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We consider a quasi-one-dimensional dipolar condensate in a steplike analog black hole setup. It is
shown that the existence of roton excitations leaves significant imprints onto the Hawking radiation
spectrum. The emitted radiation depends on the depth of the roton minimum, and is in general more
intense. In addition, we find a novel spontaneous particle creation mechanism with no counterpart in
nondipolar condensates. Our results establish that dipolar condensates offer a richer and more versatile
environment for the simulation of particle production from the quantum vacuum in the presence of horizon
interfaces than contact-interaction condensates.
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Black holes are a versatile laboratory to probe particle
production from the quantum vacuum in the presence of
horizon interfaces separating distinct regions of spacetime
[1–3]. A suitably clean and controllable arena to produce
analog black holes are Bose-Einstein condensates [4], in
which the first unambiguous detection of spontaneous
quantum Hawking radiation has been achieved [5,6]. It
has been argued in the years since its inception that
Hawking radiation is a rather universal phenomenon, as
the thermality of the Hawking spectrum is generally robust
against trans-Planckian deformations of the spectrum break-
ing Lorentz invariance [7–11], even though the emitted
quanta at infinity, when traced back to the horizon, experi-
ence an infinite blueshift [12]. Black holes as well as their
analogs are however conventionally set up in the field-
theoretical context of contact interactions. In the following,
we demonstrate that admitting nonlocal field theories offers a
much richer arena to harness the impact of trans-Planckian
excitations on black-hole radiation. Specifically, we show
that due to the increased complexity of the scattering problem
at the horizon, novel features emerge which clearly distin-
guish dipolar black holes from their contact counterparts. To
this end, we take into account that interactions can be long
range and in particular anisotropic, for which dipole-dipole
interactions between atoms or molecules with magnetic or
electric dipole moments are the archetype. Due to the roton
minimum in their elementary excitation spectrum [13–16],
black holes in dipolar condensates sensitively probe the
robustness of Hawking radiation thermality to high fre-
quency dispersion, thereby also thoroughly addressing one
of the major original motivations of the whole analog black
hole program [17].

We thus provide below the first simulation of black hole
(BH) analogs from dipolar Bose-Einstein condensates,
which has important ramifications in analog gravity physics
and cold atoms theory, as well as more generally in
quantum nonlocal field theory and in phenomenological
theories of Lorentz-violating quantum gravity.
Our system is assumed to be an elongated radially

harmonic trapped flowing quasi-one-dimensional (quasi-
1D) dipolar condensate, systems routinely realized in
experiment [18]. We assume that the system is stationary
and sufficiently strongly elongated such that the details of
how the flow is sustained can be neglected to a first
approximation cf., e.g., Refs. [19–27].
We recall that three ingredients are necessary to trigger

spontaneous particle production of quantum origin in
stationary condensates: The existence of negative energy
excitations, a mechanism of mode conversion [20,23,28],
also cf. Ref. [29], and that the fundamental commutation
relations for the field in question are fulfilled [30]. For
contact BH analogs, negative energy superluminal excita-
tions reach the event horizon from within the BH, which
converts a part of these modes into outgoing spontaneous
radiation, thus giving rise to the system’s vacuum decay
[20,23]. We show in what follows that spontaneous particle
production also occurs in dipolar condensates when these
three criteria are met.
For quasi-1D dipolar condensates, after integrating out

the radial directions transverse to the long x axis, the ratio
β ¼ l⊥=ξu, where l⊥ ¼ 1=

ffiffiffiffiffiffiffi
ω⊥

p
is the transverse har-

monic oscillator length and ξu is the subsonic healing
length outside the analog BH (setting ℏ ¼ m ¼ 1),
measures how deep into the quasi-1D regime the system
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is [15,31]. There is a critical βc ≃ 0.776 for which the
system becomes unstable against a proliferation of rotonic
excitations in the crossover to three spatial dimensions. In
the limit β → 0, indicating a quasi-1D condensate with
effective contact interactions, our model system coincides
with the one studied in [22], see for further details below. At
finite β, for which the anisotropy of the dipolar interaction
becomes manifest, we find important differences between
contact and dipolar BHs that can be summarized as follows:
(i) Increasing β from zero in general leads to larger
Hawking radiation power than in the contact case.
(ii) The rotonic/maxonic dispersion relation typical of
dipolar gases leads to a strong nonthermality of the
Hawking radiation spectrum. (iii) We find a clear correla-
tion between the BH temperature and the appearance of a
second spontaneous mode conversion mechanism, in addi-
tion to the usual Hawking mode mechanism, which has no
analog in contact BHs. These findings demonstrate that
dipolar condensates offer a much richer environment to
simulate the Hawking phenomenon in comparison to
contact condensates.
Within the mean-field approximation, the evolution of

the condensate order parameter ϕ is described by the
nonlocal Gross-Pitaevskii equation (GPE) [32]

i∂tϕ ¼
�
−
1

2
∂
2
x þU þ gddjϕj2

�
ϕ − 3gddϕG � jϕj2; ð1Þ

where U ¼ UðxÞ is the trap potential, gdd > 0 is the quasi-
1D dipolar interaction strength, and G � f denotes the
convolution

R
dx0Gðx − x0Þfðx0Þ. We assume that the

dipoles have a common direction relative to the long x
axis, which fixes gdd [31,33]. Note that we have separated
off the contact part of the dipolar interaction (third term in
square brackets), such that

R
dxGðxÞ ¼ 0, and we assume

other contact interaction contributions coming from s-wave
scattering to be negligible. This regime can be achieved by
using Feshbach resonances [18]. For computational con-
venience, we discretize the quasi-1D dipolar kernel G in
Eq. (1) [32,33]. We have

GðxÞ ¼ δðxÞ − 1

2l⊥

PN
j¼1 j

2Δq3e−j2Δq2=2−jΔqjxj=l⊥PN
j¼0 jΔq2e−j

2Δq2=2
; ð2Þ

where the limit N → ∞, Δq → 0 is understood,
leading to the continuum expression GðxÞ − δðxÞ ¼
−ð1=2l⊥Þfðjxj=l⊥Þ, fðyÞ ¼ −yþ ð1þ y2Þ expðy2=2Þ×
Erfcðy= ffiffiffi

2
p Þ ffiffiffiffiffiffiffiffi

π=2
p

, Erfc being the complementary error
function [31]. This form of writing the quasi-1D dipolar
kernel enables the construction of essentially analytical
solutions: We solve for finite N and Δq and take the limits
afterward. Also, by keepingN andΔq finitewe can produce
approximate solutions to the problem to the desired accuracy.
For instance, as shown in [33], forN ¼ 10 andΔq ¼ 1=3.4

the error is below 1%, maintained throughout our
simulations.
To convey the essential physics, we construct our sta-

tionary dipolar BH analog as the solution ϕ ¼ffiffiffi
ρ

p
expð−iμtþ ivxÞ (v > 0) of Eq. (1) for a piecewise

constant density: ρ ¼ ρu for x < 0 and ρ ¼ ρd < ρu if
x > 0. A subscript on local quantities “u” here and in what
follows denotes the upstream region (x < 0), and “d” the
downstream region (x > 0) (Fig. 1 top). This model was
recently studied for contact condensates in [22]. We
assume zero temperature throughout. Equation (1) then

implies continuity ρuvu ¼ ρdvd and U ¼ μþ ∂
2
x
ffiffi
ρ

p
2
ffiffi
ρ

p − 1
2
v2−

gddρþ 3gddG � ρ, which fixes the external potential U
(cf. Fig. 1 top).
We scale lengths in units of ξu, e.g., x ¼ x½ξu�, so that the

energy and (inverse time unit) becomes1=ξ2u. A dipolarBH is
then specified by the set of parameters fmu;md;
β ¼ βu ¼ l⊥g, where the local Mach number is m ¼ v=c

FIG. 1. Top: density jump model imposed by the external
potential U. Bottom: Bogoliubov dispersion relation for two BH
analogs with distinct β and fixed Mach numbers. Each line of
constant ω intercepts the dispersion relation at the real wave
vector solutions, corresponding to plane waves propagating
rightwards (leftwards) if the slope at the interception point is
positive (negative). Left: dispersion relation for the upstream
region. Each plane wave propagating to the right gives rise to a
distinct quasiparticle mode, indexed by kin1, kin2, kin3, and kr.
Note that the (dispersive) “rotonic” branch kr has negative energy.
We also note that, importantly, whenever kr exists, the upstream
region also contains an outgoing negative energy channel. Right:
downstream dispersion relation. Each leftwards propagating
wave gives rise to a quasiparticle, indexed by pin and the negative
energy pH (Hawking branch), which is also associated to an
outgoing negative energy channel. Dipolar interactions, in
particular, increase the cutoff frequency of the local maximum
on the right.
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and c ¼ ffiffiffiffiffiffiffiffiffi
gddρ

p
is the local sound speed. Thenmu < 1 < md

defines an analog BH. Our goal is to determine how small
fluctuations over this BH background lead to spontaneous
radiation. The Bogoliubov expansion of the wave function
reads Ψ̂ ¼ ð ffiffiffi

ρ
p þ ψ̂Þ expð−iμtþ ivxÞ, where the bosonic

operator ψ̂ models the small quantum fluctuations.
In order to study the Hawking radiation in our system,

we expand the quantum field ψ̂ in a basis of quasiparticle
modes whose vacuum state represents a zero flux of
phonons sent towards the event horizon in the laboratory
frame [20]. Hence for this vacuum choice any spontaneous
radiation is linked to Hawking-like processes. Our repre-
sentation for the interaction kernel (2) can be used to find
such a basis as follows [32]. We first define the Nambu
spinor in particle-hole space, Φ̂ ¼ ð ψ̂ψ̂†Þ= ffiffiffi

ρ
p

, and expand

Φ̂ ¼ P
nðânΦn þ â†nσ1Φ�

nÞ, where σi, i ¼ 1, 2, 3 are Pauli
matrices and fΦng is a complete set of positive norm
quasiparticle solutions with respect to the Bogoliubov
scalar product:

R
dxρΦ†

nσ3Φn0 ¼ δn;n0 . The functions Φn

are solutions of the Bogoliubov–de Gennes equation

i∂tσ3Φn ¼ −
1

2ρ
∂xðρ∂xΦnÞ − ivσ3∂xΦn þ ρgddσ4Φn

− 3gddσ4G �Φn; ð3Þ

where we defined σ4 ¼ 1þ σ1. We find that σ1Φ�
n is a

negative norm solution. The quantum number n will be
identified below with the quasiparticle frequency ω.
Solutions to Eq. (3) can be determined assuming the time

dependence expð−iωtÞ, with ω > 0. Furthermore, because
Eq. (2) is suppressed for jxj ≫ 1;l⊥, all solutions of Eq. (3)
far from the horizon are written in terms of the local
homogeneous condensate perturbations, i.e., we have
superposition of plane waves in the form Φðt; xÞ ¼
expð−iωtþ ikxÞΦk for constant Φk. This gives rise to
the dispersion relation ω ≔ ω�ðkÞ, where

ω� ¼ mu
ρu
ρ
k� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ=ρuÞ½1 − 3G̃ðβkÞ� þ k2=4

q
; ð4Þ

and G̃ðβkÞ ¼ G̃ðl⊥kÞ ¼
R
dxGðxÞ expð−il⊥kx=l⊥Þ.

Equation (4) enables us to identify the required quasi-
particle basis whose vacuum state is by definition charac-
terized by no quasiparticles propagating towards the event
horizon. This state is, therefore, suitable for studying the
spontaneous Hawking radiation in BH analogs. A positive
(negative) sign of the dimensionless group velocity vgðkÞ ¼
dω=dk (sign of the slopes in Fig. 1 bottom) determines
whether the plane wave is propagating to the right (left),
and each plane wave propagating towards the event
horizon gives rise to a distinct quasiparticle mode found
by solving the scattering problem within Bogoliubov
theory [20,23,33,34]. We note that in this work we reserve
the terms quasiparticle and channel to denote solutions of

the Bogoliubov–de Gennes equation and the plane waves
given by Eq. (4), respectively.
Let us recollect the salient features of the dispersion

relation in the contact BH regime (dotted curves of Fig. 1,
bottom). When β ¼ 0 there is only one plane wave going
towards the horizon from the upstream region (Fig. 1,
bottom left) for each ω, whereas in the downstream region
(Fig. 1, bottom right) for frequencies below the local
maximum (Hawking cutoff frequency) there are always
two dispersive channels of opposite energy sign propagat-
ing towards the horizon. When β > 0, the observed effect
inside the black hole is the increase of the local maximum
(Hawking cutoff) frequency. We denote by pin, pH the wave
vectors of the incoming channels, with the negative energy
quasiparticles indexed by pH from the “Hawking branch”
leading to spontaneous radiation process. Furthermore,
novel phenomena are expected to occur outside the black
hole. As β continuously increases from zero, initially no
qualitative distinction from the contact case occurs (dotted
curves in Fig. 1, bottom left). However, when the roton
minimum emerges (continuous curves in Fig. 1, bottom
left), we find that four plane waves kin1, kin2, kin3, kr
approach the horizon, and the rotonic branch kr has
negative energy. The latter is present whenever β > βr ≃
0.63 formu ¼ 0.5, and it is indicative of a strong departure
from a contact-dominated BH analog. The increased
number of mode conversion mechanisms in comparison
to contact BHs shows that the scattering problem in our
dipolar case is significantly more intricate than for the
contact BH analogs.
We show in the Supplemental Material [32] that the

normalized quasiparticles for ω > 0 can be written as

ΦðαÞ
ω ¼ e−iωt

8<
:

P
p S

ðαÞ
p eipxΦp; x > 0P

k S
ðαÞ
k eikxΦk; x < 0

; ð5Þ

wherewe denote the downstreamwave vectors byp. Here, α
can be any of the incoming wave vectors displayed in Fig. 1,
namely, kin1, kin2, kin3, kr,pin,pH. For each given α, the sums

in Eq. (5) include the incoming channel with SðαÞα0 ¼ δα;α0 , all
outgoing propagating channels, and all evanescent waves.

Both SðαÞk and SðαÞp are fixed by Eq. (3), and the sign of the
norm

Φ†
kσ3Φk ¼

1

2πρjvgðkÞj
sgnðω −mukρu=ρÞ ð6Þ

determines whether an incoming channel propagating
towards the horizon has positive or negative energy for

real k [32]. For each given frequency, we let the set ΓðþÞ
ω

(respectively, Γð−Þ
ω ) contain the positive (respectively neg-

ative) energy incoming channels. Accordingly, the full field
operator expansion reads
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Φ̂ ¼
Z

∞

0

dω

� X
α∈ΓðþÞ

ω

ðâðαÞω ΦðαÞ
ω þ âðαÞ†ω σ1Φ

ðαÞ�
ω Þ

þ
X
α∈Γð−Þ

ω

ðâðαÞ†ω ΦðαÞ
ω þ âðαÞω σ1Φ

ðαÞ�
ω Þ

�
: ð7Þ

Furthermore, ½âðαÞω ; âðα
0Þ†

ω0 � ¼ δα;α0δðω − ω0Þ, and the vacuum
state j0i is defined by âðαÞω j0i ¼ 0.
The operator ψ̂ is the upper component of

ffiffiffi
ρ

p Φ̂, and
once the quantum field expansion is obtained, we find that
the (normal ordered) system Hamiltonian assumes the
diagonal form [32]

Ĥ ¼
Z

∞

0

dωω

� X
α∈ΓðþÞ

ω

âðαÞ†ω âðαÞω −
X
α∈Γð−Þ

ω

âðαÞ†ω âðαÞω

�
; ð8Þ

similar to the contact BH [20]. The Hamilton operator
above demonstrates that exciting a quasiparticle mode with

index in Γð−Þ
ω diminishes the system energy. Note that only

when β ¼ 0 and thus G ¼ 0 (contact-only case) energy is
locally conserved in the system, whereas for any finite β
there is no local energy conservation [32]. Nevertheless, we
find generally that energy is globally conserved:
∂tH ¼ −S∞ þ S−∞ ¼ 0, where H is the system total
energy. Using the unitarity of the scattering process, we
show in the Supplemental Material [32] that the power
radiated at x → −∞ can be expressed by the scattering
coefficients of the negative energy quasiparticles alone:

S−∞ ¼ 1

2π

Z
∞

0

dωωFω;

Fω ¼
X
α∈Γð−Þ

ω

X
k real

jSðαÞk j2sgn½vgðkÞðω −mukÞ�: ð9Þ

The sum in k here is performed over all upstream
propagating waves. The quantity Fω is the power spec-
trum, containing the negative energy quasiparticle modes
from the expansion in Eq. (7). Note that for the dipolar gas,

the set Γð−Þ
ω contains both the rotonic branch kr (when

β > βr) and the Hawking branch pH, which is the only
member of that set for contact interactions (also see Fig. 1).
We recall that for thermal radiation at temperature T the

power spectrum reads nω ¼ ðeω=T − 1Þ−1, and in particular
ωnω → T when ω → 0. It is instructive to assign a temper-
ature for Fω as T ¼ limω→0ωFω, such that we can assess
the thermality of the spectrum through graybody factors σω
defined by σω ¼ Fωðeω=T − 1Þ. σω ¼ 1 then corresponds
to a pure thermal spectrum. We depict T in Fig. 2 top left
panel as function of β for mu ¼ 0.5 and several values of
md. The figure shows that the observed T can be higher or
smaller in comparison to contact-only BH (β ¼ 0) due to
the dipolar interactions. In particular, a strong increase in T

is observed near the point β ¼ βr where the rotonic branch
emerges, representing a novel temperature signature of the
latter. Figure 2 top right depicts the graybody factors for
mu ¼ 0.5, md ¼ 1.2, and several values of β. BHs within
the range 0 < β ≤ 0.4, where there are no rotons and
maxons present, possess similar graybody factors (and
spectrum), with the difference that the cutoff frequency is
higher, corresponding to a higher radiated power. However,
we see from the figure that, when rotons are present, i.e., for
β ≥ 0.52 whenmu ¼ 0.5, a strong departure from thermal-
ity is observed. For instance, when β ¼ 0.55, σω ∼ 30 for
some frequencies (dotted line in Fig. 2 top right). In order to
understand the origin of this departure, we plot in Fig. 2
(bottom) the spectrum Fω and the dispersion relation, from
which we see a clear correlation between the formation of
the roton minimum (right panel) and an increase in the
power spectrum (left panel) when β ¼ 0.55, mu ¼ 0.5.
As β approaches the deepest possible roton minimum at

βc ¼ 0.776, the system enters the vicinity of a dynamical
instability and the departure from thermality is so strong

FIG. 2. Top left: radiation temperature of dipolar BH analogs as
function of β formu ¼ 0.5 and several values ofmd. The dipolar
interactions can increase or decrease the temperature, and a strong
increase is observed near the roton branch formation threshold
β ¼ βc ¼ 0.63. Top right: graybody factors as function of
frequency for mu ¼ 0.5, md ¼ 1.2, and several values of β.
As β increases from zero, the graybody factors are similar to the
ones found for local BH analogs. However, after the roton
minimum formation occurs at β ∼ 0.52, a strong departure from
thermality is observed (dotted curve). In the bottom part, we also
display the correlation between the spectral distribution for β ¼
0.55 (left) and the dispersion relation (right), showing the existing
correlation between the increase in the spectral function and the
appearance of the roton minimum.
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that the rotonic branch can, in principle, even suppress the
radiation power or revert its direction, which represents a
dramatic impact of trans-Planckian physics. Finally, a
curious feature of our flowing condensate model is that
the negative energy rotonic quasiparticles might be present
even without a horizon (md < 1), and can be scattered at the
interface at x ¼ 0 owing to nonthermal outgoing radiation.
In conclusion, we considered here for the first time the

possibility of simulating BHs in dipolar Bose-Einstein
condensates. We have shown that the presence of dipolar
interactions leads to a marked departure from contact
condensates, including a novel mechanism of mode con-
version of the rotonic branch of quasiparticles at the
interface, leading to radiating scenarios even when there
is no horizon. The presence of a roton minimum leads to
strong nonthermality of the spectrum as in the analog
Unruh effect [35]. Furthermore, dipolar condensates feature

enhanced radiation power, making them especially prom-
ising candidates to probe Hawking radiation.
Generally, we expect in dipolar gases significant

alterations of the predictions of a Lorentz-invariant theory,
also and in particular in cosmological scenarios that employ
a similar dispersion relation see, e.g., Refs. [36–39].
Finally, our analysis focuses on the existence of quasipar-
ticle radiation mechanisms which characterize a dipolar BH
analog model. Future studies will investigate the effects of
“zero modes” on the very dipolar condensate existence
[25,40,41], and the radiation and pair-entanglement veri-
fication procedure via density-density correlations
[27,42–45].
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[23] P.-E. Larré, A. Recati, I. Carusotto, and N. Pavloff, Quantum
fluctuations around black hole horizons in Bose-Einstein
condensates, Phys. Rev. A 85, 013621 (2012).

[24] D. Boiron, A. Fabbri, P.-E. Larré, N. Pavloff, C. I.
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