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We report the first measurement of the Q2 distribution of Xð3915Þ produced by single-tag two-photon
interactions. The decay mode used is Xð3915Þ → J=ψω. The covered Q2 region is from 1.5 ðGeV=cÞ2 to
10.0 ðGeV=cÞ2. We observe 7.9� 3.1ðstatÞ � 1.5ðsystÞ events, where we expect 4.1� 0.7 events based on
theQ2 ¼ 0 result from the no-tag two-photon process, extrapolated to higherQ2 region using the cc̄model
of Schuler, Berends, and van Gulik. The shape of the distribution is also consistent with this model; we note
that statistical uncertainties are large.
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I. INTRODUCTION

The discovery of Xð3872Þ opened a new era of exotic
hadrons called charmoniumlike states [1]. Understanding
the nature of this state and of other charmoniumlike
states, in general, provides an opportunity to study the

nonperturbative regime of quantum chromodynamics. In
searching for other charmoniumlike states, Xð3915Þ was
found by the Belle experiment [2,3] and confirmed by the
BABAR experiment [4,5], initially in the study of B− →
J=ψωK− [6] and later in no-tag two-photon interactions.
This state, Xð3915Þ, was classified as χc0ð3915Þ in the
latest listing by the Particle Data Group [7], but the
assignment is not firmly established. The spin-parity of
Xð3915Þ is consistent with JP ¼ 0þ based on the exper-
imental analysis [5]; it has a small possibility of being 2þ

[8,9]. If Xð3915Þ is a conventional cc̄ state, it should also
decay to Dð�ÞD̄ð�Þ or its charge conjugate. In an amplitude
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analysis of the B− → K−DþD− by the LHCb experiment,
0þþ and 2þþ states near 3.930 GeV=c2 are reported [10];
they are assigned as χc0ð3930Þ and χc2ð3930Þ, respectively.
However, no peaks in MðDD̄ð�ÞÞ have been seen in the
studies of B− → DD̄K− and B− → DD̄�K− performed by
the B-factories [11] [12–15]. Non-cc̄ models such as cc̄ss̄
models or DsD̄s molecule models can predict such a
signature [16–18]. The 0þþ state(s) reported by LHCb and
the B-factories could be different states, namely the
χc0ð2PÞ and non-cc̄ state, respectively.
In this paper, we report on a study of the production of

Xð3915Þ by highly virtual photons, γ�. The reaction used is
γ�γ → Xð3915Þ → J=ψω, where ω decays to πþπ−π0, π0

decays to two photons and J=ψ decays to either eþe− or
μþμ−, shown in Fig. 1. The highly virtual photon is
identified by tagging either e− or eþ in the final state
where its partner, eþ or e−, respectively, is missed going
into the beam pipe. This type of interaction is referred to as
a “single-tag” two-photon interaction. If Xð3915Þ is a non-
cc̄ state, naively it should have a larger spatial size than
cc̄. This larger size is predicted for charm-molecule
models [18,19]. In such a case, the production rate should
decrease steeply at high virtuality. To test a deviation from
a pure cc̄, we use a reference cc̄ model calculated by
Schuler, Berends, and van Gulik (SBG) [20]. In this test,
we use the parameter Q2, appearing in its production,
where Q2ð¼ −q2Þ is the negative mass-squared of the
virtual photon; q is the four-momentum of the virtual
photon.
We will use the term “electron” for either the electron

or the positron. Quantities calculated in the initial-state
eþe− center-of-mass (c.m.) system are indicated by an
asterisk(*).

II. DETECTOR AND DATA

The analysis is based on 825 fb−1 of data collected by
the Belle detector operated at the KEKB eþe− asymmetric

collider [21,22]. The data were taken at the ϒðnSÞ
resonances (n ≤ 5) and nearby energies, 9.42 GeV <ffiffiffi
s

p
< 11.03 GeV. The Belle detector was a general-

purpose magnetic spectrometer asymmetrically enclosing
the interaction point (IP) with almost 4π solid angle
coverage [23,24]. Charged-particle momenta are measured
by a silicon vertex detector and a cylindrical drift chamber
(CDC). Electron and charged-pion identification relies on a
combination of the drift chamber, time-of-flight scintilation
counters (TOF), aerogel Cherenkov counters (ACC), and
electromagnetic calorimeter (ECL) made of CsI(Tl) crys-
tals. Muon identification relies on resistive plate chambers
(RPC) in the iron return yoke. Photon detection and energy
measurement utilize ECL.
We use Monte Carlo (MC) simulations to set selection

criteria and to derive the reconstruction efficiency. Signal
events, eþe− → e�ðe∓Þðγ�γ → J=ψωÞ, are generated
using TREPSBSS [25,26] with a mass distribution, cen-
tered atM ¼ 3.918 GeV=c2 and width Γ ¼ 0.020 GeV=c2

[8], with constant transition form factor, FðQ2Þ ¼ const.
Measured results do not depend on this setting, as the
analysis is performed in bins of Q2. Decays of the ω are
performed according to the usual amplitude model [27].
Radiative J=ψ decays are simulated by PHOTOS [28,29].
Detector response is simulated employing GEANT3 [30].

III. PARTICLE IDENTIFICATION

Final-state particles in this reaction are lþl−πþπ−γγ
where lþl− is either an electron pair or a muon pair.
Electrons are identified using a combination of five

discriminants: E=p, where E is the energy measured by
ECL and p is the momentum of the particle, then, trans-
verse shower shape in ECL, position matchings between
the energy cluster and the extrapolated track at ECL,
ionization loss in CDC, and light yield in ACC. For these,
probability density functions are derived and likelihoods,
Li’s, are calculated, where i’s stand for the discriminants.
Electron likelihood ratio, Le, is obtained by ΠiLelectron

i =
ðΠiLelectron

i þ ΠiLnonelectrons
i Þ [31].

Muons are identified using a combination of two
measurements: penetration depth in RPC, and deviations
of hit-positions in RPC from the extrapolated track. From
these, the muon likelihood ratio, Lμ, is obtained by
Pμ=ðPμ þ Pπ þ PKÞ, where Pμ, Pπ , and PK are probabil-
ities for muon, pion, and kaon, respectively [32].
Charged pions and kaons are identified using the

combination of three measurements: ionization loss in
CDC, time-of-flight by TOF, light-yield in ACC. From
these, the pion likelihood ratio, Lπ , is calculated by
Pπ=ðPK þ PπÞ where Pπ and PK are pion and kaon
probabilities, respectively [33].
Photons are identified by position isolations between the

energy cluster and the extrapolated track at ECL.

FIG. 1. Single-tag two-photon Xð3915Þ production. Virtual
photon, γ�, is produced in the tagging side; q is the four-
momentum of the γ�. W is the energy of the two-photon system
in its rest frame which corresponds to the invariant mass of J=ψω,
MðJ=ψωÞ, in this case. Tagging is either e− or eþ.
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IV. EVENT SELECTION

Event-selection criteria share the ones in our previous
publication [34]. We select events with five charged tracks
coming from the IP since one final-state electron goes
into the beam pipe and stays undetected. Each track has
to have pT > 0.1 GeV=c, with two or more having pT >
0.4 GeV=c, where pT is the transverse momentum with
respect to the eþ beam direction. Total charge has to be �1.
J=ψ candidates are reconstructed by their decays to

lepton pairs: eþe− or μþμ−. Electrons are identified by
requiring Le to be greater than 0.66 having 90% efficiency.
Similarly, muons are identified by requiring Lμ to be
greater than 0.66 having 80% efficiency. We require the
invariant mass of the lepton pair to be in the range
[3.047 GeV=c2; 3.147 GeV=c2]. In the calculation of the
invariant mass of an eþe− pair, we include the four-
momenta of radiated photons if the photons have energies
less than 0.2 GeV and polar angles, relative to the electron
direction at the IP, less than 0.04 rad.
For the tagging electron, a charged track has to satisfy Le

greater than 0.95 or E=p greater than 0.87. In addition, we
require p > 1.0 GeV=c and pT > 0.4 GeV=c. In the cal-
culation of p, four-momenta of radiated photons are
included using the same requirements as for the electrons
from J=ψ decays.
Charged pions are identified by satisfying its Lπ be

greater than 0.2, Lμ less than 0.9, Le less than 0.6 and E=p
less than 0.8, having 90% efficiency.
Neutral pions are reconstructed from their decay photons,

where the photons are identified as energy clusters in the
electromagnetic calorimeter and isolated from charged
tracks. These photons have to fulfill the requirements EγH <
−7EγL þ 0.54 GeV and EγH > 0.12 GeV, where EγH is the
energy of the higher-energy photon, and EγL is the energy of
the lower-energy photon, both in GeV. Neutral-pion can-
didates have to satisfy χ2 < 9 for their mass-constraint fit. If
there is only one π0 candidate with pT > 0.1 GeV=c, we
accept the one as π0. If there is no such π0, but there are one
or more π0 candidates with pT < 0.1 GeV=c, we calculate
the invariant mass, Mðπþπ−π0Þ, for each π0 candidate.
If there is only one candidate having its Mðπþπ−π0Þ in the
ω-mass region [0.7326 GeV=c2; 0.8226 GeV=c2], we
accept the one as π0. If more than one candidate satisfy
the ω-mass condition, we accept the one with the smallest
mass-constraint fit χ2 as π0. If there are more than one π0

candidate with pT > 0.1 GeV=c, we test the ω-mass con-
dition for each π0 candidate. If there is only one candidate
that satisfies the ω-mass condition, we accept it as π0. If
more than one such candidate exist, we accept the one with
the smallest mass-constraint fit χ2 as π0.
Events should not have eþe− pairs from γ → eþe−.

Therefore, we discard the event if the invariant mass of the
pair of any oppositely charged tracks is less than
0.18 GeV=c2, calculated assuming them as electrons. We

require that the event has no photon with energy above
0.4 GeV. Events must have one ω identified by the ω-mass
condition.
The tagging electron and the rest of the particles

should be back-to-back, projected in the plane perpendicular
to the eþ beam axis. For this, we require jjϕðtagÞ−
ϕðrest combinedÞj − πj < 0.15 rad, where ϕ is the azimu-
thal angle about the eþ beam axis.
A missing momentum arises from the momentum of the

final-state electron that goes undetected into the beam pipe.
We require the missing-momentum projection in the e−

beam direction in the c.m. system to be less than
−0.2 GeV=c for e−-tagging events and greater than
0.2 GeV=c for eþ-tagging events. The upper limit on the
Q2 of untagged photons is estimated to be 0.1 ðGeV=cÞ2.
The total visible transverse momentum of the event, p�

T ,
should be less than 0.2 GeV=c. Measured energy of the
J=ψπþπ−π0 system, E�

obs, should be equal to the expected
energy, E�

exp, calculated from the momentum of the tagging
electron and the direction and invariant mass of the
J=ψπþπ−π0 system. Since energy and p�

T are correlated,
we impose a two-dimensional criterion

ðp�
Tþ0.04GeV=cÞ

�jE�
obs−E�

expj
E�
exp

þ0.003

�
<0.012GeV=c:

ð1Þ

Figure 2 shows the p�
T vs E�

obs=E
�
exp distribution from MC

events with the selection criteria.
A nonsignal event imitates Xð3915Þ if a ψð2SÞ is

produced by a virtual photon from internal bremsstrahlung
and if it accompanies either a π0 or a fake π0 and also
the πþπ−π0 combination satisfies the ω-mass condition.
To suppress this background, we reject the event having
the invariant mass of J=ψπþπ− in the ψð2SÞ window
[3.6806 GeV=c2; 3.6914 GeV=c2]. This window is
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FIG. 2. p�
T vs E�

obs=E
�
exp distribution (MC events). The (black)

line shows the selection criteria applied to p�
T and E�

obs=E
�
exp;

events below the line are accepted.
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defined as �2σ of the ψð2SÞ mass resolution. The mass
resolutions of ψð2SÞð¼ J=ψπþπ−Þ and Xð3915Þð¼
J=ψπþπ−π0Þ are approximately 2.7 MeV=c2.

V. RESULTS

A. Signals and backgrounds

Figure 3 shows the Q2 vs MðJ=ψωÞ distribution
from the selected data. Here, Q2 is calculated by Q2 ¼
2ðpbeamptag −m2

eÞ, where pbeam and ptag are the four-
momenta of the beam e� and tagging e�, respectively,
and me is the electron mass. The events fall into three
classes: a cluster in the Xð3915Þ mass region with Q2 less
than 10 ðGeV=cÞ2, a high Q2 event at Q2 ≈ 30 ðGeV=cÞ2,
and a high M event at M ≈ 4.08 GeV=c2. In the small Q2

region, the detection efficiency diminishes due to the
electron tagging condition [see Appendix, Fig. 8]. This
region, Q2 < 1.5 ðGeV=cÞ2, is hatched in Fig. 3, where the
detection efficiency falls below 15% of its plateau value.
To derive the numbers of signal and background

events, we fit a combination of the threshold-corrected
relativistic Breit–Wigner (BW) function and a constant to
the MðJ=ψωÞ distribution. The threshold-corrected BW
function, fBWðWÞ, is

fBWðWÞ ¼ αM2Γ0

ðW2 −M2Þ2 þM2Γ02 ; ð2Þ

where M is the resonance mass, α is a dimensionless
normalization factor, and Γ0 is the threshold-corrected
resonance width defined by

Γ0 ¼ Γ ·
ρðWÞ
ρðMÞ ; ð3Þ

where Γ is the resonance width, ρðWÞ is the phase space
factor for W, which is

ρðWÞ ¼ 1

16π

λ1=2ðW2; m2
J; m

2
ωÞ

W2
ð4Þ

and λ is the Källén function [7,35]. It is defined as

λ1=2ðW2;m2
J=ψ ;m

2
ωÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

J=ψ þm2
ω −W2Þ2 − 4m2

J=ψm
2
ω

q
;

ð5Þ

wheremJ=ψ is the mass of J=ψð¼ 3.0969 GeV=c2Þ andmω

that of ωð¼ 0.78265 GeV=c2Þ [8]. In the fit, we set
M ¼ 3.918 GeV=c2, Γ ¼ 0.020 GeV=c2 [8], and
α ¼ 2=π, with the fit function (modified BW combined
with a flat component)

fBWþflat ¼ aBW · fBW þ aflat; ð6Þ

where the fit parameters aBW and aflat are the magnitudes
of the BWand the flat component, respectively. We ignore
a possible distortion of the fit distribution due to the
energy dependence of the detection sensitivity, because
the effect is small. Energy dependence of the detection
sensitivity for J=ψω, which is defined by the production of
detection efficiency times luminosity function, is esti-
mated as 0.1ΔW%, where ΔW is in the MeV unit. We use
the ROOT/MINUIT implementation of the binned maxi-
mum-likelihood method with a 5 MeV=c2 bin width and
perform the fit in the MðJ=ψωÞ range of [3.880 GeV=c2;
4.100 GeV=c2]. The units of fBWþflat and fBW are
events=ð5 MeV=c2Þ and ðGeV=c2Þ−1, respectively. The
result of the fit is shown in Fig. 4.
The obtained parameters are aBW¼0.049� 0.018GeV=

c2=ð5MeV=c2Þ and aflat ¼ 0.022� 0.035=ð5 MeV=c2Þ.
The number of signal events is nsig ¼ 9.0� 3.2, obtained
by integrating fBW with aBW over the fit region
[3.8795 GeV=c2; 4.1000 GeV=c2]. The number of back-
ground events is nfitbg ¼ 0.3� 0.4, calculated for the
Xð3915Þ band, which we define 60 MeV=c2. It is obtained
by multiplying aflat by the ratio of the Xð3915Þ band width,
60 MeV=c2, to the bin width, 5 MeV=c2.
To confirm the number of background events, it is also

derived using the number of events in the ω sidebands.
Figure 5 shows the Mðπþπ−π0Þ vs MðJ=ψπþπ−π0Þ dis-
tribution. The sideband regions are set as two rectangles
with heights Mðπþπ−π0Þ in ½0.60; 0.70� GeV=c2 and
½0.83; 0.93� GeV=c2 and the width MðJ=ψπþπ−π0Þ in
½3.88; 4.10� GeV=c2. There are in total four events in the
ω sideband rectangles. For the signal region, a rectangle of
0.080 GeV=c2 high in Mðπþπ−π0Þ and 0.060 GeV=c2

wide in MðJ=ψπþπ−π0Þ is used. From this, the obtained
number of background events is nωbg ¼ 0.4� 0.3. As nωbg is

2c) GeV/��/J(M

3.85 3.9 3.95 4 4.05 4.1

2 )c
 (

G
eV

/
2

Q

0

5

10

15

20

25

30

35

40

kinematical limit

FIG. 3. Q2 vs MðJ=ψωÞ distribution from data. The dashed
(green) line indicates the kinematical limit: 3.8795 GeV=c2. The
hatched (orange) region has detection efficiency below 15% of its
plateau value as explained in the text.
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calculated using non-ω events while nfitbg is obtained from
identified ω events, the contents in the samples are differ-
ent. Nevertheless, the results from the two methods are
approximately the same. We use a conservative number:
nbg ¼ 0.4� 0.4. The resulting signal significance for nine
observed events is then 5.6σ.
The measured number of signals is compared to the

expectation, nexpsig , derived from the existing no-tag two-
photon measurement [7,8]. For this, we use the spin-parity
of Xð3915Þ as JP ¼ 0þ and use Eqs. (A9) and (A13)
from the SBG model to extrapolate the Q2 ¼ 0 value,
Γγγð0ÞBðX → J=ψωÞ ¼ ð54� 9Þ eV=c2 [7,8], to higher

Q2, where Γγγð0Þ is the γγ decay width of Xð3915Þ atQ2 ¼
0 and BðX → J=ψωÞ is the branching fraction of Xð3915Þ
decaying to J=ψω. The result is nexpsig ¼ 4.1� 0.7. For a
different prediction, if we assume the spin-parity as
JP ¼ 2þ, the expectation is 7.5� 1.3 events using
Γγγð0ÞBðX → J=ψωÞ ¼ 16 eV in Ref. [3] with the J ¼ 2

SBG model, Eq. (A14), assuming ϵ ¼ 1.0.

B. Q2 distribution

To determine theQ2 distribution, we must first determine
the treatment of the two outlier events in Fig. 3. The event
at M ≈ 4.08 GeV=c2 is excluded because it is far outside
the Xð3915Þ region. The event at Q2 ≈ 30 ðGeV=cÞ2 is
discussed in the following.
Figure 6(a) shows the Mðπþπ−π0Þ vs MðJ=ψπþπ−Þ

distribution, applying neither the ω selection nor the ψð2SÞ
veto. The high-Q2 event is located at 0.9 MeV=c2 above
the upper boundary of the ψð2SÞ veto. There are six events
in the ψð2SÞ veto. Of the six events, two pass the ω
selection. Figure 6(b) shows the Q2 vs MðJ=ψπþπ−Þ
distribution. The two ψð2SÞ-vetoed events, in addition to
the high-Q2 event, have high Q2s: Q2 > 10 ðGeV=cÞ2. All
the other events that pass the ψð2SÞ veto have a lower Q2,
i.e., Q2 < 10 ðGeV=cÞ2. From this we conclude that
ψð2SÞ-vetoed events have significantly higher Q2 than
the Xð3915Þ events.
As for the possibility of the high-Q2 event being an

Xð3915Þ signal, the Belle experiment had little sensitivity
to measure single-tag two-photon events with Q2 around
30 ðGeV=cÞ2 as detailed in the Appendix (see, e.g., Fig. 9).
Hence, it is improbable for the high-Q2 event to be a single-
tag two-photon event.
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To estimate the probability of having one ψð2SÞπ0 event
in the region adjacent to the ψð2SÞ veto window, where the
high-Q2 event is located, we estimate the probability of
ψð2SÞ events escaping the veto and having a π0. For this,
we employ the data sample used in the Xð3872Þ search and
examine the MðJ=ψπþπ−Þ distribution [34]. There are 231
events in the ψð2SÞ-veto window of �5.4 MeV=c2 used in
the current study. There are 12 events in the 2.7 MeV bin,
adjacent to the upper boundary of the veto, where the high-
Q2 event is located. If we normalize the number of events in
the veto window to six that we observe as ψð2SÞπ0s in this
study, those 12 events correspond to 0.31 events=bin, or
0.11 events=MeV. As seen in Fig. 6(a), two out of six
events are inside the ω region. Hence, the expected number
of veto leaks is 0.04 events=MeV. Then, by assuming the
width of the leak region as 2 MeVand the uncertainty in the
number of events as 0.1 events, the number of expected
events is estimated to be 0.1� 0.1 events. Significance of
that number exceeding one event is 1.5σ, or 7%.
A possible way of producing ψð2SÞπ0 is by a virtual

photon, radiated by internal bremsstrahlung from e− or eþ,
similar to the case of ψð2SÞ production. However, there are
suppressions to the ψð2SÞπ0 production compared to
ψð2SÞ. The ψð2SÞs are produced as resonances, but the
ψð2SÞπ0s are not. In order to be JP ¼ 1−, the ψð2SÞπ0 has
to be in a P-wave. In addition, ψð2SÞπ0 is an isospin one
state. Thus, further suppressions are expected.
In the arguments up to this point, we assume the π0s as

real. However, the reconstructed π0s can be fake. UsingMC
events, we observe that 13% of π0s, found in the Xð3915Þ
candidates, are fake. This number is considered a lower
limit as we found that the abundance of low-pT π0s is
higher in real data than in MC. Thus, the fraction of fake
π0s is higher at low pT than at high pT . The observed
ψð2SÞπ0=ψð2SÞ is 6=231, where the π0s are either real or
fake. In summary, it is plausible that the high-Q2 event is a
ψð2SÞπ0 background.
If we remove the high-Q2 event from the fBWþflat fit, the

result is aBW ¼ 0.043� 0.017 GeV=c2=ð5 MeV=c2Þ and
aflat ¼ 0.025� 0.036=ð5 MeV=c2Þ. From that, we obtain
nsig ¼ 7.9þ3.1

−3.0 . As a note, the significance for eight events
is 5.2σ.
In the low-Q2 region, there are eight events in the

MðJ=ψπþπ−π0Þ range [3.911 GeV=c2; 3.958 GeV=c2].
In the following, we will study the Q2 structure of
Xð3915Þ using these eight events, excluding the high-Q2

event and the high-M event, which are considered as
backgrounds. Figure 7 shows the Q2 distributions for three
quantities: the number of events, efficiency corrected
number of events, and Zγ�γBðX → J=ψωÞ, where Zγ�γ is a
Q2-dependent decay function defined by Eq. (A6). The
Zγ�γBðX → J=ψωÞ distribution is obtained by multiplying
the event distribution by a correction function further
detailed in the Appendix [see Eq. (A10)]. The integrated

yield of the Zγ�γBðX → J=ψωÞ distribution in the Q2

range of 1.5 ðGeV=cÞ2 to 10.0 ðGeV=cÞ2 is 1.9� 0.9
times the expectation from the no-tag measurement,
Γγγð0ÞBðXð3915Þ → J=ψωÞ ¼ 54� 9 eV [7,8], combined
with its extrapolation to the higher-Q2 region using
Eq. (A13). The averages, hQ2i, and the root-mean-squared
(rms) values of Q2,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðQ2−hQ2iÞ2i

p
, for the Zγ�γBðX →

J=ψωÞ distribution are listed in Table I, both for the
measurement and for the SBG model [see Eq. (A13) of
the Appendix]. They are obtained from the same range inQ2

as above, i.e., 1.5 ðGeV=cÞ2 ≤ Q2 ≤ 10.0 ðGeV=cÞ2. The
measured average Q2, 4.5� 0.7 ðGeV=cÞ2, agrees with the
theoretical prediction, 4.8 ðGeV=cÞ2. Their difference is
approximately 10% of the rms widths of their distributions,
which are 1.9� 0.8 ðGeV=cÞ2 vs 2.4 ðGeV=cÞ2. The
resolution in Q2 is about 0.03 ðGeV=cÞ2 depending on
the tag-electron’s scattering angle. Hence, the measurement
is consistent with the prediction both in the averages and the
rms values ofQ2. In summary, the measuredQ2 distribution
does not show a significant shift to lower Q2; it agrees with
the SBG cc̄ model.
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FIG. 7. MeasuredQ2 distributions: (a) the number of events per
ðGeV=cÞ2, (b) efficiency corrected number of events per
ðGeV=cÞ2, and (c) Zγ�γBðX → J=ψωÞ. Bin widths of all data
are 1 ðGeV=cÞ2 except the smallest Q2 bins whose bin width is
0.5 ðGeV=cÞ2. The solid (red) curve shows the SBG prediction
based on the data of the no-tag two-photon measurement,
Γγγð0ÞBðX → J=ψωÞ ¼ 54 eV=c2, shown as a small (red) circle.

TABLE I. Comparison of the measurement and the SBG model
prediction [20] for the Q2 distribution of Zγ�γBðX → J=ψωÞ. Q2

resolution is estimated to be about 0.03 ðGeV=cÞ2. Used are the
eight events shown in Fig. 7.

Item Measurement SBG model

Relative yield 1.9� 0.9 1.0
hQ2i ðGeV=cÞ2 4.5� 0.7 4.8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðQ2 − hQ2iÞ2i
p

ðGeV=cÞ2 1.9� 0.8 2.4
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VI. SYSTEMATIC UNCERTAINTIES

The largest uncertainty is associated with the π0 selection
efficiency, including the rate of fake π0s. By comparing the
number of selected events using the different π0 selection
algorithms, we estimate 15% uncertainty associated with
the π0 selection algorithm. Another uncertainty in π0

detection is associated to fake π0s from background
photons. In the data before applying π0 selection, a
significant number of low-energy photons, either true or
fake, contaminate. These photons can produce fake π0s. To
estimate the effect of such background photons, we look at
variations in the ratio of events with identified π0ðsÞ to all
events observed during the whole data-taking period. From
this, we estimate a 5.6% uncertainty after correcting the
selection efficiency for the events with fake π0. This effect
of background photons is also estimated using MC events
simulated with different background conditions, which
gives a 3% variation. Conservatively, we use the larger
5.6% as the systematic uncertainty in π0 identification due
to background photons.
Another large uncertainty is associated with J=ψ iden-

tification. The combined uncertainty in J=ψ ID is 8%. The
largest contribution, 7%, to this comes from the difference
in the ratio of the number of J=ψ selected events,
NðJ=ψ → eþe−Þ=NðJ=ψ → μþμ−Þ, between the real data
and MC. The other smaller contributions are the uncer-
tainties in the efficiencies of electron and muon IDs,
background levels and radiative γ corrections in the case
of J=ψ → eþe− and the shapes of the invariant-mass
distributions. They are estimated by the differences in
the efficiencies between the real data and MC by varying
the selection conditions.
The uncertainties in electron tagging, 5%, and charged

pion ID, 3%, are estimated by the difference in the
efficiencies between real data and MC by varying the
selection conditions. To calculate the detection efficiency,
we set the fit region for selecting signal events. Because of
the uncertainty in the Xð3915Þ distribution at or near the
lower boundary of the fit region, 3.888 GeV=c2, detection
efficiency will have an uncertainty, which is estimated to
be 3%. The uncertainties in the ω selection, 2%, and the
pT-and-E�

obs=E
�
exp selection specified by Eq. (1), 4%, are

estimated using MC by varying selection condition. The
uncertainty in the luminosity function, which is defined by
Eq. (A3), 3%, is estimated from the uncertainties in QED
modeling and numerical integration. The other uncertain-
ties are 2% for missing pT , 2% for jjϕðtagÞ − ϕðrestÞj − πj,
1.8% for track finding, 1.4% for luminosity measurement,
1% for pT < 0.2 GeV=c, 1% for Q2 numerical integration,
1% for energy dependence in the detection efficiency, and
0.6% for MC statistics.
Table II lists a summary of systematic uncertainties.

As a total, combined quadratically, uncertainty in the
reconstruction efficiency is 20%.

VII. SUMMARY

We performed the first measurement of the Q2 distri-
bution of Xð3915Þ production in single-tag two-photon
interactions. For signals, 7.9� 3.1ðstatÞ � 1.5ðsystÞ
events are observed, while the expectation is 4.1� 0.7,
derived from the measured decay width at Q2 ¼ 0,
Γγγð0ÞBðX → J=ψωÞ ¼ 54� 9 eV, extrapolated to higher
Q2 region using the SBG cc̄ model [20]. The shape of the
Q2 distribution is also consistent with this model. These
results can be used to constrain non-cc̄ models of the
Xð3915Þ when predictions for the Q2 distribution become
available.
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APPENDIX: DIFFERENTIAL CROSS SECTION

The Q2-differential Xð3915Þ-production cross section in
single-tag two-photon interactions is given by

dσeeðXð3915ÞÞ
dQ2

¼ 2 · 2π2
ð2J þ 1Þ2Γγγð0Þ

M2

×

�
fTTðQ2;M2Þ d2LTT

γ�γ

dWdQ2

þfLTðQ2;M2Þ d2LLT
γ�γ

dWdQ2

�����
W¼M

; ðA1Þ

where the factor 2 in the front stems from the two tag
conditions (e−-tag and eþ-tag), J is the Xð3915Þ spin,
Γγγð0Þ is the γγ decay width of Xð3915Þ atQ2 ¼ 0,M is the
mass of the Xð3915Þ, and W is the energy of the two-
photon system in its rest frame. Furthermore, fTTðQ2;M2Þ
and fLTðQ2;M2Þ are the form factors for Xð3915Þ pro-
duction in interactions of two transverse (virtual and
quasireal) photons and of one longitudinal (virtual) and
one transverse (quasireal) photon, respectively; LTT

γ�γ as well
as LLT

γ�γ are the luminosity functions for the case of two
transverse photons and for the case of one longitudinal and
one transverse photon, respectively.
Defining

ϵ ¼ LLT
γ�γ

LTT
γ�γ

ðA2Þ

Lγ�γ ¼ LTT
γ�γ ðA3Þ

and

fðQ2;M2; ϵÞ ¼ fTTðQ2;M2Þ þ ϵfLTðQ2;M2Þ; ðA4Þ

Eq. (A1) can be rewritten as

dσeeðXÞ
dQ2

¼ 8π2
ð2J þ 1ÞΓγγð0Þ

M2
fðQ2;M2; ϵÞ d

2Lγ�γ

dWdQ2

����
W¼M

:

ðA5Þ

We further introduce a Q2-dependent decay function,

Zγ�γðQ2;M2; ϵÞ ¼ fðQ2;M2; ϵÞΓγγð0Þ
ð1þQ2=M2Þ ; ðA6Þ

and rewrite Eq. (A5) as

dσeeðXÞ
dQ2

¼ 8π2
ð2J þ 1Þð1þQ2=M2Þ

M2
Zγ�γðQ2;M2; ϵÞ

×
d2Lγ�γ

dWdQ2

����
W¼M

: ðA7Þ
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The differential event-yield distribution is

dNeeðXÞ
dQ2

¼ dσeeðXÞ
dQ2

εeffðQ2ÞLintBðX → J=ψωÞ

× BðJ=ψ → lþl−ÞBðω → πþπ−π0Þ; ðA8Þ

¼ 8π2
ð2J þ 1Þð1þQ2=M2Þ

M2
Zγ�γðQ2;M2; ϵÞ

× εeffðQ2ÞLint
d2Lγ�γ

dWdQ2

����
W¼M

× BðX → J=ψωÞBðJ=ψ → lþl−Þ
× Bðω → πþπ−π0Þ; ðA9Þ

where Lint is the integrated luminosity, BðJ=ψ → lþl−Þ is
the branching fraction of J=ψ decaying to either an electron
pair or a muon pair, Bðω → πþπ−π0Þ is the branching
fraction of ω decaying to three pions. Rearranging
Eq. (A9), one can relate Zγ�γðQ2;M2; ϵÞBðX → J=ψωÞ
to the event-yield distribution,

Zγ�γðQ2;M2; ϵÞBðX → J=ψωÞ ¼ CðQ2;M2Þ dNeeðXÞ
dQ2

ðA10Þ

with

1=CðQ2;M2Þ ¼ 8π2
ð2J þ 1Þð1þQ2=M2Þ

M2

d2Lγ�γ

dWdQ2

����
W¼M

× εeffðQ2ÞLintBðJ=ψ → lþl−Þ
× Bðω → πþπ−π0Þ: ðA11Þ

For the production of JP ¼ 0þ particles, as Xð3915Þ, the
fLT component does not contribute and hence the ϵ
dependence of Zγ�γ drops out. Furthermore, with J ¼ 0

and using the integrated luminosity in this analysis,
Lint ¼ 825 fb−1, as well as BðJ=ψ → lþl−Þ ¼ 0.11932
and Bðω → πþπ−π0Þ ¼ 0.892 [7], Eq. (A11) simplifies to

1=CðQ2;M2Þ ¼ 8π2
1þQ2=M2

M2

× 3.418 × 1013εeffðQ2Þ d
2Lγ�γ

dWdQ2

����
W¼M

:

ðA12Þ

In order to obtain numerical values for CðQ2;M2Þ, the
detection efficiency is calculated using MC events. Figure 8
shows the resulting efficiency as a function of Q2. The
product of the efficiency and the luminosity function is
presented in Fig. 9. This distribution shows our sensitivity
for measuring the Q2 distribution; the sensitive region
is between Q2 ¼ 1.5 ðGeV=cÞ2 and Q2 ≈ 10 ðGeV=cÞ2.
Finally, numerical values for CðQ2;M2Þ for M ¼
3.918 GeV=c2 are listed in Table III.
The theoretical expression for the decay function Zγ�γ is

given in the SBG model [20] as
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FIG. 8. Detection efficiency as a function of Q2 as obtained
from a MC simulation.
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FIG. 9. Detection efficiency times luminosity function as a
function of Q2. Ordinate is εeffðQ2Þ d2Lγ�γ

dWdQ2 jW¼M
ð1=GeVÞ3.

TABLE III. CðQ2;M2Þ: conversion factor from the number of
events to Zγ�γðQ2=M2ÞBðX → J=ψωÞ as a function of Q2.

Q2 ðGeV=cÞ2 1.5 1.7 2.0 2.4 2.6 3.0 3.6

CðQ2;M2Þ × 10−8 8.49 6.62 5.25 4.31 4.18 4.18 4.38

Q2 ðGeV=cÞ2 4.0 4.4 5.0 5.4 6.0 7.0 8.0

CðQ2;M2Þ × 10−8 4.44 4.74 5.21 5.69 6.17 7.59 8.51

Q2 ðGeV=cÞ2 10.0 12.0 15.0 20.0 30.0

CðQ2;M2Þ × 10−8 10.62 13.90 20.82 37.58 80.09
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Zγ�γðQ2=M2Þ¼ 1

ð1þQ2=M2Þ4
�
1þ Q2

3M2

�
2

Γγγð0Þ ðA13Þ

for JP ¼ 0þ, while it is

Zγ�γðQ2=M2; ϵÞ¼ 1

ð1þQ2=M2Þ4
�
1þ Q4

6M4
þ ϵ

Q2

M2

�
Γγγð0Þ

ðA14Þ

in case of JP ¼ 2þ.
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