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Although holographic duality has been regarded as a complementary tool in helping understand the
nonequilibrium dynamics of strongly coupled many-body systems, it still remains a remarkable challenge
how to confront its predictions quantitatively with real experimental scenarios. By matching the
holographic vortex dynamics with the phenomenological dissipative Gross-Pitaevskii models, we find
that the holographic dissipation mechanism can be well captured by the Landau form rather than the
Keldysh one, although the latter is much more widely used in numerical simulations. Our finding is
expected to open up novel avenues for facilitating the quantitative test of holographic predictions against
upcoming experimental data. Our result also provides a prime example how holographic duality can help
select proper phenomenological models to describe far-from-equilibrium nonlinear dynamics beyond the
hydrodynamic regime.
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I. INTRODUCTION

For the nonequilibrium dynamics of strongly interacting
quantum systems where the quasiparticle picture does not
apply and the perturbation method fails, developing its
theoretical description remains an important task [1,2].
Gratefully, holographic duality [3–5], also known as anti–
de Sitter space/conformal field theory correspondence, has
provided a powerful insight into the universal behaviors of
strongly coupled dynamics through the classical theory of
gravity with one additional dimension. In particular, a
variety of bottom-up gravitational models have been
proposed to address the strongly correlated condensed
matter systems [6–12]. But, nevertheless, associated with
these bottom-up holographic models, there exists a sig-
nificant deficiency; namely, the effective dual boundary
descriptions are generically unknown, which makes it a
notoriously difficult challenge to compare the holographic
prediction with the experimental data.

Among others, the dynamics of the quantized vortices in
superfluids, which plays a vital role in the fascinating
nonequilibrium quantum turbulence, have recently become
amenable to being engineered at finite temperature in a
controllable manner due to the great experimental advances
in cold atom gases [13,14]. In contrast to classical turbu-
lence in normal fluids, which can be well described by
dissipative hydrodynamics, quantum turbulence in super-
fluids exits the hydrodynamic regime due to the very
presence of the quantized vortices. It is, thus, urgent to
construct an effective boundary description of holographic
superfluids, which provides a complete description—valid
at all scales—of the superfluid dynamics, including the
vortex dynamics.
On the other hand, different from the holographic

duality, which provides a universal first principles descrip-
tion of the irreversible finite temperature dissipation in
terms of the excitations absorbed by the bulk black holes,
the conventional approach to incorporate dissipation in
superfluids is essentially phenomenological. The dissipa-
tion terms in the different phenomenological models will
give rise to different predictions as should be the case.
Therefore, it is desirable to resort to a first principles
calculation to help select which phenomenological model is
the proper one.
This paper intends to serve as one such stone which

attempts to kill the above two birds by matching the two
available phenomenological dissipative Gross-Pitaevskii
equations with the holographic vortex dynamics. As a
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result, we find that the dissipation mechanism in our
holographic superfluid can be well described by the
dissipative Gross-Pitaevskii equation with the dissipation
given by the Landau form rather than the Keldysh one,
although the latter is much more commonly used in
numerical simulations of superfluid dynamics. Compared
to the previous progress such as made in Refs. [15,16],
which nonetheless restricts mainly within the equilibrium
state or the near-equilibrium hydrodynamic regime, our
work presents a prime example of how holographic duality
can also help select proper phenomenological models to
describe the far-from-equilibrium nonlinear dynamics
beyond the hydrodynamic regime. On the other hand, with
our finding, the holographic superfluid model with four
bulk dynamical variables and one adjustable boundary
value can be described effectively by only one dynamical
variable with three adjusted parameters in one less dimen-
sion, which will make the quantitative comparison of
holographic predictions with real upcoming experimental
data much easier and much more efficient.

II. HOLOGRAPHIC SUPERFLUIDS MODEL AND
DISSIPATIVE GROSS-PITAEVSKII MODELS

In the probe limit, where the holographic superfluid
is implemented by the Abelian Higgs model with the
Lagrangian density given by [6,8]

L ¼ −
1

4
FμνFμν − jDμΦj2 −m2jΦj2; ð1Þ

on top of the (3þ 1)-dimensional planar Schwarzschild
AdS black hole in the Eddington-Finkelstein coordinates

ds2 ¼ L2
AdS

z2
ð−fðzÞdt2 þ dx2 þ dy2 − 2dtdzÞ; ð2Þ

where Dμ ¼ ∇μ − iAμ and fðzÞ ¼ 1 − ðz=zhÞ3 with zh the
location of the black hole horizon. The corresponding
dynamics is governed by the following equations of
motion:

∇μFμν ¼ iðΦ�DνΦ−ΦðDνΦÞ�Þ; DμDμΦ−m2Φ ¼ 0;

ð3Þ

where the asterisk denotes the complex conjugation.
By holography, the temperature of the dual boundary

system is given by the Hawking temperature T̃¼3=ð4πzhÞ,
and the chemical potential is related to the boundary data of
the bulk field At as μ̃ ¼ Atjz¼0. Because of the scaling
symmetry, one can set zh ¼ 1 once and for all. Accordingly,
it turns out that, when the chemical potential is higher than
the critical value μ̃c ¼ 4.064, the bulk complex scalar field
will spontaneously condense, which signals the transition
to the superfluid phase on the boundary. The corresponding
order parameter ψ can be read off from the boundary data of

Φ according to the holographic dictionary. It is noteworthy
that holography provides a natural built-in mechanism to
account for the irreversible finite temperature dissipation by
geometrizing the excitations absorbed by the black hole.
Different from the above holographic model of super-

fluids, conventional phenomenological models have sig-
nificant limitations and shortcomings, where the dissipation
is essentially put in by hand. As to the Bose-Einstein
condensates (BECs) in dilute cold atom gases at nearly zero
temperature, the behavior of order parameter ψ can be
successfully described by the Gross-Pitaevskii equation
(GPE) [17]. However, GPE cannot describe BECs at finite
temperature. In order to account for the finite temperature
effect, one is required to introduce dissipative terms. For
our purpose, we consider two such dissipative Gross-
Pitaevskii equations (DGPEs), which can be written in
the dimensionless form as follows:

∂tψ ¼ −
ðiþ γÞ
2τ

ð−∇2ψ þ 2μðjψ j2 − 1ÞψÞ; ð4Þ

∂tψ þ iλψ∂tjψ j2 ¼ −
i
2τ

½ð−∇2ψ þ 2μðjψ j2 − 1ÞψÞ�: ð5Þ

Here, the parameter τ controls the characteristic timescale
of dynamics, and μ is the chemical potential, from which
the dimensionless healing length is given by ξ ¼ ð2μÞ−1=2.
The dissipative parameter γ in Eq. (4) is suspected to be
determined by the Keldysh self-energy through the fluc-
tuation-dissipation theorem [18–20]. So we call this equa-
tion as KGPE. On the other hand, we denote Eq. (5) with λ
the dissipative parameter as LGPE, as it was phenomeno-
logically motivated by Landau’s requirement that the
second law of thermodynamics hold in his two-fluid model
for superfluidity [21,22].

III. MATCHING PROCEDURE AND
RELEVANT RESULTS

In order to quantify how well the above two models serve
as a phenomenological description of the holographic
vortex dynamics, we need a matching procedure. In
Ref. [23], the authors proposed such a procedure but used
an invalid evolution scheme in holography (as explained in
Supplemental Material [24]) and then made an unreliable
claim that the holographic vortex dynamics was well
described by KGPE. Here, we use the correct evolution
scheme while still employing a similar procedure. Namely,
we first determine the healing length in both models by
fitting the order parameter profile for the holographic
vortex of winding number 1 with the form jψ j2 ∝ x2

2ξ2þx2.
Then, we intend to fit the holographic vortex dipole
trajectory by adjusting the corresponding dissipation
parameter. Finally, the parameter τ is fixed by tracking
the real time evolution of the vortex dipole. We demonstrate
our relevant results by focusing on a typical example,
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namely, the holographic superfluid at μ̃ ¼ 4.5. As illus-
trated in Fig. 1(a), the resulting holographic vortex can be
well fitted by both models with the same healing length
ξ ¼ 1.0. On the other hand, as shown in Fig. 1(b), the
corresponding holographic trajectory can be better modeled
by LGPE with λ ¼ 1.85 till the vortex dipole annihilation
than KGPE, which starts to display an apparent deviation
from the holographic behavior when the vortex dipoles get
contacted with each other. Similarly, as one can see in
Fig. 2, the real time evolution of the holographic vortex
dipole can also be better captured by LGPE with τ ¼ 2.35
all the way to the annihilation stage than KGPE, which fails
to describe the real time dynamics of the vortex dipole
when close to each other. Similar matching results apply to
the holographic superfluid at other chemical potentials.
Here, we list only the resulting best fitting parameters in
Table I for μ̃ ¼ 4.5 and μ̃ ¼ 6.
To substantiate the aforematched LGPE as the effective

description of holographic vortex dynamics, we are left to
check its generalization capability in other scenarios
involving the vortex dynamics. As a demonstration, we

examine the head-on collision of two vortex dipoles in light
of the experimental setup prepared in Ref. [14]. To be more
specific, with the matched parameters in Table I, we
compare the numerical result from LGPE and that from
our holographic simulation. We first present the four
different stages for the head-on collision along the hori-
zontal direction by density plot of the condensate in Fig. 3,
where the vortices manifest themselves at the locations of
zero density. After the collision, the vortex (antivortex)
from the right-moving vortex dipole is seen to recombine
with the antivortex (vortex) from the left-moving one,
leading to the formation of new vortex dipoles. Then the

FIG. 1. The matching results between the holographic super-
fluid at μ̃ ¼ 4.5 and DGPEs. In (a), the normalized condensate
profile of a single static holographic vortex is well fitted by both
DGPEs, where the black dotted line is used to identify the vortex
size. In (b), the holographic vortex dipole trajectory is fitted by
both KGPE and LGPE, where the black dotted line indicates the
location where the vortex dipoles get contacted with each other.

FIG. 2. The matching results for the temporal evolution of the
relative distance and the center position of the holographic vortex
dipole at μ̃ ¼ 4.5 by DGPEs in (a) and (b), respectively.

TABLE I. The best fitting parameters in DGPEs for the holo-
graphic superfluid at μ̃ ¼ 4.5 and μ̃ ¼ 6.

DGPEs μ̃ μ λ γ τ

LGPE 4.5 0.50 1.85 � � � 2.35
LGPE 6 2.61 1.51 � � � 4.70
KGPE 4.5 0.50 � � � 0.129 2.22
KGPE 6 2.61 � � � 0.085 4.50
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new vortex dipoles move away from each other with one
marching up and the other marching down. Eventually,
both vortex dipoles get annihilated. As illustrated in Fig. 3,
both results are in good agreement with each other. We
further confirm this in Fig. 4 by tracking the motion of the
involved four vortices. As one can see, the result from our
holographic simulation still displays good agreement with
that from LGPE till the annihilation of vortex dipoles.
Actually, as demonstrated in Supplemental Material [24],
such good agreement between the matched LGPE and
the holographic superfluid is also confirmed in more

complicated scenarios such as the oblique collision of
two vortex dipoles and the random motion of six vortices.
This indicates that the matched LGPE can serve as an
effective description of holographic vortex dynamics.

IV. DISCUSSIONS

By fitting the two available phenomenological DGPEs
with the holographic superfluid model, we find that the
holographic vortex dipole dynamics can be well matched
by LGPE all the way down to the vortex dipole annihilation
rather than KGPE, which matches up with our holographic
data only when the vortex dipoles are far apart from each
other and displays an apparent deviation when the vortex
dipoles get close to each other. Although KGPE is much
more widely used to attempt modeling the finite temper-
ature BECs for decades than LGPE, actually the linear
response theory of KGPE suffers from a serious defect,
which, to our best knowledge, has not been noticed before
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FIG. 3. The density plot of the normalized condensate
jψ j2=jψ0j2 for the head-on collision of the vortex dipoles in
holographic superfluid at μ̃ ¼ 4.5 (left) and the matched LGPE
(right), which displays good agreement with each other. The top
panel is for the initial stage, where the left- and right-moving
vortex dipoles are prepared. The second panel is for the
intermediate collision stage. The third panel denotes the newly
formed vortex dipoles moving away from each other. The bottom
panel is for the final annihilation stage.

FIG. 4. The good agreement between the holographic simu-
lation at μ̃ ¼ 4.5 and the matched LGPE on the trajectories of
vortices in (a) and the temporal evolution of the relative distance
between vortex “1” from the right-moving vortex dipole and
antivortex “3” from the left-moving vortex dipole in (b) during
the head-on collision of the two vortex dipoles.
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(see Supplemental Material [24]). Together with the obser-
vation that LGPE displays a better consistence with holo-
graphic vortex dipole dynamics than KGPE, we are
convinced that the reasonable phenomenological model
for our holographic superfluid should be LGPE rather than
KGPE. Our finding also invalidates the claim made
recently by the authors in Ref. [23] that the holographic
vortex dipole dynamics can be well fitted by KGPE. As
detailed in Supplemental Material [24], their wrong result
arises from the fact that a defective evolution scheme for the
holographic numerical simulation is invoked therein. In this
regard, our result presents a prime example of how a proper
phenomenological dissipative model can be selected
through the lens of holography to describe the far-from-
equilibrium nonlinear dynamics beyond the hydrodynamic
regime. We further consolidate LGPE as an effective
description of holographic vortex dynamics by demonstrat-
ing its remarkable generalization capability in more com-
plicated scenarios.
On the other hand, although the holographic superfluid

model is superior to those phenomenological models such
as DGPEs in the sense that it offers a first principles
description of nonequilibrium dissipative dynamics at finite
temperature, not only do DGPEs live in one less dimension,
but also involve only one dynamical variable. Thus, it is
much easier and much more efficient for one to perform a
large scale of numerical simulations using DGPEs once the

undetermined parameters are fixed. Now, according to our
matching result, LGPE is selected by holography to serve
as the appropriate phenomenological model for the vortex
dynamics, so we can use it to greatly facilitate the
quantitative confrontation of our holographic predictions
with real experimental data. In particular, with the recent
experimental progress in vortex dynamics [13,14], we
expect our results can be verified by upcoming experiments
in the future.
Last but not least, it is important to go beyond the probe

limit taken in this paper. This is tantamount to including the
backreaction of the matter fields onto the bulk metric. With
this, one can explore the interaction between the stress tensor
and the charge current and see how the superfluid compo-
nent affects the dynamics of normal component. In particu-
lar, it is interesting to check whether the full dynamics can
also be matched by the effective field theory approach to the
superfluid dynamics at finite temperature [25].
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