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We numerically obtain gravastar solutions as nontopological solitons in a system that consists of a U(1)
gauge Higgs model with a complex scalar field and Einstein gravity. The solitonic gravastar solutions are
compact enough to have a photon sphere.
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I. INTRODUCTION

Black holes, mathematical solutions to the Einstein
equations, are widely accepted as astrophysical objects.
Recently, two important observations concerning black holes
in our Universe have been reported. One is the detection
of gravitational waves from black hole binaries [1,2],
and the other is photographic evidence of black holes
at the center of M87 and Sgr A* in our Galaxy [3,4].
However, observable phenomena for distant observers
should occur outside the event horizon, or before the
formation of event horizons. Therefore, verification of
astrophysical objects with an event horizon is still an open
question.
As an alternative to black holes, a compact nonsingular

object, the so-called ‘gravastar’, has been proposed to take
quantum effects into account [5,6] (see also updated
versions [7,8]). The interior geometry of the gravastar is
described by a de Sitter metric and the exterior is described
by a Schwarzshild metric, and these two regions are joined
by a spherical shell with a finite thickness. The radius of the
shell is smaller than the de Sitter horizon and larger than the
Schwarzschild radius. Then, the gravastar has no horizon
and no central singularity.
Nontopological solitons, on the other hand, have been

studied as interesting astrophysical objects [9–16]. In a U(1)
gauge-Higgs model coupled to a complex scalar field, various

types of nontopological solitons are obtained [17–21]. In a
type of nontopological solitons called ‘potential balls’ in
Ref. [19], the vacuum energy of the Higgs scalar field is
surrounded by a spherical shell, and the energy vanishes
outside the shell. If the potential ball couples to the Einstein
gravity, we would expect to obtain a solitonic gravastar
solution.1

II. MODEL

We consider the theory described by the action

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
R

16πG
− gμνðDμψÞ�ðDνψÞ

− gμνðDμϕÞ�ðDνϕÞ −
λ

4
ðjϕj2 − η2Þ2 − μjψ j2jϕj2

−
1

4
gμνgαβFμαFνβ

�
; ð1Þ

where R is the scalar curvature of a metric gμν, g denotes
detðgμνÞ, G is the gravitational constant, ψ and ϕ are
complex scalar fields, and Fμν ≔ ∂μAν − ∂νAμ is the field
strength of a U(1) gauge field Aμ, respectively. The scalar
field ϕ has the self-coupling term characterized by a
constant λ and a symmetry breaking scale η, and the
interaction term with ψ characterized by a constant μ.
Both scalar fields interact with the gauge field through the
gauge-covariant derivative, Dμ ≔ ∂μ − ieAμ with a cou-
pling constant e.
By varying the action (1), we obtain a coupled system of

the field equations,
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1Nontopological soliton solutions with dustlike energy that
couple to the Einstein gravity were obtained [22].
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1ffiffiffiffiffiffi−gp Dμð
ffiffiffiffiffiffi
−g

p
gμνDνψÞ − μψ jϕj2 ¼ 0; ð2Þ

1ffiffiffiffiffiffi−gp Dμð
ffiffiffiffiffiffi
−g

p
gμνDνϕÞ −

λ

2
ϕðjϕj2 − η2Þ − μjψ j2ϕ ¼ 0;

ð3Þ
1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
FμνÞ ¼ jνψ þ jνϕ; ð4Þ

Rμν −
1

2
Rgμν ¼ 8πGTμν; ð5Þ

where jμψ and jμϕ are four-currents defined by

jμψ ≔ ieðψ�ðDμψÞ − ðDμψÞ�ψÞ;
jμϕ ≔ ieðϕ�ðDμϕÞ − ðDμϕÞ�ϕÞ; ð6Þ

Rμν is the Ricci tensor, and Tμν is the energy-momentum
tensor defined by

Tμν ¼ 2ðDμψÞ�ðDνψÞ − gμνðDαψÞ�ðDαψÞ
þ 2ðDμϕÞ�ðDνϕÞ − gμνðDαϕÞ�ðDαϕÞ

− gμν

�
λ

4
ðjϕj2 − η2Þ2 þ μjψ j2jϕj2

�

þ
�
FμαFν

α −
1

4
gμνFαβFαβ

�
: ð7Þ

The action (1) is invariant under the transformations

ψðxÞ → ψ 0ðxÞ ¼ eiðχðxÞ−γÞψðxÞ; ð8Þ

ϕðxÞ → ϕ0ðxÞ ¼ eiðχðxÞþγÞϕðxÞ; ð9Þ

AμðxÞ → A0
μðxÞ ¼ AμðxÞ þ e−1∂μχðxÞ; ð10Þ

and we have conservation equations of the currents,

∂μð
ffiffiffiffiffiffi
−g

p
jμψ Þ ¼ 0 and ∂μð

ffiffiffiffiffiffi
−g

p
jμϕÞ ¼ 0: ð11Þ

We assume a static and spherically symmetric metric,

ds2 ¼ −σðrÞ2
�
1 −

2mðrÞ
r

�
dt2 þ

�
1 −

2mðrÞ
r

�
−1
dr2

þ r2dθ2 þ r2sin2θdφ2; ð12Þ

and spherically symmetric fields in the form

ψ ¼ e−iωtuðrÞ; ϕ ¼ e−iω̄tfðrÞ; Aμdxμ ¼ AtðrÞdt;
ð13Þ

where σðrÞ, mðrÞ, uðrÞ, fðrÞ, and AtðrÞ, are functions of r,
and parameters ω and ω̄ are constants. Total charges of ψ
and ϕ on the t ¼ const slices defined by

Qψ ≔
Z

d3x
ffiffiffiffiffiffi
−g

p
ρψ ; Qϕ ≔

Z
d3x

ffiffiffiffiffiffi
−g

p
ρϕ; ð14Þ

are conserved, respectively, where ρψ ≔ jtψ and ρϕ ≔ jtϕ.
By using the gauge transformation (8)–(10), we can fix

the variables as

ψðt; rÞ → eiΩtuðrÞ; ϕðt; rÞ → fðrÞ;
AtðrÞ → αðrÞ ≔ AtðrÞ þ e−1ω̄; ð15Þ

where Ω ≔ ω̄ − ω. Substituting (12) and (15) into (2)–(5),
we obtain a system of coupled ordinary differential
equations to be solved in the form:

u00 þ
�
2

r

�
1þm − rm0

r − 2m

�
þ σ0

σ

�
u0 þ

�
1 −
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r

�
−1
� ðeα −ΩÞ2u
σ2ð1 − 2m=rÞ − μf2u

�
¼ 0; ð16Þ
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2
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�
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−1
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�
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¼ 0; ð20Þ

where prime denotes the derivative with respect to r.
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We require that all fields at the origin be regular, and that
the scalar fields and the gauge field be localized in a finite
region; then we impose

dσ
dr

¼ 0; m ¼ 0;
du
dr

¼ 0;
df
dr

¼ 0;

dα
dr

¼ 0; at r ¼ 0; ð21Þ

and

u ¼ 0; f ¼ η; α ¼ 0; at spatial infinity:

ð22Þ
On these assumptions, the geometry should be described by
a Schwarzschild metric in a far region, namely, we can
impose

σ ¼ 1; m ¼ m∞ ¼ const; at spatial infinity:

ð23Þ

III. SOLITONIC GRAVASTAR SOLUTIONS

We fix the coupling constants as e ¼ 0.1, μ ¼ 1.4, and
λ ¼ 1.0, and we set the symmetry breaking scale
η ¼ 10−2MP, for an example.2 In Fig. 1, the field variables
of a numerical solution are shown as functions of r. The
matter variables u, f, and α change quickly in a layer of
thickness Δr ∼ 10η−1 around radius r ¼ rsl ∼ 28η−1. We
call the layer the surface layer.
Outside the radius rsl, matter variables decay to the

values for the symmetry-breaking vacuum, namely the
fields are excited in the compact region inside the radius.
The fact that the metric functions σ ¼ 1 and m ¼ m∞ ¼
const means the metric exhibits the Schwarzschild metric,

ds2 ¼ −
�
1 −

2m∞

r

�
dt2 þ

�
1 −

2m∞

r

�
−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ; ð24Þ

where the value ofm∞ is obtained numerically as 11.94η−1.
Inside the radius rsl, we see that u ¼ const, f ¼ 0,

α ¼ Ω=e, then only the potential term of ϕ contributes to
the energy-momentum tensor as

Tt
t ¼ Tr

r ¼ Tθ
θ ¼ Tφ

φ ¼ −
λ

4
η4: ð25Þ

Using the log-log plot of mðrÞ in Fig. 2, we see that

mðrÞ ¼ Λ
6
r3; ð26Þ

where the value of Λ is given by

Λ ¼ 8πG
λ

4
η4 ∼ 6.3 × 10−4η2: ð27Þ

Furthermore, since σ takes a constant, say σ0, the geometry
is described by the de Sitter metric given by

ds2 ¼ −
�
1 −

Λ
3
r2
�
dt̃2 þ

�
1 −

Λ
3
r2
�

−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ; ð28Þ

where t̃ ≔ σ0t.
The surface layer connects the de Sitter inner region and

the Schwarzschild outer region. The de Sitter horizon
radius, rdS, and the Schwarzschild radius, rSch, of the
numerical solution is estimated as

rdS ¼
ffiffiffiffi
3

Λ

r
∼ 0.7 × 102η−1; rSch ¼ 2m∞ ∼ 24η−1;

ð29Þ

FIG. 1. Field configurations of the numerical solution for the parameter Ω=η ¼ 0.665. The scalar fields u, f and the gauge field α are
plotted in the left panel, and the metric components σ and m are plotted in the right panel. At the origin, r ¼ 0, it is found that α ¼ Ω=e
and f ¼ 0. The mass at infinity is obtained numerically as m∞ ¼ 11.94η−1.

2For the set of parameters, the potential balls are found as
solutions in the case that the gravity is decoupled [19].

SOLITONIC GRAVASTARS IN A U(1) GAUGE-HIGGS MODEL PHYS. REV. D 107, L121501 (2023)

L121501-3



and therefore we have rSch < rsl < rdS. The nontopological
soliton solution describes the gravastar.
In Fig. 3 we show energy density ϵ ¼ −Tt

t, radial
pressure p⊥ ¼ Tr

r, and tangential pressure pk ¼ Tθ
θ ¼ Tφ

φ

for the numerical solution as functions of r. The surface
layer has the structure within its thickness given by the
Compton length of the gauge field ∼ðeηÞ−1. The energy
density ϵ has a peak, and pk has two peaks with almost
1=3 ∼ 2=5 of the peak height of ϵ, while p⊥ is almost zero.
We show the charge densities ρψ and ρϕ in Fig. 4 as

functions of r. The positive ρψ is induced on the inner-side
surface of the surface layer, and the negative ρϕ on the outer
side (see the left panel). Namely, an electric double layer

emerges at the surface layer. The total charge contained
inside a radius r, shown in the right panel, decays quickly
outside of the surface radius, namely, the charge is screened
for a distant observer. Therefore, the radial electric field
appears in the electric double layer. Owing to this charge
screening effect, the geometry of outside is given by the
Schwarzschild metric instead of Reissner-Nordström one.
For a numerical solution, we define the surface radius of

the solitonic gravastar, say rgs, by

mðrgsÞ ≔ 0.99m∞; ð30Þ

namely, 99% of total mass of the solitonic gravastar is
included within the radius rgs. For the numerical solution
shown in Fig. 1, we estimate rgs ∼ 33.2η−1. By the numerical
values of m∞ and rgs, we estimate the compactness as

C ≔
2m∞

rgs
∼ 0.718 ≥ 2=3; ð31Þ

then the solitonic gravastar is compact so that it has the
photon sphere.

IV. SUMMARY

We have studied numerically the coupled system of a
U(1) gauge-Higgs model with a matter complex scalar field
and Einstein gravity, which is characterized by a set of
parameters; coupling constants and a symmetry-breaking
scale. For a choice of the parameters, we have found the
solitonic gravastar solutions. Each solution has an internal
de Sitter geometry in the symmetric vacuum with the
potential energy of the Higgs scalar field, and an external
Schwarzschild geometry in the symmetry-breaking vac-
uum. These regions are joined by a spherical surface layer
with a finite thickness that has nonvanishing tangential
pressure. Within the thickness of the surface layer, an
electric double layer is produced by the two complex scalar
fields, and the total charge is screened for a distant observer.
For the set of parameters used in this paper, the solitonic
gravastar obtained is compact enough to have a photon

FIG. 3. Energy density ϵ, tangential pressure pk, and radial
pressure p⊥ are shown as functions of r. The pressure compo-
nents are normalized by the maximum value of ϵ.

FIG. 4. The charge densities of the complex scalar fields, ρψ and ρϕ, normalized by the maximum value of ρψ , ρψmax
¼ 0.851η−3, are

shown in the left panel. Total charge included within radius r, QðrÞ, is shown in the right panel, where Qmax ¼ 1.44 × 104.

FIG. 2. The mass variablem=m∞ is plotted as a function of r on
a log-log scale.
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sphere. Then, it is a compact regular object without the
event horizon as an alternative to a black hole.
For the numerical solutions, the total gravitational mass

MG ¼ m∞=G is of the order of 103 times the Planck mass,
which is much smaller than the astrophysical scale. The
surface layer with the thickness about 1=3 times the radius
of the solitonic gravastar has the internal structure. These
are different properties from original gravastars, a final state
of gravitational collapsing astrophysical objects, where
solutions are constructed by using a thin shell approxima-
tion [5,6]. However, as seen in the previous work [22], the
total mass, surface radius, and thickness of the surface layer
of the numerical solutions would depend on the model
parameters. Therefore, it is interesting to clarify whether
the solitonic gravastar can have astrophysical mass scale,
and thickness of the surface layer becomes much smaller
than its radius. It should be noted that for a fixed set of
parameters in the Lagrangian, we expect the mass of the
solitonic gravaster to be restricted to a finite range. Then, it

would be impossible to replace a black hole with arbitrary
mass by a solitonic gravastar.
There are important and interesting works on gravastar

solutions; the stability of the solutions [23], the behavior of
null geodesics around the photon sphere [24], gravitational-
wave emission [25], and Hawking radiation [26]. These
issues are addressed using thin shell approximations. We aim
to study these problems using solutions in U(1) gauge Higgs
models in future works. Furthermore, it would be interesting
to investigate whether the solitonic gravastar solutions are a
possible final state for thegravitational collapse of the system.
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