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In this paper, we compare several event classification architectures defined on the point cloud
representation of collider events. These approaches, which are based on the frameworks of Deep Sets
and edge convolutions, circumvent many of the difficulties associated with traditional feature engineering.
To benchmark our architectures against more traditional event classification strategies, we perform a case
study involving Higgs boson decays to tau leptons. We find a 2.5 times increase in performance compared
to a baseline ATLAS analysis with engineered features. Our point cloud architectures can be viewed as
simplified versions of graph neural networks, where each particle in the event corresponds to a graph node.
In our case study, we find the best balance of performance and computational cost for simple Parwise
architectures, which are based on learned edge features.
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I. INTRODUCTION

When analyzing data collected at the Large Hadron
Collider (LHC), the ability to distinguish between spe-
cific production and decay channels is vital for picking
out signal events among overwhelming backgrounds.
In the context of Higgs boson studies, the ATLAS and
CMS Collaborations rely heavily on dense neural net-
works (dNNs) [1,2] and boosted decision trees (BDTs)
[3–10] for event classification. These classifiers are
typically trained on Monte Carlo simulated events to
separate signal events from expected background proc-
esses. Both dNNs and BDTs expect collider events to be
represented by fixed-size inputs. Creating a robust fixed-
size representation of a collider event is challenging,
however, often requiring hand engineering of a fixed
number of features to distill relevant information from a
variable number of particles.
In this paper, we compare event classification

architectures defined on point clouds, which are a natural

variable-size representation of collider events. Our
architectures draw inspiration from two complementary
approaches to point cloud processing. The first is deep
sets [11,12], which compute global information about an
event based on permutation symmetric functions. The
second is edge convolutions (EdgeConvs) [13,14], which
compute local information associated with each particle
and its neighbors. We propose architectures which center
around three different strategies for event classification:

(i) emphasizing local information with multiple sum-
mations;

(ii) improving latent representations of collider events
from iterated convolutions; and

(iii) emphasizing global information through nested
concatenation of global features.

The nested concatenation structure provides an interesting
alternative to the equivariant layers of Refs. [11,15], with
the same degree of expressivity.
To test our architectures, we perform a case study

involving signal and background binary classification of
Higgs boson decays to tau leptons. This channel has been
studied by ATLAS [3–5], whose results we use as a baseline
for comparison, and by CMS [16–19]. Based on our study,
we recommend the Parwise architecture in Eq. (11) below,
which can be interpreted as either

(i) a Deep Set acting on pairs of particles or
(ii) a symmetric pooling over EdgeConvs.

Compared to more complex graph neural networks, this
pairwise structure balances classification performance, com-
putational efficiency, and conceptual simplicity. We study
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the performance of the Parwise architecture as a function of
the latent dimension size, finding that even a single latent
dimension outperforms the baseline ATLAS strategy.
Interestingly, we find that the discriminatory features iden-
tified by the Parwise architecture have some correlations
with the traditionally selected hand-engineered features.
The point cloud representation and corresponding

architectures have appeared before in the literature for
various classification tasks [12,14,15,20–24]. We refer to
Refs. [25,26] for a more thorough review of the use of point
clouds in particle physics. Using point clouds, collider events
are represented as an unordered set of (n)-dimensional
vectors, where each vector corresponds to a measured
particle in that collision event. We need a set, since there
are a variable number of particles in each collision event.
This set is unordered, since there is no inherent ordering to
the particles.1 As discussed below, a key benefit of using
architectures defined on point clouds is that it bypasses the
traditional feature engineering game and associated combi-
natorial problems.
The remainder of this paper is organized as follows.

In Sec. II, we describe our architectures and review
their motivation and inspirations. We make these
architectures available along with example code on
GitHub [27], and we describe the connection between
nested concatenation and equivariant layers in
Appendix A. In Sec. III, we perform a classification
case study of the H → ττ decay channel, comparing our
proposed architectures with a baseline ATLAS strategy,
and we show visualizations of the latent space for the
Parwise architecture. Details of the neural network
parameters are given in Appendix B. We conclude in
Sec. IV with a summary of our recommendations and
areas for future exploration.

II. POINT CLOUD ARCHITECTURES

In this section, we describe our point cloud architectures
and their motivation. We start by describing why the point
cloud representation is more natural for event classification
compared to traditional fixed-size inputs. We then review
Deep Sets and EdgeConvs, which are the main inspirations
for our architectures. Following this, we describe our
proposed architectures, as summarized in Fig. 1.

A. Why point clouds for event classification

The point cloud representation of collider events avoids
two of the key challenges when trying to construct robust
fixed-size inputs for event classification.

(i) Combinatorial ambiguities.—One way of creating a
fixed-size representation of an event is to define
high-level kinematic variables, but this can lead to
combinatorial challenges. For example, if we find a
good discriminatory feature that is derived assuming
the final state has two b-tagged jets, but mistagging
leads to three measured b-tagged jets, then one has
to decide which of the three pairs should be used to
compute the high-level feature. Similarly, if there is
only one measured b-tagged jet, due to mistagging
or kinematic acceptance, then the high-level feature
is ill defined, even if, in principle, there is enough
information available for event classification.

(ii) Truncation ambiguities.—Another way to create a
fixed-size representation of an event is to input the
kinematics of a fixed number of particles. This,
however, introduces a dependence on how the
particles are ordered and which ones are truncated
away. While some orderings, like taking the most
energetic particles, have a physical motivation, they
might not yield the best discrimination power,
especially if particle correlations are relevant. There
is also a question about how to properly pad events
when there are fewer particles than the desired fixed-
size representation.

The point cloud representation avoids these combinato-
rial and truncation ambiguities. By enforcing permutation

FIG. 1. Summary of the point cloud architectures studied in this paper, where the numbers refer to equations in the text. We also
highlight limits where one architecture reduces to another. The particlewise, pairwise, and Tripletwise architectures are described in
Sec. II D. The Nonlinear Pairwise and Iterated Nonlinear Parwise architectures are described in Sec. II E. The nested concatenation and
Nested Concatenation with Memory architectures are described in Sec. II F.

1It is sometimes convenient to sort particles according to some
measure of energy. When comparing our point cloud architec-
tures to fixed-size input dNNs, we will sort over the particle
transverse momenta (pT).
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invariance, all possible particle combinations are automati-
cally considered for event classification. By allowing for
variable-size inputs, there is no need for ordering or
truncation. Of course, it is possible that cleverly engineered
fixed-size features could outperform generic point cloud
architectures, though this turns out not to hold for the case
study in Sec. III. Graph neural networks are a popular
approach to point cloud processing, but the simpler
architectures studied in this paper also avoid these ambi-
guities with reduced computational complexity.
The architectures below take as input a set ofM particles:

X ¼ fx1;…; xMg ⊂ Rn; ð1Þ

where each particle xi is described by n features. These
features could include particle characteristics like pT and
b-tag score. Let the classification of an event X be called

fðXÞ ⊂ Rm; ð2Þ

where f represents an event classification architecture form
possible channels. For binary classification as studied in
this paper, m ¼ 2.

B. Review of Deep Sets

Deep Sets are a way to parametrize permutation-
symmetric functions with neural networks. They were
defined in Ref. [11] and first introduced to the particle
physics community in Ref. [12], under the name of particle
flow networks. Deep Sets have achieved state-of-the-art
performance on various collider physics tasks, such as quark
and gluon jet discrimination and boosted top tagging [28].
As shown in Ref. [11], a function fðXÞ operating on

a set X is permutation invariant if (and, under certain
assumptions, only if) it can be decomposed into the form

fðXÞ ¼ F

 
1

M

XM
i¼1

ΦðxiÞ
!
: ð3Þ

Each particle xi ∈ X is transformed into a latent repre-
sentation of dimension l by a function:

Φ∶ Rn → Rl: ð4Þ

The particlewise outputs ΦðxÞ are averaged over and
processed by an eventwise function:

F∶ Rl → Rm: ð5Þ

To approximate the optimal event classifier, the functionsΦ
and F are parametrized by neural networks.
The factor of 1=M in Eq. (3) differs from the presentation

in Refs. [11,12], where sum pooling (instead of average

pooling) was the default. Average pooling simplifies some
of the later notation, and we use this pooling operation to
define the action of Φ on the set X :

ΦðXÞ≡ 1

M

XM
i¼1

ΦðxiÞ: ð6Þ

This notation makes more clear that the function Φ
effectively maps the entire set X into a latent representation
of dimension l.

C. Review of edge convolutions

EdgeConvs are a way to incorporate local neighborhood
information within point clouds for learning tasks.
They were introduced in Ref. [13] and first used in particle
physics by Ref. [14], under the name of ParticleNet.
Architectures incorporating EdgeConvs have also achieved
state-of-the-art performance for collider tasks [28].
The EdgeConv mechanism in Ref. [13] boils down to the

following transformation of a particle xi ∈ X :

Φ2ðxi;XÞ≡ 1

M

XM
j¼1

Φ2ðxi; xjÞ; ð7Þ

where the notation mirrors that in Eq. (6). Here, the particle
xi is transformed into a latent representation through a
function Φ2 based on pairwise information:

Φ2ðxi; xjÞ∶ Rn ×Rn → Rl: ð8Þ

Like before, l is the latent dimension, and Φ2 is para-
metrized by a neural network. For later purposes, we can
define Φ2 acting on two sets via

Φ2ðX ;XÞ≡ 1

M

XM
i¼1

Φ2ðxi;XÞ

≡ 1

M2

XM
i¼1

XM
j¼1

Φ2ðxi; xjÞ: ð9Þ

The EdgeConv operation can be iterated and combined
with various nonlinearities and pooling operations to
create a Dynamic Graph Convolutional Neural Network
(DGCNN). These were used for various computer vision
and graphics tasks in Ref. [13] and shown to achieve strong
performance on several standard benchmark tasks.
Furthermore, during these benchmarks, it was shown that
DGCNNs achieved the best trade-off between the number
of parameters and the run-time of the model.

D. Multiple summation

We now describe our first set of proposed architectures,
based on simple summations. The Particlewisie
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architecture is a direct application of the Deep Set
formalism in Eq. (3):

fðXÞ ¼ F

 
1

M

XM
i¼1

ΦðxiÞ
!

¼ FðΦðXÞÞ; ð10Þ

where, in the last line, we are using the notation from
Eq. (6). The set of particles X are transformed into a
latent l-dimensional representation byΦ, which is further
processed into the output by F. Because the particlewise
function Φ can see only one particle at a time, this
architecture is inefficient at capturing local information in
the vicinity of each particle.
We can improve our ability to process local information

using the Parwise architecture, which acts on all pairs of
particles in an event2:

fðXÞ ¼ F

 
1

M2

XM
i¼1

XM
j¼1

Φ2ðxi; xjÞ
!

¼ F

 
1

M

XM
i¼1

Φ2ðxi;XÞ
!

¼ FðΦ2ðX ;XÞÞ: ð11Þ

Using Eq. (9), the three different notations above correspond
to three different ways of thinking about this architecture.
The first line corresponds to applying the Deep Set formal-
ism in Eq. (3) to the set of (ordered) particle pairs.3 The
second line corresponds to applying the EdgeConvs in
Eq. (7) to each particle and then performing average pooling
and postprocessing. The last line emphasizes that the role of
Φ2 is to map particle pairs to an l-dimensional latent space,
which makes this local pairwise information directly acces-
sible when constructing a latent representation. If we choose
Φ2ðxi; xjÞ ¼ ΦðxiÞ, such that the xj input is ignored, then
the Parwise architecture reduces to the particlewise one.
The natural generalization of the above constructions is

the Tripletwise architecture, which involves a function that
maps triplets of particles into a latent space:

Φ3ðxi; xj; xkÞ∶ Rn ×Rn ×Rn → Rl: ð12Þ

Mirroring the notation in Eq. (9), we can define this
architecture in multiple ways:

fðXÞ ¼ F

 
1

M3

XM
i¼1

XM
j¼1

XM
k¼1

Φ3ðxi; xj; xkÞ
!

¼ F

 
1

M2

XM
i¼1

XM
j¼1

Φ3ðxi; xj;XÞ
!

¼ F

 
1

M

XM
i¼1

Φ3ðxi;X ;XÞ
!

¼ FðΦ3ðX ;X ;XÞÞ: ð13Þ

This tripletwise structure makes available even more local
information when constructing a latent representation of
an event. If we chooseΦ3ðxi; xj; xkÞ ¼ Φ2ðxi; xjÞ, such that
the xk input is ignored, then the Tripletwise architecture
reduces to the pairwise one. We found it impractical to use
architectures with more nested summations due to their
heavy computational cost.

E. Iterated convolutions

One way to make neural networks more expressive is to
introduce more nonlinearities. This is the motivation for our
iterated convolution architectures, which can be viewed as a
special case of DGCNNs [13].
A natural evolution of the Parwise architecture in

Eq. (11) involves inserting an additional nonlinear
function Π implemented with a neural network between
the two sums, or, equivalently, after the EdgeConv layer,
which yields the nonlinear Parwise architecture:

fðXÞ ¼ F

 
1

M

XM
i¼1

Π

 
1

M

XM
j¼1

Φ2ðxi; xjÞ
!!

¼ F

 
1

M

XM
i¼1

ΠðΦ2ðxi;XÞÞ
!

¼ FðΦΠ
2 ðXÞÞ: ð14Þ

Here, we have introduced the notation

ΦΠ
2 ðXÞ≡ 1

M

XM
i¼1

ΠðΦ2ðxi;XÞÞ; ð15Þ

which emphasizes that we are still transforming the point
cloud into a latent representation of dimension l. Note that
the output of Φ2 need not be l dimensional as in Eq. (8),
since now the latent representation is constructed through
both Π and Φ2:

Φ2ðxi; xjÞ∶ Rn ×Rn → Rl0 ; ð16Þ

Π∶ Rl0 → Rl; ð17Þ

where l0 and l could differ.

2We thank Patrick Komiske and Eric Metodiev for founda-
tional discussions related to this architecture.

3With average pooling, we could choose to work with
unordered pairs and make Φ2ðxi; xjÞ symmetric in its arguments,
but using ordered pairs often yields simpler manipulations.
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We can increase the expressivity of the latent representa-
tions by iteratively applying nonlinearities and EdgeConvs.
Let

X ð0Þ ≡ X ð18Þ

be the original point cloud. We then define the point cloud at
depth d as

X ðdÞ ¼
n
xðdÞ1 ;…; xðdÞM

o
; ð19Þ

where the set size M matches the original point cloud. The
ith element at depth d is the result of applying a nonlinearity

ΠðdÞ to an EdgeConv defined by ΦðdÞ
2 :

xðdÞi ¼ ΠðdÞ
�
ΦðdÞ

2

�
xðd−1Þi ;X ðd−1Þ

��
: ð20Þ

The Iterated Nonlinear Parwise architecture at total depth L
is achieved by average pooling over these elements and then
postprocessing:

fðXÞ ¼ F

 
1

M

XM
i¼1

xðLÞi

!

¼ F

 
1

M

XM
i¼1

ΠðLÞ
�
ΦðLÞ

2

�
xðL−1Þi ;X ðL−1Þ

��!

≡ F
�
ΦðLÞ;Π

2 ðX ðL−1ÞÞ
�
: ð21Þ

In the last line, we are using the same notation as Eq. (15)

to emphasize that ΦðLÞ;Π
2 transforms the point cloud into

an l-dimensional latent representation. When L ¼ 1, this
reduces to the nonlinear Parwise architecture from Eq. (14).
A version of this architecture is also possible for the
tripletwise case, but we shall not pursue it due to its heavy
computational cost.

F. Nested concatenation of global features

Our final class of architectures combines global infor-
mation about the whole event with local information about
particles. Let f̂ðXÞ be a permutation invariant function,
which captures global information about the collider event
X . For example, f̂ðXÞ could simply be a Deep Set applied
to the set of particles:

f̂ðXÞ ¼ F̂

 
1

M

XM
i¼1

Φ̂ðxiÞ
!
: ð22Þ

The global information from f̂ðXÞ can then be concat-
enated (⊕) with local features associated with each particle:

fðXÞ ¼ F

 
1

M

XM
i¼1

Φðxi ⊕ f̂ðXÞÞ
!
: ð23Þ

This concatenation is a conceptually simple way to let
individual particles see global information about the
point cloud.
The Nested Concatenation architecture iterates the

structure in Eq. (23) for L times. Let the base case be a
standard Deep Set:

fð0ÞðXÞ ¼ Fð0Þ
 
1

M

XM
i¼1

Φð0ÞðxiÞ
!
: ð24Þ

At level d, we have

fðdÞðXÞ ¼ FðdÞ
 
1

M

XM
i¼1

ΦðdÞ
�
xi ⊕ fðd−1ÞðXÞ

�!

¼ FðdÞ
�
ΦðdÞ

⊕ ðXÞ
�
: ð25Þ

In the last line, we have introduced the notation

ΦðdÞ
⊕ ðXÞ ¼ 1

M

XM
i¼1

ΦðdÞ
�
xi ⊕ fðd−1ÞðXÞ

�
; ð26Þ

which emphasizes that ΦðdÞ
⊕ transforms the point cloud

into a latent representation of dimension l, just as in
the previous architectures. The final architecture at total
level L is

fðXÞ≡ fðLÞðXÞ; ð27Þ

such that Eq. (25) reduces to Eq. (3) when L ¼ 0.
To allow for more dynamic manipulation of the point

cloud information, we define the Nested Concatenation
with Memory architecture. In this architecture, the inter-
mediate latent representations of particles generated by
(d − 1)th nested layer are also utilized in the dth nested
layer. We define the same base case function as Eq. (24),
with the base case set as X ð0Þ ≡ X . After d nested layers,
the set takes the form

X ðdÞ ¼
n
xðdÞ1 ;…; xðdÞM

o
; ð28Þ

where the ith element is determined via

xðdÞi ¼ ΦðdÞ
�
xðd−1Þi ⊕ fðd−1ÞðX ðd−1ÞÞ

�
: ð29Þ
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The function fðdÞðX ðdÞÞ sums and processes the latent
representation X ðdÞ with a function FðdÞ:

fðdÞðX ðdÞÞ ¼ FðdÞ
 
1

M

XM
i¼1

xðdÞi

!

¼ FðdÞðΦðdÞ
⊕ ðX ðd−1ÞÞÞ: ð30Þ

The functionΦðdÞ
⊕ is the same as in Eq. (26) but now applied

to the set X ðd−1Þ. Like before, we let

fðXÞ≡ fðLÞðX ðLÞÞ ð31Þ

be the classification of collider event X at level L.
It is worth mentioning that Ref. [11] defined an alter-

native method to incorporate global information based
on permutation equivariance; this structure was used for
jet tagging in Ref. [15]. In Appendix A, we show that
permutation equivariant Deep Sets are a special case of our
Nested Concatenation architecture. We prefer to use the
more general concatenation structure, though, due to its
flexibility.

III. EVENT CLASSIFICATION CASE STUDY

In this section, we describe the setup and results of our
event classification case study to benchmark our proposed
architectures against more traditional methods. We start
with a description of the signal and background processes
that will be the context for our case study. We then describe
how we generate synthetic datasets and preprocess the
inputs for both traditional architectures and our proposed
architectures. Following this, we present several perfor-
mance metrics of the tested architectures and advocate for
the Parwise architecture as the best balance between
computational cost and performance. We then perform a
latent dimension study of the Parwise architecture and
visualize the separation of signal and background events in
the latent space. Finally, we examine correlations between
the features found to be useful to represent collider events
by our Parwise architecture and the hand-engineered
features chosen by the ATLAS Collaboration.

A. Signal and background processes

Our case study is based on a problem relevant to
analyzing the H → ττ decay channel [3–5]. For leptonic
Higgs boson decays, the H → τþτ− channel has the largest
branching ratio of 6.3% [29,30], which makes this channel
a prime candidate to study the Yukawa-Higgs mechanism
for mass generation. The presence of neutrinos in the final
state of this process, however, degrades the resolution of the
measured Higgs boson four-momentum. This degraded
resolution makes the signal process much more difficult to
distinguish from background processes, thereby motivating
a machine learning approach.

To tackle the challenge of identifying the H → τþτ−
final state, one typically isolates different event topologies
and studies them individually. One H → ττ topology of
interest—which will serve as the signal process in our
classification case study—is the production of a Higgs
boson associated with a pair of top quarks where both top
quarks and both τ leptons decay hadronically. We denote
this signal process as

tt̄ðH → ττÞ or tt̄H for short: ð32Þ

A schematic of this process is shown in Fig. 2(a). Ideally,
the final state for this process would result in two τ-tagged
jets, two b-tagged jets, and four additional jets from W�
decay. This channel was considered by ATLAS in Ref. [3]
and by CMS in Ref. [31].
The main background process that mimics this tt̄H

signature—and significantly hinders the analysis of this
channel [3]—is the production of a top-antitop quark pair
where each top quark decays as t → τνb and both τ decay
hadronically. We denote this background process as

tt̄ð→ τνbÞ or tt̄ for short: ð33Þ

A schematic of this process is shown in Fig. 2(b). The tt̄
channel can mimic the signature of the ideal tt̄H process
if there are four additional jets from gluons radiated
before the hard scattering. In our case study, we focus
on distinguishing between tt̄H events and tt̄ events. A full
analysis, of course, would consider multiple Higgs pro-
duction topologies.
These two channels both exhibit high multiplicity final

states with a diverse range of final state objects. This leads
to many potential combinatorial reconstructions and a
high probability of detecting extra or losing relevant
objects. These characteristics make manually constructing
features difficult and motivates the need for flexibility in
the number of input objects. Our case study is, therefore,
representative of situations where we hope to make gains
from using point-cloud-based architectures, which natu-
rally account for combinatorial ambiguities and incom-
plete reconstruction. The particular processes we study are
among the highest multiplicity channels currently ana-
lyzed at the LHC.

B. Data generation

Following the tt̄ðH → ττÞ analysis strategy in Ref. [3],
we select events that satisfy the following properties:
(1) Two visible τ-tagged jets, with kinematic conditions

(a) maxðfpτ
TgÞ > 40 GeV,

(b) minðfpτ
TgÞ > 30 GeV,

(c) 0.6 < ΔRττ < 2.5,
(d) jηj ≤ 2.5,
(e) jΔηττj < 1.5,
(f) 0.1 < x1; x2 < 1.4 (defined below);
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(2) (≥ 5 jets and ≥ 2b tags) or (≥ 6 jets and ≥ 1b tags),
with kinematic conditions for
(a) the leading (non-τ) jet:
(i) pT > 70 GeV,
(ii) jηj < 3.2; and
(b) other jets:
(i) pT ≥ 20 GeV,
(ii) jηj ≤ 5;

(3) ≤ 15 jets total.4

Here, the transverse momenta (pT) and pseudorapidities (η)
are defined with respect to the beam line, ΔR2 ¼ Δη2 þ
Δϕ2 is the distance between objects in the pseudorapidity-
azimuth (η-ϕ) plane, and x1 and x2 are the momentum
fractions carried away by visible τ decay products as
computed by the collinear approximation [32–34].
For both the signal and background channels, we

generate events with MadGraph 5 v3.1.1 [35] and PYTHIA

8.245 [36]. These events are passed through the DELPHES3.5.0

[37] detector simulation with the ATLAS card.5 Jets are

then clustered with the R ¼ 0.4 anti-kT algorithm [38]
using the FastJet 3.3.4 [39] package. From all of the generated
events, we extract 80 000 events from each channel that
satisfy the event selection criteria, such that we have
balanced datasets. For the machine learning study, we split
each dataset into 70% for training and 30% for testing.

C. Data processing

The ATLAS analysis in Ref. [3] is based on the following
engineered features:
(1) Σpjets

T .—scalar sum of all jets pT ;
(2) MŴ .—invariant mass of the dijet with invariant mass

closest to W-boson mass;
(3) ΔRmin.—smallest ΔR between any two jets;
(4) Mt̂.—invariant mass of the trijet with invariant mass

closest to top quark mass;
(5) ΔRττ.—ΔR between two τ-tagged jets;
(6) jΔηττ—jΔηj between two τ-tagged jets;
(7) pττ

T .—the pT of the ττ dijet; and
(8) Emiss

T .—missing transverse energy Emiss
T .

These ATLAS features are used as inputs for a BDT to
mimic the ATLAS analysis. We also use these ATLAS
features to train a dNN, which yields comparable perfor-
mance to the BDT. For discrimination between tt̄H and
other background processes such as Z þ jets, alternative
features are chosen by ATLAS.

(a) (b)

FIG. 2. A schematic of the (a) signal and (b) background process considered in our event classification case study. The signal process
in (a) involves the production of a Higgs boson decaying to ττ associated with the production of a pair of top quarks where both top
quarks and both τ leptons decay hadronically. The background process in (b) involves the production of a pair of top quarks where both
tops decay to τνb and both τ’s decay hadronically. The background process can mimic the signal process if there are additional jets from
initial-state radiation, which was found to be a significant effect in a recent ATLAS analysis of H → ττ [3].

4This condition was not present in the original analysis of
Ref. [3]. The analysis team reported, however, that there are no
events in the dataset that contained more than 15 jets.

5Following the working point of Ref. [3], this ATLAS card is
modified so that τ tagging is at 100% efficiency. This is because
we apply a two-τ preselection, so there is no reason to simulate
tau finding inefficiency.

COMPARING POINT CLOUD STRATEGIES FOR COLLIDER … PHYS. REV. D 108, 012001 (2023)

012001-7



For the point cloud architectures, we perform the
following preprocessing of the inputs. Let Ktot be the
scalar sum of the kinematic quantityK for all particles in an
event and K̃tot be the kinematic quantity K derived from the
sum of the four-momenta of all particles in the event. We
also define Ki as the kinematic feature for object i in the
event. Each event is represented as a set of particles with the
following kinematic features representing each particle:

Event ¼ fparticleig≡

8>>>>>>>>>>>><
>>>>>>>>>>>>:

2
6666666666664

logðEi=ẼtotÞ
log ðMi=MtotÞ

ηi

ϕi

log ðpi
T=p

tot
T Þ

ðbtagÞi
ðτtagÞi

3
7777777777775

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: ð34Þ

Here, E is energy in the lab frame,M is invariant mass, and

btag∶ 1 if particle is b tagged and 0 if not;

τtag∶ 1 if a particle is τ tagged and 0 if not:

We found that taking the logarithm of the dimensionful
features improved the training across architectures.
One additional hand-engineered feature we must con-

sider is the ditau invariant massMττ. This feature is left out
of standard ATLAS training but discoverable by the point
cloud architectures. Because the ditau mass would peak at
the Higgs mass for signal events but not for background
events, it is expected to be a good discriminant. In the
context of the ATLAS analysis, this feature is intentionally
left out so that it can be used as a sanity check on the
classification. To get a more complete performance com-
parison for our case study, we concatenate Mττ with the
previously described ATLAS features to be used as input to
a BDT. Specifically, we include
(9) MColl

ττ .—the reconstructed ditau invariant mass using
the collinear approximation [32–34] to account for
the energy carried off by neutrinos.

The ATLAS analysis in Ref. [3] uses the missing mass
calculator [33], but we chose to test against the collinear
approximation instead for its relative simplicity.
As a cross-check, we train a dNN that takes as input a

pT-sorted and flattened version of the event representation
in Eq. (34) with padding to make each event have 15
objects. We call this a flattened point cloud. By training a
dNN on the flattened point cloud, we can assess whether
the improvement in performance we find from the point
cloud architectures is truly due to how we structure the
architectures rather than just because of an increase in
available information.

D. Performance of point cloud architectures

We now compare the performance of our proposed point
cloud architectures on the tt̄H versus tt̄ event classification
problem. The point cloud architectures from Sec. II that
we test are

(i) Particlewise, Eq. (10);
(ii) Pairwise, Eq. (11);
(iii) Tripletwise, Eq. (13);
(iv) Nonlinear Pairwise, Eq. (14);
(v) Iterated Nonlinear Pairwise, Eq. (21);
(vi) Nested Concatenation, Eq. (25); and
(vii) Nested Concatenation with Memory, Eq. (30).
The parameters for all architectures are summarized in
Appendix B. We chose hyperparameters such that each
architecture has approximately 100 000 trainable parame-
ters, to make sure we were comparing architectures based
on their structure and not just on model size. For com-
parison, we test four more traditional architectures:

(i) BDT trained with the ATLAS features;
(ii) BDT trained with the ATLAS features and MColl

ττ ;
(iii) dNN trained with the ATLAS features; and
(iv) dNN trained with the flattened point cloud,

where again the parameters are specified in Appendix B.
To assess the classification performance of each archi-

tecture, we plot their receiver operator characteristic (ROC)
curves in Fig. 3. These curves show the inverse background
false-positive rate (1=ϵb) as a function of the signal
efficiency (ϵs), as the cut on the architecture output is
varied. The best performing architectures are based
on tripletwise or pairwise information. The next-best
architectures use the nested concatenation structure from
Sec. II F. The point cloud architecture with the weakest
performance is the Particlewisie architecture. The dNN
acting on the flattened point cloud has significantly worse
performance, which indicates the importance of linking the
point cloud data inputs to a suitable architecture for
processing.
In Table I, we tabulate the number of trainable param-

eters in each architecture, the area under the ROC curve
(AUC), and various performance metrics at the operating
points of ϵs ¼ f0.3; 0; 7g. The choice of ϵs ¼ 0.7 mimics
the choice made in Ref. [3]. At this operating point, our best
performing models (nonlinear pairwise, iterated nonlinear
pairwise, tripletwise, and pairwise) achieve a 2.5 times
increase in ϵs=ϵb over the more traditional dNN and BDT
models. This jump in performance would be even more
pronounced if we choose an operating point of ϵs ¼ 0.3,
which leads to a nearly fourfold increase in discrimination
power.6 Furthermore, the poor performance of the dNN on
the flattened point cloud implies to us that the increase
in performance in our architectures comes from their

6This operating point is also closer to the one that would
maximize ϵs=

ffiffiffiffiffi
ϵb

p
, i.e., the one that would yield the largest

significance improvement [40].
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improved methods of processing information from a
collider event and not from simply increasing the amount
of information given to an architecture.
The processing of local information via tripletwise or

pairwise features yields the most powerful classifiers,
but this local information does not need to be processed
in overly complex ways. Notably, the architecture which
processes information in nearly the simplest manner, the
Parwise architecture, is comparable to the performance
of architectures with (iterated) nonlinear structures. This
implies that more complex strategies to process local
information do not necessarily lead to better performance,
at least in this context of this event classification problem.
Finally, we note that machine learning architectures

trained on Monte Carlo event samples are sensitive to
simulation-specific behavior that may affect model perfor-
mance on real data. For example, the analysis in Ref. [3] did
not utilize some input features because they were imperfectly
modeled in simulation. In our case study, though, some of
these imperfectly modeled variables were used as inputs, so
our architectures could be learning unphysical correlations.
Thus, the calibrated performance of our architectures on real
data will likely be inferior compared to the performance on
simulated data, unless some method is used to minimize the
dependence on simulation-specific behavior. Despite this
caveat, we expect the relative performance of the different
point cloud strategies to be similar.

E. Computational cost of point cloud architectures

Of the best performing architectures, the Parwise archi-
tecture is the most computationally efficient. To give an
idea of the computational cost of our architectures,

FIG. 3. ROC curves for event classification between tt̄H and tt̄,
comparing our proposed point cloud architectures to more
traditional strategies. The signal efficiency ϵs is on the x axis,
and the inverse background false positive rate 1=ϵb is on the
y axis, such that better performance corresponds to curves that are
more up and to the right. The Parwise architecture, which is our
recommended strategy, is one of the best performing methods for
this task.

TABLE I. Performance summary of the studied architectures. Here we tabulate (i) the area under the ROC curve, (ii) the number of
trainable parameters, (iii) the inverse false-positive rate 1=ϵb at fixed signal efficiency ϵs ¼ f0.3; 0.7g, which roughly corresponds to
how many background events we see until a background event is misclassified as a signal event, and (iv) the ratio of signal efficiency to
background false-positive rate ϵs=ϵb at fixed signal efficiency ϵs ¼ f0.3; 0.7g, which measures the discriminatory power of the
architecture. By comparing the average of the values in the ϵs ¼ 0.7 columns of our best performing architectures (nonlinear pairwise,
iterated nonlinear pairwise, tripletwise, and pairwise) to the best performing traditional architecture (BDTþ ATLAS featuresþMColl

τ ),
we see that we gain about a 2.5 times increase in performance. Boldfaced entries are the best performing in each column.

(ϵs ¼ 0.3) (ϵs ¼ 0.7)

Architecture AUC # Params 1=ϵb ϵs=ϵb 1=ϵb ϵs=ϵb

Nonlinear pairwise, Eq. (14) 0.9590 96 K 414.4 124.1 37.4 26.2
Iterated nonlinear pairwise, Eq. (21) 0.9590 100 K 364.2 109.2 35.9 25.2
Tripletwise, Eq. (13) 0.9578 105 K 400.6 120.1 32.3 22.6
Pairwise, Eq. (11) 0.9568 104 K 343.4 102.3 31.7 22.2
Nested Concatenation with Memory, Eq. (30) 0.9285 100 K 111.8 33.5 15.1 10.6
Nested concatenation, Eq. (25) 0.9277 105 K 116.1 34.7 14.6 10.2
Particlewise, Eq. (10) 0.9253 100 K 102.7 30.8 14.4 10.1

BDTþ ATLAS featuresþMColl
ττ 0.9206 � � � 98.5 29.5 13.4 9.4

BDTþ ATLAS features 0.9201 � � � 96.9 28.9 13.3 9.3
dNNþ ATLAS features 0.9198 134 K 99.3 29.6 13.2 9.2
dNNþ flattened point cloud 0.9015 160 K 56.3 16.9 9.8 6.9

COMPARING POINT CLOUD STRATEGIES FOR COLLIDER … PHYS. REV. D 108, 012001 (2023)

012001-9



we tabulate the approximate time or epoch and total
number of epochs to train each architecture in Table II.
These training times are obtained on a server equipped with
two NVIDIA Tesla K80s. The Parwise architecture and
nonlinear Parwise architectures are close in both perfor-
mance and run-time efficiency. The other two architectures
that achieve similar performance, the Iterated Nonlinear
and Tripletwise architectures, are significantly more com-
putationally expensive.
Since the Parwise architecture is nearly the best perform-

ing architecture while still being one of the simplest
conceptually and most efficient computationally, we rec-
ommend the use of the Parwise architecture for event
classification. For other point cloud tasks that have seen
gains from using graph neural networks, we recommend
their performance be benchmarked against the Parwise
architecture.

F. Latent dimension studies of the Parwise architecture

Having convinced ourselves that the Parwise architecture
is a prime candidate for event classification, we now study
the l-dimensional latent representation of events generated
by this architecture. Specifically, we study what happens if
we restrict the latent dimension l of the Parwise archi-
tecture. This gives us a way to study how powerful this
architecture is at identifying useful discriminatory features
from the event kinematics. Furthermore, we can visualize
the latent representations to get some picture of what the
architecture is physically learning.
The latent dimension l corresponds to the number of

discriminatory features the architecture can extract from the
point cloud. Concretely, if we restrict the latent dimension
of the Parwise architecture to l ¼ 2, we are essentially
asking the architecture to extract two features from the
point cloud that, when processed by the F function, can
robustly distinguish between signal and background events.
In the Parwise architecture from Eq. (11), the latent
representation of an event X is the result of a double
summation over pairs of particles:

P
i;j Φ2ðxi; xjÞ ∈ Rl. In

Fig. 3 and Table I above, we used l ¼ 26, as described in
Appendix B. We can think of the BDTs and dNNs trained
on the ATLAS variables [3] as having l ¼ 23, because they
take as input eight hand-engineered features, as described
in Sec. III C.
As shown in Table III, we can significantly restrict the

size of the latent dimension of our Parwise architecture and
still outperform traditional methods of event classification.
This table shows the performance of the Parwise archi-
tecture as a function of the size of the latent dimension. The
strong performance even for l ¼ 20 ¼ 1 implies that deep-
learning-driven feature engineering is extremely powerful
for finding robust discriminatory features for event classi-
fication. These discriminatory features could, in principle,
be found from the traditional feature engineering game, but
we expect they would be extremely difficult to find in
practice without the use of machine learning.

TABLE II. Computational cost summary of the studied archi-
tectures. Here, we tabulate the time per epoch and total number of
epochs it took to train each model on a server equipped with two
NVIDIA Tesla K80s. While training, we reserve 30% of the
training data as validation data and monitored validation loss. If
validation loss has not improved in 32 consecutive epochs, we
stop the training and restore the weights of the model to the point
where validation loss was lowest. Boldfaced entries are the most
computationally efficient in each column.

Architecture
Time=epoch
(seconds)

Total # of
epochs

Tripletwise 240 100
Pairwise 25 93
Nonlinear (NL) pairwise 27 88
Iterated NL pairwise 50 149
Nested concatenation 20 64
Nested Concatenation with Memory 20 54
Particlewise 10 61

dNNþ ATLAS features 10 110
dNNþ flattened point cloud 5 38

TABLE III. Impact of latent dimension size on the performance of the Parwise architecture. We show the same
performance metrics as Table I, and the uncertainties correspond to the mean and variance from eight random
initializations. Boldfaced entries are the best performing in each column. Even for a latent dimension size of 20 ¼ 1,
the Parwise architecture outperforms the baseline ATLAS method.

(ϵs ¼ 0.3) (ϵs ¼ 0.7)

Latent dimension AUC # Params 1=ϵb ϵs=ϵb 1=ϵb ϵs=ϵb

20 0.9428� 0.0025 92 K 170.1� 10.2 50.8� 3.0 21.5� 1.4 15.1� 1.0
21 0.9452� 0.0013 92 K 205.1� 15.7 61.3� 4.7 22.7� 0.9 15.9� 0.7
22 0.9495� 0.0022 93 K 270.2� 38.6 80.8� 11.5 26.0� 1.8 18.2� 1.2
23 0.9526� 0.0020 94 K 326.8� 45.6 97.6� 13.2 29.2� 2.0 20.4� 1.4
24 0.9550� 0.0010 95 K 334.9� 23.2 100.1� 6.9 31.2� 1.6 21.8� 1.1
25 0.9565� 0.0011 98 K 358.0� 42.6 106.5� 12.6 32.8� 1.5 23.0� 1.0
26 0.9581� 0.0006 104 K 382.9� 37.8 114.4� 11.4 34.5� 1.4 24.2� 1.0
27 0.9584� 0.0010 117 K 402.8� 43.5 120.7� 13.0 34.9� 1.4 24.4� 1.0
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For l ¼ 2, we can directly visualize the latent space of the
Parwise architecture, as shown in Fig. 4. Here we plot two
versions of the latent dimension, where densities are approxi-
mated with kernel density estimation (KDE) [41,42].7 In
Fig. 4(a), we plot the densities of the raw latent representa-
tions. We see that one of the latent space variables yields a
clean separation between signal and background events,
while the other one yields an approximately Gaussian
distributed feature with different widths for signal and back-
ground. In Fig. 4(b), we apply t-distributed stochastic
neighbor embedding (t-SNE) [43–46] to the latent represen-
tation, which shows more clearly the separation between
signal and background events. This t-SNE visualization
serves as a reference for later plots with higher l.
As we increase the latent dimension l, the trained

architectures identify more discriminatory features, leading
to better separation between signal and background events
in the latent space. In Fig. 5, we plot the two-dimensional
t-SNE embeddings of the eight-dimensional ATLAS fea-
ture space and compare it to our l ¼ f21; 23; 26g Parwise
architectures. To quantify the separation between the two
(t-SNE projected) distributions, we approximate the Earth
mover’s distance (EMD) [47–49] using the Euclidean
distance as the ground metric between the tt̄H and tt̄
distributions. Since the length scales within a t-SNE
embedding are not physical and we wish for the EMD
to be a meaningful metric of comparison, we standardize
the whole distribution of events in each plot so that along

each dimension we have zero mean and unit variance.
Qualitatively, we see that, for our proposed Parwise
architecture, the joint and marginalized distributions of
tt̄H and tt̄ are more clearly separated than for the ATLAS
features. This observation is reinforced quantitatively by
seeing that the EMD between the embedded distribution of
signal and background events is smallest for the ATLAS
features, implying the largest degree of overlap.

G. Correlations between Parwise architecture
features and hand-engineered features

The features found to be useful to represent collider
events by our Parwise architecture are correlated to several
of the features chosen by ATLAS to classify events. In
Fig. 6, we tabulate the Spearman’s rank correlation coef-
ficients (Spearman’s ρ) between the ATLAS features used
in Ref. [3] (see Sec. III C) and the learned latent features of
our Parwise architecture with l¼2 and l ¼ 8. Spearman’s
ρ quantifies the degree to which two variables are mono-
tonically related, with ρ ¼ 0 meaning no correlation
and ρ ¼ 1 meaning perfect correlation. Unlike the more
common Pearson correlation coefficient, Spearman’s ρ
does not care if the relationship is linear or not, which
makes it a more robust notion of correlation in the context
of nonlinear neural networks.
Because Spearman’s ρ quantifies monotonic relations, we

have to be mindful of features whose classification perfor-
mance is related to how close they are to the true W-boson
mass (mW ¼80.4GeV), top quark mass (mt ¼ 172.5 GeV),
and Higgs boson mass (mH ¼ 125 GeV). Thus, instead of
tabulating correlations for MŴ, Mt̂, and MColl

ττ , we look at
jMŴ −mW j, jMt̂ −mtj, and jMColl

ττ −mHj. We see that,

(a) (b)

FIG. 4. Visualization of the latent representations of events in the l ¼ 21 Parwise architecture, using KDE for density estimation. In
(a), we plot the latent representations corresponding to the tt̄H and tt̄ events. In (b), we apply t-SNE to disentangle the two distributions
and see a clearer separation. Each plot also shows the marginalized distributions along each axis.

7Because of computational restrictions, we generate the figures
in this subsection using roughly a third of the events from the
testing set.
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of all the ATLAS features, the scalar sum of all jet pT is most
closely related to the Parwise architecture features. Other
ATLAS features that have some correlation with the Parwise
architecture features are the smallest ΔR between two jets,
the pT of the ττ dijet, the ΔR between the two τ-tagged jets,
and the invariant mass of the dijet or trijet with invariant
mass closest to the W-boson or top quark mass.
From Fig. 6, we can see that there exists a correlation

between MColl
ττ and the Parwise architecture features, as

anticipated in Sec. III C. This correlation is subtle, though,

and not captured by a single latent space feature. In Fig. 7,
we consider the Parwise architecture with l ¼ 26 and plot
the MColl

ττ distribution for tt̄H events correctly and incor-
rectly classified by this architecture at fixed signal effi-
ciency ϵs ¼ 0.7. We see that correctly labeled events have a
sharper peak inMColl

ττ , albeit shifted a bit to the right ofmH.
This behavior suggests that the Parwise architecture with
l ¼ 26, which was used for our comparison comparison in
Sec. III D, has learned features with some correlation
to MColl

ττ .

(a) (b)

(c) (d)

FIG. 5. Visualization of the latent representations using t-SNE embedding. Shown are (a) the ATLAS features which effectively
have l ¼ 23, (b) the Parwise architecture with l ¼ 21, which has the same information as Fig. 4(b), (c) the Parwise architecture with
l ¼ 23, and (d) the Parwise architecture with l ¼ 26. The t-SNE embeddings have been standardized such that the distributions have
mean 0 and standard deviation 1 along both dimensions. The standardized embedding is then rotated such that the tt̄H events are
centered on the right side of the figure. For each plot, we report the EMD between the distribution of tt̄H and tt̄ events, which
roughly measures the separation of the two distributions, with larger EMD corresponding to better separation. We also plot
marginalized densities along each axis.
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IV. CONCLUSIONS

In this paper, we compared neural network architectures
defined on the point cloud representation of collider events
with traditional approaches for event classification. The
point cloud representation allows us to circumvent many
difficulties arising from trying to robustly represent an
event with a fixed-size input. Our architectures explore

three complementary strategies to process information
within a point cloud: (i) using multiple summations to
improve local information processing; (ii) using iterated
convolutions to increase an architecture’s power to build
latent representations; and (iii) using nested concatenation
of global features to improve global information process-
ing. These can be viewed as simplified versions of the
strategies used to build graph neural networks.
To benchmark our architectures, we performed a case

study of event classification in the H → ττ channel and
compared the results to an ATLAS study using hand-
engineered features [3]. At a comparable signal efficiency
operating point to the one used by ATLAS, we found a
2.5 times increase in background rejection. This gain in
performance was not simply due to the increased size of
the input space. Indeed, when the flattened point cloud
representation was processed with a dNN, we found worse
performance than for the ATLAS baseline. We therefore
recommend further explorations of point cloud architec-
tures for event classification problems.
Among the tested architectures, the Parwise architecture

exhibited the best balance of classification performance,
computationally efficiency, and conceptual simplicity. The
Particlewisie architecture, based on a straightforward
application of the Deep Set formalism [11], yielded
performance similar to the ATLAS baseline. By consider-
ing the set of pairs of particles, we found a boost in
performance without requiring more complex nonlinear or
iterated structures as in EdgeConv architectures [13]. The

FIG. 6. The Spearman’s rank correlation coefficients of the ATLAS features fromRef. [3] (left block) and ditaumass (right block) with the
latent features learned by our Parwise architectures, using l ¼ 2 (top block) and l ¼ 8 (bottom block). Here, mW ¼ 80.4 GeV,
mt ¼ 172.5 GeV, andmH ¼ 125 GeV.We compute the ρ between the Parwise architecture feature and the absolute difference ofMŴ ,Mt̂,
andMττ to canonical values, since the “goodness”of thesemassvariables ismonotonicwithhowclose thesevariables are to the trueW-boson,
top quark, andHiggsmass.Of all the chosenATLASfeatures, the scalar sumof the jets’ transversemomenta is particularly correlatedwith the
features used by the Parwise architecture. Also noteworthy is the presence of a correlation betweenMColl

ττ and the pairwise latent features.

FIG. 7. Normalized distributions ofMColl
ττ for tt̄H signal events.

Predicted labels are from the Parwise architecture with l ¼ 26 at
a fixed signal efficiency of ϵs ¼ 0.7, where the purple curves
correspond to tt̄H-labeled events and the pink curves correspond
to tt̄-labeled events. Events classified as tt̄H have a sharperMColl

ττ

feature, suggesting that the Parwise architecture has learned
features with some correlation to MColl

ττ .
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Parwise architecture continues to have good discrimina-
tory power as the latent space dimension l is decreased,
and, by visualizing the learned latent representations, we
conclude that the Parwise architecture is able to identify
discriminatory features that are well suited for event
classification. We found that these learned features are
correlated with traditionally chosen handcrafted features.
While more complex graph neural networks might
provide better performance for certain eventwide tasks,
we recommend that they be benchmarked against the
simpler Parwise architecture.
A key open question regarding our proposed architec-

tures is how they will perform as the final state multiplicity
increases. In this paper, we considered a final state ofOð10Þ
objects, but final states of interest with Oð100Þ or even
Oð1000Þ objects also appear in particle physics applica-
tions such as jet substructure studies. We found that, for our
case of Oð10Þ final state objects, the Parwise architecture
achieved the best balance between performance and cost.
As we scale up to more final state objects, however, it will
be important to understand the performance-cost balance,
as Parwise architectures scale quadratically with the num-
ber of objects being studied. To extend our architectures to
more final state objects without suffering from quadratic
scaling, one could follow the strategy of the original
EdgeConv construction [13] and consider only k-nearest
neighbors instead of all pairs. These trade-offs are an
important area for future studies.
There are several more directions for further explora-

tions. First, our case study focused on binary classifica-
tion, but, as described in Eq. (2), these point cloud
architectures could be applied to multicategory classi-
fication or regression. Second, the Parwise architecture is
based on learning a generic function Φ2, but it may be
possible to improve performance and interpretability by
restricting its functional form. Finally, there has been a
rising interest in incorporating physical symmetries into
neural networks. While our point cloud architectures
already exhibit manifest permutation invariance among
the particles, event classification could benefit from
directly incorporating Lorentz symmetry [50–55] or
infrared and collinear safety [12,15,22,56–59].
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APPENDIX A: PERMUTATION EQUIVARIANT
DEEP SETS

In Sec. II F, we argued that concatenation (with or
without memory) is a powerful way to incorporate global
information into local particle processing. An alternative
additive approach to incorporating global information was
presented in Ref. [11] and applied in Ref. [15]. In this
appendix, we show that the additive approach can be
viewed as a special case of the concatenation approach
with memory.
A permutation equivariant Deep Set that maps n-

dimensional point clouds to l-dimensional point clouds
can be written as follows [11]:

Ωðxi;XÞ ¼ σðxiΛ − ĝðXÞΓÞ: ðA1Þ

Here, σ is some activation function, ĝðXÞ ∈ R1×n is the
result of a symmetric aggregation operation over the point
cloud, Λ is a transformation of the features of particle
xi ∈ R1×n, and Γ ∈ Rn×l is a transformation of the pooled
features. One can iteratively apply these equivariant Deep
Set layers to create a permutation equivariant architecture,
which was shown to be universal for permutation equiv-
ariant functions in Ref. [60].
We now show that a single permutation equivariant Deep

Set layer from Eq. (A1) is a special case of the concat-
enation approach from Eq. (29). First, since we are looking
at one layer, we can take

X ðd−1Þ ≡ X : ðA2Þ

Since Deep Sets are universal for permutation invariant
functions and ĝ is by definition permutation invariant, we
can assume that

fðd−1ÞðX ðd−1ÞÞ≡ ĝðXÞ: ðA3Þ

Now consider implementing ΦðdÞ with a one-layer
neural network with the same activation function σ as in
Eq. (A1) and weights wðdÞ ∈ R2n×l. With these assump-
tions, Eq. (29) reduces to

xðdÞi ¼ ΦðdÞ
�
xðd−1Þi ⊕ fðd−1Þ

�
X ðd−1Þ

��
¼ σ

��
xðd−1Þi ⊕ ĝðXÞ

�
wðdÞ

�
: ðA4Þ

Since we are multiplying the concatenation of two vectors
with the weight matrix wðdÞ, we can decompose the weight
matrix as

wðdÞ ¼
"
λðdÞ

γðdÞ

#
; λðdÞ; γðdÞ ∈ Rn;l: ðA5Þ
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This reduces Eq. (A4) to

xðdÞi ¼ σ
�
xðd−1Þi λðdÞ þ ĝðXÞγðdÞ

�
: ðA6Þ

Finally, if we choose λðdÞ ¼ Λ and γðdÞ ¼ −Γ, then
Eq. (A6) is equivalent to Eq. (A1).
We therefore conclude that a single permutation equiv-

ariant Deep Set layer is a special case of the concatenation
approach. This, in turn, means that the composition of
L-equivariant Deep Set layers from Eq. (A1) is equivalent to
the resulting point cloud after L-nested layers of Eq. (29).
Thus, the architecture in Ref. [11] based on iteratively
applied equivariant Deep Set layers is a special case of our
Nested Concatenation with Memory architecture.

APPENDIX B: MODEL PARAMETERS

In this appendix, we specify the model parameters used
for the event classification study in Sec. III D. All archi-
tectures were implemented with Keras [61] using the
TensorFlow [62] back end. We chose model parameters so
that the total number of trainable parameters in each model
was roughly the same across all architectures.
(1) Particlewisie architecture, Eq. (3):

(a) F.—four layers, each 128 nodes wide;
(b) Φ.—four layers with widths (128, 128, 128, 64).

(2) Parwise architecture, Eq. (11):
(a) F.—five layers, each 64 nodes wide;
(b) Φ.—fivelayerswithwidths(64,128,256,128,64).

(3) Tripletwise architecture, Eq. (13)):
(a) F.—five layers, each 64 nodes wide;
(b) Φ.—five layers with widths (64, 128, 256,

128, 64).
(4) Nonlinear Parwise architecture, Eq. (14)):

(a) F.—five layers, each 32 nodes wide;
(b) Φ.—fivelayerswithwidths(64,128,256,128,64);
(c) Π.—three layers, each 32 nodes wide.

(5) Iterated nonlinear Parwise architecture, Eq. (21):
(a) L.—Since we found that performance does not

improve for L > 3, we use L ¼ 3;
(b) F.—five layers, each 32 nodes wide;
(c) ΠðiÞ.—All have three layers, each 32 nodes

wide;
(d) ΦðiÞ.—All have five layers with widths (64, 64,

116, 64, 64).

(6) Nested Concatenation architecture, Eq. (25):
(a) L.—Since we found that performance does not

improve for L > 2, we use L ¼ 2;
(b) FðiÞ.—All have four layers, each 70 nodes wide;
(c) ΦðiÞ.—For i ≠ L, theΦðiÞ have three layers, each

70 nodes wide; for i ¼ L, ΦðLÞ has four layers
with widths (70, 70, 70, 64).

(7) Nested Concatenation with Memory architecture,
Eq. (30):
(a) L.—Since we found that performance does not

improve for L > 2, we use L ¼ 2;
(b) FðiÞ.—All have three layers, each 68 nodes wide;
(c) ΦðiÞ.—For i ≠ L, theΦðiÞ have three layers, each

68 nodes wide; for i ¼ L, ΦðLÞ has four layers
with widths (68, 68, 68, 64).

(8) Dense neural network (ATLAS or naive features):
(a) We implement dNNs with a batch normalization

layer [63] followed by three layers, each 256
nodes wide.

We use leaky_relu activation functions between each layer
in all of our neural networks. A two-unit layer followed by a
softmax activation function is used as the output layer in all
models. To train, we minimize categorical cross entropy
using the Adam optimization algorithm [64] with the
AMSGrad enhancement [65]. When training, we reserve
30% of the training data as validation data and monitor the
validation loss. To avoid overfitting, we stop training if
validation loss has not improved in 32 epochs and restore the
weights of the model to the point when the validation loss
was lowest.
The following BDT parameters were used in our

model implemented with XGBoost [66]. These parameters
were chosen using the hyperparameter tuning library Hyperopt

[67] with the tree of Parzen estimators algorithm [68].
(i) colsample_bytree: 0.703;
(ii) eta: 0.35;
(iii) gamma: 1.02;
(iv) max_depth: 10;
(v) min_child_weight: 10;
(vi) n_estimators: 297;
(vii) reg_alpha: 40.0; and
(viii) reg_lambda: 0.987.
Again, we softmax the output and optimize categorical cross
entropy.
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