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The entropy of supersymmetric black holes in string theory compactifications can be related to that of a
D- or M-brane system, which in many cases can be further reduced to a two-dimensional conformal field
theory (2D CFT). For black holes in M theory, this relation involves a decoupling limit where the black
hole mass diverges. We suggest that moving away from this limit corresponds to a specific irrelevant
perturbation of the 2D CFT, namely the supersymmetric completion of the TT̄ deformation. We
demonstrate that the black hole mass matches precisely with the TT̄ deformed energy levels, upon
identifying the TT̄ deformation parameter with the inverse of the leading term of the black hole mass. We
discuss various implications of this novel realization of the TT̄ deformation, including a Hagedorn
temperature for wrapped M5-branes, and potential change of degeneracies in the deformed theory.
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I. INTRODUCTION

Black holes are known to host an enormous amount of
entropy, known as Bekenstein-Hawking entropy SBH ¼ A

4l2P
,

where A is the area of the event horizon and lP is the
Planck length [1–5]. This formula is particularly striking
since the black hole entropy scales as area rather than
volume. This intriguing observation has given rise to the
idea of holography [6,7]. Another remarkable feature is the
appearance of the Planck length, the characteristic length
scale of quantum gravity, although the entropy formula was
derived in the realm of classical gravity. This suggests that
understanding of black hole entropy is key to the under-
standing of quantum gravity. The immediate puzzle is that
black hole microstates cannot be distinguished and enu-
merated within classical gravity.
For supersymmetric black holes, one can overcome this

stumbling block, by utilizing the fact that the degeneracy,
or index to be precise [8–10], is locally constant as a
function of continuous parameters of the theory. For black
holes in string theory, a decoupling limit in which Newton’s
constant becomes small leads to a complementary descrip-
tion in terms of D-branes, often described by a two-
dimensional conformal field theory (CFT). Microstates
have a clear meaning in this picture and their counting

reproduces SBH correctly [11,12]. It is an interesting
question to extend the microscopic description away from
the limit.
In this article, we consider four-dimensional compacti-

fications of string theory with N ¼ 2 supersymmetry. This
theory gives rise supersymmetric black holes, that is to say
half-Bogomol’nyi-Prasad-Sommerfield (BPS) states, since
they preserve four out of the eight supercharges. There is a
great variety of these states, with intricate dependence on
asymptotic values of the vector multiplet scalars, which
parametrize the Kähler moduli space [13–23]. We are
interested in a family of black holes whose degrees of
freedom reduce to a 2D CFT, more precisely the
Maldacena-Strominger-Witten (MSW) CFT [12,24], in a
decoupling limit of the Kähler moduli space. This limit
corresponds to the “infinite volume limit” in string units,
jJj → ∞ with J being the real Kähler modulus. Newton’s
constant G4 vanishes in this limit.
For this family of black holes, moving to finite mass

coincides with moving away from the infinite volume limit.
In this article, we argue that moving to the “finite volume
regime” of a family of half-BPS black holes in N ¼ 2

theory is captured by the TT̄ deformation of the MSWCFT.
This deformation is an irrelevant deformation constructed
in terms of the energy-momentum tensor [25]. Even though
irrelevant, the theory remains solvable, and the degener-
acies do not lift under this deformation. Our main argu-
ment, that moving to finite volume corresponds to the TT̄
deformation, is that the expression for the black hole
masses matches with the formula for TT̄ deformed energy
levels.
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II. D4-BRANE BLACK HOLES AND CFT

Extremal black holes in N ¼ 2 supergravity are char-
acterized by their magnetic and electric charges γ ¼
ðP0; Pa;Qa;Q0Þ, a ¼ 1;…; nv, where nv is the number
of vector multiplets. Such black holes preserve four out of
total eight supercharges. By the attractor mechanism
for extremal black holes, irrespective of their values at
spatial infinity, the scalars ta ≔ Ya

Y0 flow to their “attractor
values” taγ at the black hole horizon [26]. For the family
of black holes with P0 ¼ 0, the Bekenstein-Hawking

entropy of the black hole is SBH ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
P3Q̂0̄

q
[27], where

P3 ¼ dabcPaPbPc, with dabc the 3-tensor of the tree-level

prepotential FðYÞ ¼ dabcYaYbYc

6Y0 , with Ya’s being the vector

multiplet scalars. Moreover, Q̂0̄ ¼ −Q0 þ 1
2
dabQaQb, with

dab being the inverse of the quadratic form dab ¼ dabcPc.
The signature of dab is ð1; b2 − 1Þ.
N ¼ 2 supergravity can in turn be realized as a low-

energy effective description of string theory, compactified
on a Calabi-Yau threefold X. In type IIA string theory
description, the charge γ is carried by D6-D4-D2-D0-
branes, wrapped around appropriate cycles of X. Number
of vector multiplets nv equals the second Betti number b2
of X. In type IIB string theory, these states manifest
themselves in hypermultiplet geometry [28–30].
In the large volume limit, the Arnowitt-Deser-Misner

mass MγðtÞ of a D4-brane black hole carrying charge
γ ¼ ð0; P;Q;Q0Þ equals jZðγ; tÞj with Zðγ; tÞ the tree-level
holomorphic central charge, Zðγ; tÞ ¼− 1

2l5s
Pt2þ 1

l3s
Qt−Q0

ls
,

where ls is the string length and ta ¼ Ya

Y0 ¼ Ba þ iJa are the
complexified Kähler moduli fields. We will also use
ta ¼ Ba þ iλJa, with J the normalized Kähler modulus,
PJ2 ¼ l4

s . Thus λ ∼ ðVX=l6
sÞ1=3 is a dimensionless mea-

sure for the volume of 2-cycles in string units. The infinite
volume limit then corresponds to λ → ∞. We will set
ls ¼ 1, unless otherwise mentioned. The (renormalized)
rest mass MγðtÞ simplifies in the infinite volume limit
λ → ∞ [19,31–34], rendering various supergravity parti-
tion functions amenable to analytics. Note the black hole
mass MγðtÞ diverges in this limit.
For vanishing D6-brane charge, type IIA string theory

can be further uplifted to M theory, by introducing the
M-theory circle S1M with radius R ¼ gsls=2π, where gs is
the string coupling. In M theory the D4-brane is elevated to
a M5-brane wrapping the 4-cycle P times the M-theory
circle S1M. D2-brane charges are realized as fluxes in the
world volume of the M5-brane, whereas the D0-charge
becomes the momentum along S1M. The M5-brane
dynamics is captured by MSW CFT in the decoupling
limit [12,24]. In this limit, the 11-dimensional Planck
length vanishes, l11 ¼ g1=3s ls → 0, such that

R=l11 → ∞; VX=l6
11 fixed but large: ð1Þ

The second quantity is fixed since it corresponds to a
hypermultiplet scalar.
The MSW CFT has (4,0) supersymmetry, that is to say

four chiral supercharges, which matches the number of
preserved supersymmetries of the black hole. The bosons
of the theory comprise three nonchiral scalars correspond-
ing to movement of the brane system along transverse R3.
In addition, there are nonchiral real scalars describing
movement of the D4-brane inside X, as well as left-moving
and right-moving scalars descending from the M5-brane
world volume self-dual 3-form field strength. The bosons
and their fermionic partners can be arranged in (4,0)
supermultiplets, whose numbers depend on Calabi-Yau
data as well as the divisor. The four supersymmetries
broken by the brane configuration lead to a universal
Goldstino supermultiplet [24]. The left and right central
charges arising from field content are cL ¼ P3 þ 1

2
c2:P and

cR ¼ P3 þ c2:P, with c2 the second Chern class of X. The
combination Q̂0̄ is bounded below by −cL=24 with cL the
central charge of the left-moving degrees of freedom.
The Cardy formula for the left movers reproduces the
one-loop corrected Bekenstein-Hawking entropy [12].
On the gravity side, D4-brane black holes develop AdS3

throats [34] dual to the MSW CFT, after uplifting from four
to five dimensions [35,36] and then taking the decoupling
limit (1). Since λ ∼ V1=3

X =l2
s ¼ ðVX=l6

11Þ1=3ðR=l11Þ, the
limit (1) is equivalent to the infinite volume limit in string
units, λ → ∞.
An important aspect which complicates the state count-

ing of single-center black holes are multicenter black
holes [15,19,37,38]. Their low-energy dynamics is cap-
tured by N ¼ 4 quiver quantum mechanics [37]. Five-
dimensional multicenter solutions with centers carrying
nonvanishing D6-brane charge have a distance scale
∼l3

5=R
2 ∼ R=λ3, whereas those with vanishing D6-brane

charge have a distance scale ∼l5, with l5 ¼ l3
11=ð4πV1=3

X Þ
the five-dimensional Planck length. Upon appropriate
coordinate redefinition, configurations with distance scale
∼l3

5=R
2 go over to a single AdS3 throat in this limit. On the

other hand, multicenter solutions with distance scale ∼l5

form multiple throats [34]. Scaling black holes [19,39–41]
with centers carrying vanishing D6-brane charges present
an intriguing case, since these can approach each other
arbitrarily close. In particular taking their mutual distance
to scale as l3

5, they are seen to merge in a single AdS3
throat [34]. Upon dimensional reduction, this AdS3 throat
reduces to an AdS2, which can also be seen to arise in the
near coincident regime of scaling black holes in four
dimensions [42,43]. The black holes merging in a single
AdS3 throat have been argued to be captured by the
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CFT [34]. In terms of the Kähler moduli, the 4D super-
gravity states which correspond to the CFT are those
which exist at the infinite volume attractor point [30,34],
t∞γ ¼ limλ→∞ tλγ , with

ðtλγÞa ¼ dabQbl2
s þ iλl2

s
Paffiffiffiffiffiffi
P3

p : ð2Þ

Then λ ¼ ðp3Þ1=6ð61=3=2ÞR=l5. Note that the attractor
value tλγ (2) differs for different D2-brane charge, even
for states within the same CFT.
The ground state of the CFT corresponds to the “bare”

D4-brane, whereas excited states carry additional D0- and
D2-brane charge. The energies of excitations of the CFT
correspond to the infinite volume limit of the D4-brane
mass, renormalized by subtracting the leading term
PJ2=2. For B ¼ 0, this gives for the CFT energy Eγ and
momentum Πγ

REγ ¼ lim
jJj→∞

ls

�
MγðtÞ −

1

2
PJ2=l5

s

�

¼ −Q0 þ
ðQ:JÞ2
PJ2

;

RΠγ ¼ Q0: ð3Þ

The expression for B ≠ 0 is invariant under translations in
the electric-magnetic duality group Spð2þ 2b2;ZÞ. Note
Q0 is the momentum along the M-theory circle S1M.
Equation (3) in turn implies for the Virasoro operators

L0 ¼ ðQ:JÞ2
2PJ2 þ cL

24
and L̄0 ¼ −Q0 þ ðQ:JÞ2

2PJ2 þ cR
24
. L0 saturates

the BPS bound for half-BPS states, which preserve four
fermionic symmetries.
Altogether, one has the CFT partition function [19,44,45]

ZCFTðτ; τ̄Þ ¼
X
Q0;Q

Ωðγ; t∞γ ÞqðEγþΠγÞ=2q̄ðEγ−ΠγÞ=2

×
Z

d3p⃗e−β
p⃗2

2m5 ; ð4Þ

where m5 ¼ πPJ2

gsl5s
is the mass of the wrapped MSW string

and p⃗ is the momenta in R3. The coefficient Ωðγ; t∞γ Þ is the
appropriate (rational) BPS index [21,30]; it is a speciali-
zation of Ωðγ; tÞ which is independent of hypermultiplet
scalars while only locally constant as a function of the
vector multiplet scalars through its dependence on t.
Moreover, q ¼ e2πiτ with τ ¼ C0 þ i β

lsgs
the modular

parameter of the torus S1M × S1β, where S1β is the thermal
circle and τ2 ≔ ImðτÞ is the ratio of circumferences of S1β
and S1M. Similarly, τ1 ≔ ReðτÞ is related to the IIA
Ramond-Ramond 1-form C1 as C1 ¼ C0

dt
β and describes

the tilt of S1β with respect to S1M. We suppress further

nonholomorphic contributions related to mock modular
forms [30,32,46], which are not relevant for the present
discussion.

III. MODULARITY

The MSW CFT is invariant under large reparametriza-
tions of the torus, that is to say modular transformations:
τ → aτþb

cτþd, a; b; c; d ∈ Z, ad − bc ¼ 1. The modular weight
of ZCFTðτ; τ̄Þ is (2,0), since Ωðγ; tÞ is the second helicity
supertrace. The integral on the second line in Eq. (4) is the
integral over the three momenta, which evaluates to a factor
ð2π2PJ2g2sτ2

Þ3=2 ¼ ð2π2PJ2βgs
Þ3=2. This factor has modular weight

ð3
2
; 3
2
Þ, since J has weight ð1

2
; 1
2
Þ and the area of the torus

βgs is modular invariant. The spectrum allows for a theta
function decomposition ofZCFT, such that the degeneracies
are enumerated by a weakly holomorphic vector-
valued modular form of weight −1−b2=2 [19,44,45].
These functions can be explicitly determined in special
cases [45,47–50].
Compactifying M theory on S1M and further applying T

duality along the S1β, one arrives at type IIB string theory.
This theory exhibits an SLð2;ZÞ S-duality group. In this
context, the modularity of the CFT partition function and S
duality reinforce each other in a nontrivial way [28,30,32].

IV. D4-BRANE BLACK HOLES AT FINITE
VOLUME

Let us now turn to black holes with finite λ. The mass
MγðtÞ can be expressed in terms of Eγ and Πγ (3) as

MγðtÞ¼
1

ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
PJ2=l4

s

�
2

þðPJ2=l4
sÞREγþR2Π2

γ

s
: ð5Þ

Next, we introduce the energy EγðtÞ through

REγðtÞ ¼ lsMγðtÞ −
1

2
PJ2=l4

s ð6Þ

for finite PJ2. In the infinite volume limit, Eγ simply
reduces to Eγ (3), the energy levels of the MSW CFT. Thus
for finite J, we expect Eγ to correspond to the energy
spectra of the microscopic theory describing attractor black
holes in the finite volume regime.
Remarkably with (5) substituted, EγðtÞ (6) is precisely of

the form of the energy levels of the TT̄ deformation of a
two-dimensional CFT. This motivates us to propose that at
finite volume, the microscopic description of D4-brane
black holes is furnished by TT̄ deformation of MSW CFT.
We provide further justifications for the proposal in
remainder of this article.
Until now we have worked in the rest frame of the black

hole. To include the space-time momenta in the deformed
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theory, recall that the rest mass 2π
gs
Mγ (as in the conventions

of Ref. [19]) is replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πgs jZjÞ2 þ p⃗2

q
in a moving

frame. Equation (6) is then generalized to

HγðtÞ ¼−
1

2
PJ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
PJ2

�
2

þPJ2Eγ þΠ2
γ þ

�
gs
2π

�
2

p⃗2

s
: ð7Þ

This reduces in the large volume limit to Eγ þ p⃗2=2m5 (4).

V. TT̄ DEFORMATION

In a seminal paper [25], Zamolodchikov showed that for
a two-dimensional quantum field theory, the composite
operator TT̄ is free from short-distance divergences, even
though this operator is an irrelevant operator modifying the
ultraviolet behavior of the theory. Recent years have seen a
flurry of activities in this topic [51–92].
The action of Sμ of the TT̄ deformation of conformal

field theory satisfies dSðμÞ=dμ ¼ R
dzdz̄TðμÞT̄ðμÞ, with the

stress energy tensors those of the deformed theory with
action SðμÞ. This universal deformation is also known as
the double-trace TT̄ deformation to distinguish the
deformation from a similar but different single-trace
deformation which can be introduced for a special class
of CFTs [51–54,56,72,73]. Remarkably, the energy levels
EnðR; μÞ of the deformed theory can be determined
exactly [93,94] in terms of the momenta PnðRÞ and
undeformed energy levels EnðR; 0Þ:

EnðR;μÞ¼−
R
2μ

þ
�
R2

4μ2
þR
μ
EnðR;0ÞþPnðRÞ2

�
1=2

; ð8Þ

where R is the radius of the compact spatial dimension. The
sign of μ gives rise to qualitatively different behavior. For
μ < 0, EnðR; μÞ becomes imaginary for large EnðR; 0Þ,
whereas for μ > 0 EnðR; μÞ becomes imaginary for low-
level states. We will be concerned with positive μ, or the
“right sign,” which changes the UV dynamics of the theory.
This is reflected in high-energy density of states, which
exhibits Hagedorn growth with Hagedorn temperature
TH ∼ 1=

ffiffiffi
μ

p
, as opposed to Cardy growth.

The deformed energy levels satisfy an inviscid Burgers
equation, which exhibits shock singularities. This is related
to the singularity which arises for EnðR; 0Þ < 0, that is to
say the low-lying states in a CFT. For such states, EnðR; μÞ
becomes imaginary for sufficiently large μ. At the cross-
over, the expression under the square root in Eq. (8)
vanishes.
Now let us consider the TT̄ deformation of the MSW

CFT. Then Eq. (8) demonstrates that the deformed energy
levels equal EγðtÞ, with the identification

R2=μ ↔ PJ2=l4
s : ð9Þ

This suggests that at finite l11, the M5-brane degrees of
freedom correspond to a TT̄ deformed CFT. The identi-
fication demonstrates that μ scales as l2

5. Moving away
from the infinite volume attractor point (2) is naturally an
irrelevant deformation. This can be analyzed in detail for
the D1–D5 system with (4,4) supersymmetry in two
dimensions [95].
The shock waves mentioned above are in the black hole

context related to wall-crossing phenomena. The crossover
happens when MγðtÞ vanishes; i.e. BPS states become
massless. This situation can only arise for polar states, i.e.
states with Q̂0̄ < 0. These states are realized as D6 −D6
bound states and they decay across a wall of marginal
stability, before reaching the massless point [19].
For various free theories, even the action of the deformed

theory can be determined exactly [94,96] and has the form
of nonlocal Dirac-Born-Infeld (DBI) action, which arises as
effective action for D-branes. Although D-branes sponta-
neously break some of the supersymmetry, the DBI action
realizes the full Poincaré symmetry, albeit in a nonlinear
fashion.

VI. SUPERSYMMETRY

Irrespective of the moduli, half-BPS black holes in
N ¼ 2 string theory preserve four supercharges, which
must also be the case for their microscopic description. This
works out nicely in the infinite volume limit, since the
MSW CFT has (4,0) supersymmetry. As per our proposal,
this requires for finite volume regime (4,0) supersymmetry
of the TT̄ deformed theory. We expect that such a super-
symmetric completion of the TT̄ deformation can be
derived, as was obtained earlier for theories with (1,1)
and (1,0) supersymmetries [70] and (2,2) and (0,2) super-
symmetries [68,69]. The supersymmetric completion of the
TT̄ deformation for the MSW CFTwill be left invariant by
the SO(4) R symmetry.
Along with four preserved supercharges, there are four

broken supersymmetries leading to Goldstinos, which real-
ize supersymmetry in a nonlinear fashion. This is evident
in MSW CFT [12] and is expected to continue after TT̄
deformation. It is encouraging that for free supersymmetric
seed theory, the TT̄ deformed theory is known to realize
supersymmetry in a nonlinear fashion [97,98].

VII. MODULARITY REVISITED

It has been established that the TT̄ deformation preserves
modularity of the partition function [88,99], which has
modular weight (0,0) if the dimensionless deformation
parameter μ=R2 has weight ð−1;−1Þ:
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μ

R2
→

1

jcτ þ dj2
μ

R2
: ð10Þ

Clearly, the identification of the deformation parameter (9)
in our model agrees with this transformation, implying that
the partition function of the modified MSW CFT is also
modular invariant. On the other hand, since the weight of the
elliptic genus is nontrivial, the relation between the deformed
and undeformed elliptic genus is more complicated [100].
The type IIB perspective [28,29] can be relevant for this
question, since it is valid for finite BPS mass.

VIII. HOLOGRAPHY

An important question is the holographic dual of the
TT̄ deformed CFT, which has been addressed in various
papers [52,65,72,73,75,80,101]. As a first step toward
holography for the model discussed above, we present the
metric of the five-dimensional uplift of a single-centered
black hole at the large volume attractor point (2) and
including the dependence on l5:

1

l2
5

ds25d ¼ N −1
�
−
ðρ2 − ρ2�Þ2

ρ2
dt2 þ ρ2

�
dαþ ρ2�

ρ2
dt

�
2
�

þN 2

�
4U2ρ2dρ2

ðρ2 − ρ2�Þ2
þ U2dΩ2

2

�
; ð11Þ

with N ¼ 1þ l2
5ðρ2 − ρ2�Þ, ρ2� ≔ − 4Q̂0

UR2, and U3 ¼ P3=6.
The 4D radial coordinate r is in terms of these variables
r ¼ l3

5Uðρ2 − ρ2�Þ. We have seen above that l2
5 scales as

TT̄ deformation μ in the decoupling limit (1). Indeed in this
limit, the ðt; α; ρÞ coordinates of the metric (11) parametrize
a Bañados-Teitelboim-Zanelli (BTZ) black hole [see
Eq. (4.4) in Ref. [34]].
As per UV-IR correspondence in holography [102],

the bulk asymptotic region and deep interior are related
to the ultraviolet and infrared, respectively, of the boundary
theory. Since the TT̄ deformation is irrelevant, we expect
the bulk asymptotics of (11) to change yet the metric
near the BTZ singularity to remain unchanged. Indeed, the
l2
5 deformation becomes negligible near the BTZ singu-

larity for the “infrared” limit ρ → ρ�, whereas in the
“ultraviolet” or asymptotic region ρ → ∞ the geometry
asymptotes to R2 × S1.
We naturally expect that the holographic description of

the TT̄ deformed model is in terms of metrics which have
the same asymptotics as (11) for ρ → ∞. An important
complication for this analysis stems from the fact that even
small l5 effects cannot be treated as perturbation. For
example, if (11) is expanded to Oðl2

5Þ, then the resultant
metric has wrong signature in the asymptotic region ρ2 >
l−2
5 þ ρ2�. A resolution may be to put an outward cutoff,

reversely to the inward cutoff for the μ < 0 deformation
[75,80]. In fact, the closest analog of asymptotic AdS3 is
the crossover region ρ2� ≪ ρ2 ≪ 1=l2

5, which exists when-
ever l2

5 ≪ 1=ρ2� and might be important for holography for
l5 ≠ 0. We leave further study for future work.

IX. HAGEDORN TRANSITION

Keeping with the Cardy formula [103], the degeneracies

Ωðγ; t∞γ Þ grow as exponential of π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
P3Q̂0̄

q
for large Q̂0̄. In

general, Eγ is bounded below by Q̂0̄, which is positive in
the Cardy regime, while in the limit of large D2-brane
charge with Q0 fixed, 2Q̂0̄ ≤ Eγ . In the latter regime, the

energy Eγ behaves as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PJ2Eγ

q
. With the lower bound for

Eγ , we then have

Ωðγ; t∞γ Þe−Eγ=T ≤ eπ
ffiffiffiffiffiffiffiffiffi
2
3
P3Q̂0̄

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
2PJ2Q̂0̄

p
=T: ð12Þ

Consequently, the system gives rise to a Hagedorn temper-
ature TH above which the sum over D2-charges diverges.
Equation (12) shows that 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3PJ2=P3

p
is an upper bound

for TH.
The Hagedorn temperature [104] indicates the existence

of a different high-temperature phase. Various systems in
string theory, including little string theory [105], super-
string theory [106–108], N ¼ 4 super Yang-Mills on
compact spaces [109,110], Banks-Fischler-Shenker-
Susskind matrix model in the presence of an IR cutoff
[111] exhibit Hagedorn transition. In the present case, since
the relevant two-dimensional theories descend from M5-
brane world volume theory, this predicts a Hagedorn
temperature for wrapped M5 branes.

X. CHANGE OF DEGENERACIES?

It has been argued that the degeneracies are not lifted
under the TT̄ deformation [25] and similarly that super-
symmetric indices remain unchanged [67]. This suggests
that the Ωðγ; t∞γ Þ remain the same as functions of γ. On the
other hand, moving to finite volume suggests that the
natural BPS index is Ωðγ; tλγÞ for finite λ. While for simple
systems of D4-branes, such as those with a irreducible
magnetic charge, these indices are indeed equal, this may
not be the case for more involved systems. For example,
Ref. [40] described a family of scaling solutions, whose
degeneracy is subleading to that of a single-center black
hole. These solutions are present for finite λ but decouple in
the limit λ → ∞ [34]. Thus the supergravity picture gives
some indication that degeneracies may change upon the TT̄
deformation in sufficiently intricate CFTs. Of course for
sufficiently large μ, the deformation may give rise to wall
crossing, under which the degeneracies will also change.
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XI. DISCUSSION

We have presented evidence that the microscopic
description of D4-brane black holes with finite mass is
furnished by a TT̄ deformation of MSW CFT.
A first principle derivation of TT̄ deformation from the

microscopic side is clearly desirable. One possibility is
that this arises from integrating out gravitational effects.
This could also explain nonlocality of the TT̄ deformed
theory and is, in fact, the case for infinitesimal TT̄
deformations [84]. More generally, TT̄ deformation has
been shown to arise as a result of coupling a CFT with flat
space Jackiw-Teitelboim (JT) gravity [74,91]. It would be
interesting to see if JT gravity emerges in the world volume
of MSW string.
It may be worthwhile to explore other brane systems

such as the D1–D5 system. Another relevant brane system
is that of NS5-branes and fundamental strings [51–54,56,
72,73]. As alluded to earlier, this system can be deformed

by a TT̄-like deformation, which is known as the single-
trace deformation. This deformation is introduced on the
string world sheet and expected to lead to a symmetric
product of deformed CFTs, which is to be distinguished
from the double-trace deformation, i.e. the TT̄ deformation
of the symmetric product CFT. While the single-trace
deformation also vanishes in the limit ls → 0 [51], our
setup is notably different, since the MSW CFT does not
take the form of a symmetric product of a simpler CFT. Still
it would be interesting to see if these holographic duals of
irrelevantly deformed CFTs can give mutual insights.
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