gauge symmetry
SUð2Þw. Second, there is a global SUð6ÞRf flavor symmetry
of the right-handed Weyl fermions and an SU(3) left-
handed generation symmetry. These are present for quarks
and leptons separately. Finally, there is a less obvious
global SUð2Þc symmetry which acts only on the scalar
doublet as a right-multiplication on X. Switching on
Yukawa couplings breaks these symmetries to the familiar
pattern of lepton and quark number, and a U(1) subgroup of
SUð2Þc. Gauging the latter adds hypercharge.
Ignoring for a moment the BEH effect, there are for

each generation and for quarks and leptons separately four
physical fermionic states in the theory, which can be
grouped into two chiral doublets. The first two states are
the flavor doublet of right-handed Weyl fermions χR.
One of them is the right-handed charged lepton, χR2 ¼ eR,
and the other the right-handed neutrino χR1 ¼ νR. The
other physical doublet is a gauge-invariant, left-handed
composite Weyl field, ΨL ¼ X†ψL [2,3,17], which is a
singlet with respect to the non-Abelian gauge group but
carries a global SUð2Þc charge. The two components of this
doublet will be identified with the left-handed electron and
the left-handed neutrino below.
Nonzero Yukawa couplings break the global SUð2Þc

symmetry and the flavor symmetry SUð2ÞRf to the
diagonal subgroup SUð2Þf . The composite state and the
right-handed fermion doublet transform in the same way
under SUð2Þf. In this way it appears as if in the physical
spectrum the diagonal subgroup acts as an effective flavor
symmetry for both the left-handed sector and right-handed
sector simultaneously. Note that the two gauge-dependent
components of the elementary left-handed Weyl fermion
ψL do not transform under SUð2Þf, but can be transformed
into each other via a gauge transformation and can
therefore not be associated with physically observable
particles or flavors.
To connect to the usual perturbative picture, switch

on the BEH effect in a ’t Hooft gauge. The Higgs field
can then be split into its vacuum fluctuations η and its vev v.
Using the gauge freedom, we conventionally chose the
vacuum expectation value to be in the real 2 direction,
hϕii ¼ vδi2=

ffiffiffi
2

p
. At tree level, this yields the customary

result that the gauged and ungauged Weyl spinors can be
combined into two Dirac spinors, each with a mass given
by mf ¼ yfv=

ffiffiffi
2

p
, forming the usual leptons [29].

However, the left-handed leptons are thus defined in a
gauge-fixed way. The decisive step to relate them to the
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gauge-invariant ΨL is to apply the FMS mechanism [2,3].
Consider the physical left-handed fermion3 [2,3],

ΨL ¼ X†ψL ¼
�

vffiffiffi
2

p 1þ η

�
ψL ¼ vffiffiffi

2
p
 
ψL
1

ψL
2

!
þ ηψL; ð3Þ

where the matrix-valued η contains the usual fluctuation
field identified with the elementary Higgs boson and the
Goldstone fields in the same manner as X contains ϕ in (1).
To leading order in v, the first term, the field ΨL reduces
to the elementary left-handed fermions, which are thus the
FMS-dominant constituents of the bound state ΨL. Of
course, only the total sum in (3) is gauge invariant, and the
leading order alone is not.
When now forming a propagator it follows that

hΨL
f1
ðpÞΨ̄L

f2
ð−pÞi ¼ v2

2
hψL

f1
ðpÞψ̄L

f2
ð−pÞi þO

�jpj
v

�
: ð4Þ

Thus, to all orders in perturbation theory and to leading
order in jpj=v the propagator of the physical, composite
fermion state is given by the gauge-dependent elementary
ones, i.e., the propagators of the left-handed charged lepton
and neutrino. Especially, the poles and thus the masses and
widths coincide. This was shown to all orders in perturba-
tion theory for the Higgs bound-state–elementary-state
duality [15,16] and appears to generalize straightforwardly
to all other standard model particles [15,16]. In particular,
propagators of the type (4) indeed are necessarily also off-
shell gauge invariant when including the finite polynomial
in v in each order in perturbation theory. Only at jpj ≫ v
they start to appreciably deviate from the perturbative result
at the same order [15,16].
In this way, the gauge-invariant Dirac spinor ðΨL

fχ
R
f ÞT

describes the physical neutrinos (f ¼ 1) and charged leptons
(f ¼ 2) with the same properties as the usual gauge-
dependent ones of perturbation theory [2,3,12]. This can
be extended to include the hypercharge sector [12,17], and
quarks work completely analogously apart from complica-
tions due to the strong interactions [12,17].
All lattice results [12,15,28,30,31] as well as the fact that

perturbation theory is a very good approximation so far
to experiments imply that the corrections to perturbation
theory are indeed small, at least at energies at or below the
electroweak scale. But the important bottom line is that the
physical left-handed leptons in the standard model are
actually bound states of the elementary ones and the
Higgs field [2,3].

B. Scattering

In fact, the subleading contributions in (4) are not zero,
and are thus, in principle, detectable. In vector-boson
scattering and form factors these have indeed been isolated
in a reduced standard-model setup on the lattice [30,31] and
for the off-shell properties of the Higgs and the vector
bosons analytically [15,16]. But it is far from straightfor-
ward to observe them experimentally, yet. However, the
kinematic suppression in (4) and [15–17,32,33] suggests
that this will change if the energy scale is substantially
above the electroweak scale.
We therefore extend here the ad hoc approximations in

exclusive fermion scattering of [17]. Consider a polarized
cross section of f̄f → F̄F, where the initial fermions f and
final fermions F are distinct. If the energy scales are large
enough compared to the fermion masses, the scattering can
be considered polarized, i.e. each of the f and F are either
completely left-handed or right-handed. In the purely right-
handed case both initial state and final state are entirely
made up from weak gauge singlets, and nothing will
change. Thus, concentrate on at least one of them being
left-handed.
The relevant matrix elements are4

hf̄RfLF̄RFLi; ð5Þ

hf̄LfLF̄LFLi; ð6Þ

and L-R permutations in (5). Following (3), this will reduce
to the usual perturbative expression to all orders in the
coupling and to leading-order in the FMS expansion [17].
By dimensional analysis, the higher orders in the FMS
expansion will be suppressed by s=v2, where s is the
relevant largest energy scale, e.g. the center-of-mass energy
at tree level. Thus, to have something interesting happen-
ing, s≳ v2 is needed.
While an explicit calculation of first-order corrections is

possible along the lines of [15,16] and is under way [35],
there is a much more generic effect if s ≫ v2, and thus
s ≫ m2

W=Z. This would be the situation at a TeV-scale
lepton collider. In such a case in the standard perturbative
approach the fact that the external left-handed fermions are
gauge dependent makes itself felt by a violation [19,36,37]
of the BNT [20]. Because the initial state and final state are
built from gauge-nonsinglets, the usual summation over the
full gauge multiplet needed for cancellations of infrared
divergencies in the BNT does not occur, and they remain in

3This construction automatically ensures the correct assign-
ment of hypercharge, and by extension of electric charge, to all
bound states [12]. It will therefore not be considered further in the
following.

4Note that also the LSZ formalism needs to be suitably
augmented for external bound states, which is straight-
forward [29,34]. What is not straightforward is how this interacts
with the FMS expansion beyond the leading term (8) below. This
will be presented elsewhere [32]. However, as long as the Higgs
contents in the bound state are small compared to the one of the
fermionic component, this will only be a minor effect [17].
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the form of double Sudakov logarithms ∼ ln2ðs=m2
WÞ [19]

from emissions of (electro)weak gauge bosons [38,39],
cut off only by the weak mass scale mW . At a TeV lepton
collider the effect is of the same order as strong corrections,
i.e. a couple of percent [19], and would grow with larger
energies.
By its very construction, it is clear that a scattering

process only involving (5) and (6) necessarily respects the
BNT in general. At the investigated very large energies,
the BEH effects are irrelevant, and all masses can be
neglected. Since the gauge multiplets are now complete,
the proof that the BNT holds is completely analogous to
the one in QCD [29], except for the fact that the lower
cutoff is fixed by the weak mass scale. Just as in QCD5 any
quark color can contribute, and thus needs to be summed
over, all weak charges of the doublet (2) in the bound
state (3) can equally likely contribute, and thus need to be
summed over. Or stated otherwise, by having the bound
state (3) rather than the weak doublet (2) involved as
external states in (5) and (6), the process becomes
inclusive with respect to the gauge doublet (2), with
the Higgs components of the bound state playing the same
spectator role as the remaining spectator quarks of a
proton in QCD. It is only exclusive at the level of the
global SUð2Þc components of the bound state (3).
While this statement is necessarily true, it is nevertheless

very interesting how this works out in practice. And
especially why this process does not deviate at low, i.e.
LEP2, energies, appreciably from the ordinary result
involving elementary particles as asymptotic states.
Since the violation of the BNT has at leading-double-log
order only implications for the scattering for two left-
handed particles [19], we will concentrate on this case.
Consider for concreteness the process l̄l → q̄q, as here the
violation has been explicitly worked out in [19], and thus
here only the changes need to be addressed.
The corresponding matrix element is then

hΨ̄L
2ΨL

2 Q̄
L
2Q

L
2 i ¼

D
ψ̄L
i Xi2|fflffl{zfflffl}X†

2jψ
L
j|fflffl{zfflffl} q̄Lk Xk2|fflffl{zfflffl}X†

2lq
L
l|fflffl{zfflffl}
E
; ð7Þ

where Q is the composite state for the left-handed top-type
quark and bottom-type quark constructed analogously
to (3) from qL ¼ ðbL; tLÞT . For concreteness, we consider
the ēe → c̄c process, and select the custodial indices
accordingly to be 2. Underbraces have been used to identify
combinations, which make up composite operators. This
implies that all composite operators in the initial state and

final state involve both members of the weak fermion
doublet (3).
First, we investigate what happens when performing the

FMS mechanism in leading order in s=v. In this case,
X ¼ v1, and the expression collapses as [17]

hΨ̄L
2ΨL

2 Q̄
L
2Q

L
2 i ¼ v4hēLeLc̄LcLi þO

�
s
v

�
; ð8Þ

where s is again the dominating energy scale, at tree level
the center-of-mass energy [17]. Thus, to this order, we
recover the usual expression for the matrix element. This
shows how the FMSmechanism recovers the usual result, if
the finite number of other terms in the FMS expansion can
be neglected. Thus, at LEP2 energies this should be a fairly
good approximation. However, the BNT violation also
plays no role at these energies as s ∼m2

W [19,36,37], so it is
no contradiction that the violation appears to be recovered.
This can therefore no longer be the case if s ≫ m2

W , like
at future lepton colliders. Assuming a fully exclusive
measurement of the final state SUð2Þc quantum numbers,
however, it is safe to assume that the Higgs fields in (7) act
primarily as spectators to the FMS-dominant constituent.
This is also supported by investigations of the substructure
of the bound state (3) [17,28]. This is akin to the situation in
hadron scattering where the other partons are also specta-
tors. Of course, the Higgs are then not leaving as debris, but
will be needed to construct again weakly gauge-invariant
final states, dressing again the elementary states [17]. In
that sense, the process is different than in QCD, where the
dressing is obtained in fragmentation from soft gluons and
light quarks. Due to the large masses and mass defects, this
does not happen at this level in an electroweak process.
However, at sufficiently high energies, electroweak frag-
mentation of elementary weak particles into bound states
like (3) in the final state can be expected to also happen
very similarly to QCD.
As the process is then inclusive with respect to the weak

doublet (2), it is thus necessary to sum the cross sections of
the possible pairings. Ignoring for a moment the final state,
this implies that the total cross section is given by6

σΨ̄2
LΨ

2
L→X ∼ σ l̄LlL→X þ σ l̄LνL→X þ σν̄LlL→X þ σν̄LνL→X: ð9Þ

This neglects the Higgs spectator interactions, and will
therefore have corrections at higher orders. The fact that
the Higgs behave as spectators has been suppressed in the
notation, just as with hadron-hadron collisions. None-
theless, because the net zero weak charge of the bound
states can be arbitrarily split between the Higgs spectator
and the elementary lepton field, a summation is necessary

5Neglecting the vev, this can also be shown using a coherent
state approach completely analogously to the QCD case, except
for the presence of the Higgs self-interactions. However, if the
vev is neglected, there is only an interaction of four Higgs
possible, which is thus as irrelevant as the four-gauge boson
interaction.

6In fact, the same result would be obtained when using a PDF
description for the bound state (3), by setting fe ¼ fν ¼ δðxÞ and
all Higgs PDFs to zero in (12).

AXEL MAAS and FRANZISKA REINER PHYS. REV. D 108, 013001 (2023)

013001-4



over all possible weak charge states, as given in (9). This is
again in complete analogy to color in QCD.
However, by relegating the Higgs to spectators, only the

fermionic components of the bound state (3) can now
interact, especially also the left-handed neutrinos. This is
because the experimentally prepared initial states are
SUð2Þc eigenstates and not unphysical gauge eigenstates.
Just like all colors are contained for every valence quark in
the proton, now all weak charges, and thus left-handed
electrons and left-handed neutrinos both, are contained
in the initial SUð2Þc eigenstate, and thus need to be
summed over.7

Now, each of the individual cross sections violates
the Bloch-Nordsieck theorem, which leads to a double-
logarithmic Sudakov enhancement [19]. If s ≫ v, they
become

σ l̄LlL→X ¼ σν̄LνL→X ¼ Aþ S; ð10Þ

σ l̄LνL→X ¼ σν̄LlL→X ¼ A − S; ð11Þ

where A contains the nonenhanced part, and S the
enhancement proportional to the exponentiated Sudakov
logarithm. Inserting this into (9) immediately shows that
the enhancement cancels. The decisive step here is that it
is necessary to do the summation, as mandated by gauge
invariance. That they would cancel if summed follows
from the BNT, and is well known [19]. Thus, the FMS
mechanism explains how the summation can take place at
high energies as mandated by gauge symmetry without
altering the low-energy behavior accessed by LEP(2). Of
course, this is now the behavior at small and large energies
compared to the Higgs vacuum expectation value. What
happens in the intermediate energy ranges where both
behaviors transition into each other needs a full evaluation
of (7) in FMS-mechanism augmented perturbation theory,
which is relegated to future work [35].
However, to the current order, this exactly cancels the

BNT violations. These have been estimated to be of the same
order as the leading-order QCD effects at a 1 TeV lepton
collider [19], and substantially larger at a 3 TeV lepton
collider [19,36], depending on polarization. Having them
removed by the BNT is therefore not a negligible effect.
Of course, eventually it will no longer be justified to treat

the Higgs as spectators. If there are no nontrivial bound
state contributions, this can be accounted for by augmented
perturbation theory [35]. If this would not be the case, a
PDF-type language [17], similar to the hadron case treated
in Sec. III, would be necessary.8

III. HADRON SCATTERING AND PDFs

In principle, the same considerations apply as well with
quarks in the initial states, i.e. for hadron colliders like the
LHC or (future) hadron colliders [19,33]. In particular, the
BNT is violated in the standard approach, and this has a
substantial impact at sufficiently high energies [19,36].
At first sight, it appears to be sufficient to follow the same
prescription as before to fix it. But there is a subtlety,
arising from the need to use PDFs to describe the hadron
structure.
In the standard approach a cross section will be deter-

mined as [29]

σPP→X ¼
X
ij

Z
1

0

dx
Z

1

0

dyfiðxÞfjðyÞσ īj→Xðxp1; yp2Þ;

ð12Þ

where i runs over all constituents of both hadrons, the fi are
the corresponding PDFs, and X is the final state. Consider
for the moment just the first generation of quarks. It is
worthwhile to recall how BNT violations in the strong
interactions are avoided. This happens as in the hard cross
section an unbiased sum over all colors is performed [29].
Each color appears equally as an initial state in the hard
cross section. This is due to the implicit presence of three
PDFs for each quark, one for each color, which are
identical.9

Because of the isospin sum rulesZ
dxðfuLðxÞ − fūLðxÞ þ fuRðxÞ − fūRðxÞÞ ¼ 2 ð13Þ

Z
dxðfdLðxÞ − fd̄LðxÞ þ fdRðxÞ − fd̄RðxÞÞ ¼ 1 ð14Þ

fiLðxÞ ¼ fiRðxÞ ð15Þ

the PDFs for the up quark and the down quark can never be
the same. But since the left-handed up quarks and down
quarks are the members of a weak multiplet similar to (2),
this seems to imply that BNT violation cannot be avoided.
Of course, a possibility appears to be to relax the equality of
the left-handed quarks and right-handed quarks, and this is

7Note that the usual differences of electrons and neutrinos, like
different masses and electric charges, are carried by the bound
state (3) [12]. Only to leading order in v in (3) these properties are
projected onto them, as shown in (4).

8See also [40–42] for a similar approach with a different
motivation.

9This is, of course, only possible in perturbation theory,
as colored quarks are physical states in the usual BRST
construction [29]. However, the PDFs are genuine nonperturba-
tive quantities, and the BRST construction is broken nonpertur-
batively [11], and in fact quarks as initial states cannot act as
physical states [43], and the PDFs need to be defined in a
nonperturbatively manifest gauge-invariant way [44]. The reason
why such a factorization nonetheless works is that in QCD there
is a one-to-one correspondence between each quark and a gauge-
invariant physical observable, its flavor. But it is also this feature,
the flavor, which will be needed to be resolved at the electroweak
level.
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indeed anyhow necessary at high energies [36,37]. But the
proton is a parity eigenstate, and thus fully shifting isospin
to the right-handed quarks seems to be at least unlikely.
The reason for this impasse is, of course, that (12) is

really just the leading order of the FMS expansion. To
understand this, it is helpful to start with the manifestly
gauge-invariant description of the proton. To this end, it is
useful to follow a two-step procedure [12,17]. The left-
handed quark doublet qL ¼ ðuL; dLÞ can be dressed in the
same way as leptons in (3). This implies that the physical
flavor of left-handed quarks is also nothing but the global
SUð2Þc symmetry of the Higgs field. Thus, left-handed
quark flavor is the same for left-handed quarks and

left-handed leptons. Their distinction is entirely by their
other quantum numbers, like hypercharge, baryon number,
and lepton number.
Construct then weakly gauge-invariant Dirac spinors

U ¼
� ððXÞ†qLÞ1

uR

�
;

D ¼
� ððXÞ†qLÞ2

dR

�
; ð16Þ

which transform suitably under the diagonal SUð2Þf group.
A nucleon operator can then be constructed as [12,17,45]

N ¼ 1

2
ð1þ γ0ÞϵIJKUIðUT

JCγ5DKÞ

¼ ϵIJK

2

 
uR − ððXÞ†qLÞ1
ððXÞ†qLÞ1 − uR

!
I

ððððXÞ†qLÞJ1ÞTτ2ððXÞ†qLÞK2 − ðuRJ ÞTτ2dRKÞ

¼ ϵIJK

2

  
uR − ϕ2uL

ϕ2uL − uR

!
I

þ ϕ1

�
dL

−dL

�I�
ðjϕ2j2ðuLJ ÞTτ2dLK − jϕ1j2ðdLJ ÞTτ2uLj − ðuRJ ÞTτ2dRK

þ ϕ2ϕ
�
1ðuLJ ÞTτ2uLK − ϕ1ϕ

�
2ðdLJ ÞTτ2dLKÞ; ð17Þ

where C is the charge conjugation matrix, τ2 is the second
Pauli matrix, and the capital indices enumerate color. The
projector in front is needed to project out positive parity, as
needed for the proton.
In leading order in the Higgs vacuum expectation value,

ϕ2 ¼ v and ϕ1 ¼ 0, Eq. (17) collapses to the usual
expression in QCD [45]. The term in brackets acts as a
diquark with zero net flavor. Spin and flavor are therefore
carried entirely by the leading U, which mixes, due to
the projector, left-handed components and right-handed
components. It is thus visible how in a manifestly gauge-
invariant description there are valence Higgs degrees of
freedom in addition to valence quarks, and the former
carry the flavor of the proton, very much in the sameway as
for leptons.
This now shows how (12) can be seen as the leading

order FMS expansion of the physical cross section. Every
one of the would-be quark PDFs describes the probability
to encounter a flavor carrier in the proton, which is given
by (16). Since the color indices play the same role as
before, and at low enough energy the structure (16) is not
resolved, the hard cross section is then having Higgs-quark
bound states as initial states. The cross section can then be
FMS expanded like in (8). Keeping only the leading term
yields finally the standard expression for hadronic cross
sections (12).
If all internal weak structure of the proton (17) would be

entirely contained in the bound-state (16), it would be
sufficient to switch from the leading-order FMS expansion

to the full expression, like in (9), at high energies. This
would maintain the BNT, at the expense of reinterpreting
the quark PDFs as physical flavor PDFs.
If this is not the case, which may happen e. g. for

multiparton interactions, or if the separation between strong
and weak bound state effects is no longer possible at high
energies, this will require a different approach.10 In that
case, it is necessary to introduce explicit Higgs PDFs11 [33]
at the valence level to maintain the sum rules (13) and (14),
as the flavor is carried by the custodial symmetry doublet
eigenstate ð−ϕ1;ϕ�

2Þ, which mixes the weak doublet
eigenstate ðϕ1;ϕ2Þ. This can be accommodated by intro-
ducing four Higgs PDFs, fhij, in which i and j denote the
weak and custodial contributions, respectively. They there-
fore correspond directly to the entries of the matrix X in (1)
in terms of the required parton to participate in the hard
interaction. This implies also

fh1
2
j ¼ fh−1

2
j

10At such energies the BEH effect becomes irrelevant, and thus
factorization will work as in QCD, supplemented by a scalar.
Literally the same steps will just need to be done, and the
factorization scale is then given by the Higgs vev rather than the
hadronic scale.

11In [33] this had been done only partially. With hindsight, this
needs to be reinterpreted as attempting to encode the difference
between the actual Higgs substructure and the conventional one
only effectively by a single additional PDF, which did not
influence the sum rule.
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to maintain gauge invariance and the BNT. Denoting for j u
up-type flavor and d for down-type flavor, this ultimately
replaces (13) and (14) byZ

dx
�
fuRðxÞ − fūRðxÞ þ fh1

2
u þ fh−1

2
u

�
¼ 2;Z

dx
�
fdRðxÞ − fd̄RðxÞ þ fh1

2
d þ fh−1

2
d

�
¼ 1:

Of course, in Rξ gauges this appears to correspond to
having unphysical states as possible initial states. However
the Goldstone-Boson equivalence theorem relates them to
longitudinally polarized vector boson matrix elements.
Note that in the baryon number sum rule still the left-

handed quark PDFs appear, but they obey

fuL ¼ fdL :

In the sum rule for momentum and electromagnetic charge
now all PDFs, including the Higgs ones, appear.
This structure now automatically ensures that the BNT is

also maintained in calculations of hadronic collisions. Of
course, the different PDFs will need to be determined and
evolved, including the other electroweak ones, along the
lines of [36,37]. However, if at sufficiently low energies
the weak substructure does not matter, it necessarily
follows that

X
uL;dL;hkl

Z
1

0

dx
Z

1

0

dyfiðxÞfjðyÞσelementary
īj→X ðxp1; yp2Þ

≈
X
uL;dL

Z
1

0

dx
Z

1

0

dyf̃iðxÞf̃jðyÞσelementary
īj→X ðxp1; yp2Þ

need to hold, where the f̃i are now identical to the BNT-
violating standard PDFs and the superscript “elementary”
implies that these are the ordinary perturbative cross
sections, i.e. the ones in leading order in the Higgs vev
of FMS-augmented perturbation theory. However, since the
factorization scale is crossed in this way, this is really not
to be understood as an exact statement anymore. In fact,
from the high energy perspective what happens is that
either a valence left-handed quark from the structure (16)
or a left-handed quark radiated off from the valence Higgs
takes part in the hard interaction, and the Higgs becomes
off-shell suppressed. Neglecting the latter will then
reinstantiate the BNT violation, but sufficiently small to
be irrelevant at low energies.
Alternatively, if the weak substructure can be treated

entirely using augmented perturbation theory, an approach
like (9) would also be possible. However, then a subtle
problem arises, as this will not remove the strong sub-
structure. Thus, there will be still subprocesses in which the
QCD cores of the physical proton interact, which would

need to revert again to a PDF language. But, as is visible in
expression (17), this process is inclusive with respect to
the left-handed weak doublets. Thus the QCD expression
involves at the QCD level not only protonlike states, but also
other QCD-like objects. For these, PDFs are not as readily
available. This may require other sources than experiments,
e.g. using lattice calculations [44,46,47], to follow such an
approach instead of introducing Higgs PDFs.
In addition, similar considerations also apply to further

generations. However, since off-diagonal intergeneration
elements of the CKM matrix can be recast as intergenera-
tion Yukawa interactions of the Higgs, it may in these cases
probably be better to set up the PDF scheme in such a basis.
However, this is beyond the scope of this work, as the BNT
restoration will work in the same way also for the other
generations.

IV. BEYOND THE BLOCH-NORDSIECK
THEOREM

It was established early on in QCD that it is insufficient at
higher orders to just satisfy the BNT to avoid the appearance
of infrared enhancements [21,25,26]. Rather, satisfying the
KLNT [23,24] would be necessary [21,25,26]. This is a
nontrivial task, in view of perturbatively massless gluons,
as it requires summing over all energy-degenerate states in
both the initial state and the final state. As the electroweak
case at high energies is really just scalar QCD, it has to be
expected that the same problem occurs also in the present
case [22].
This issue can be resolved in QCD using a suitable

factorization [21] approach. It stands to reason that this is,
at least formally, analogously applicable to the present case.
But since the KLNT requires a summation in both the initial
state and the final state, this necessitates first introducing
the equivalent of fragmentation and hadronization in the
electroweak case. Since already in QCD, this becomes a
complex, nonperturbative process, it is beyond the scope of
the present work.
There is, however, one possible saving grace. In contrast

to the QCD case, there are in fact not infinitely many
energy-degenerate initial states and final states. While the
masses of the gauge bosons and the Higgs have been
neglected, they are actually nonzero. This manifests itself in
the appearance of theW mass rather than of the vev v in the
Sudakov logarithm. Thus, the number of energy-degenerate
states turns out to be small, and not infinite as in the
QCD case, provided the masses are explicitly accounted
for. This could allow for one to satisfy the KLNT in the very
sameway as the BNT in the present work, and requires only
the inclusion of the lightest complete gauge multiplet.
However, this is again beyond the scope of this work,
especially as the mass corrections are far form trivial to
include in such calculations [35].
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V. CONCLUSION

Manifest gauge invariance enforces the use of composite
operators to describe physical states also for the weak
interactions. However, the combination of the BEH effect
and the FMS mechanism shows that at sufficiently small
energies in the standard model this does yield quantitatively
essentially the same results as if only perturbative gauge
invariance is respected. Serious problems only arise when
kinematics are no longer determined primarily by the FMS-
dominant constituent, i.e. in most cases at either extremely
small [30,31] or extremely large energy transfers [15–17,33].
It then becomes necessary to revert to a full description of the
composite states.
We have investigated how this could restore the BNT by

using manifestly weakly gauge-invariant initial states, at
least at leading order. This potentially affects cross sections
at very high energies considerably, especially at future TeV-
scale lepton colliders. The situation is the same at hadron

colliders, but here the PDF structure both suppresses the
effect [19] and also makes its resolution more involved.
Likewise, we expect final states, including fragmentation,
to require a similar treatment to avoid violations of the
KLNT, which is beyond the scope of this work.
Augmenting perturbation theory with the FMS mecha-

nism may allow for a possibility to take these effects into
account with only marginally more effort than in usual
perturbation theory. Given the potential impacts for pre-
dictions for future colliders, this appears a small price
to pay.
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