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We solve the full quasilinear kinetic equation governing nonresonant interactions of Alfvén waves with
relativistic plasmas. This work was motivated by the need to determine the energy available for the
synchrotron maser in the context of fast radio bursts (FRBs). This interaction can result in plasma heating
and the formation of population inversions necessary for the maser. We find that population inversions
containing ∼1%–10% of the distribution’s energy form in the relativistic regime, providing an explanation
for the formation of the inversion in the environment expected near FRBs.
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The cyclotron or synchrotron maser is a proposed
emission mechanism for various astrophysical phenomena
such as auroral kilometric radiation (AKR) [1,2] in Earth’s
magnetosphere, Jovian decametric radiation (e.g., [3]), and
fast radio bursts (FRBs) (e.g., [4–6]), among others. The
high brightness temperatures from these objects require a
coherent emission mechanism such as synchrotron maser
emission (SME) (e.g., [7–9]). Necessary plasma conditions
for SME are (i) an inverse population of energetic electrons
and (ii) being embedded in a background magnetic field.
Under appropriate conditions, interaction between electro-
magnetic waves in plasma and the energetic particle
population results in negative absorption and stimulated
emission [2,7].
To achieve a population inversion, the particle distribu-

tion must either grow faster than E2 [10] or satisfy ∂F
∂v⊥ > 0

[2]. Here, Fðv⊥; vkÞ is the particle distribution function,
v⊥ðvkÞ is the velocity perpendicular (parallel) to the
background magnetic field, and E is the particle’s energy.
Population inversion can be achieved in various ways. For
example, in the “magnetic mirror,” particles with larger
pitch angles are reflected by the mirror’s field, while those
with small pitch angles escape [1,11]. This leads to an
empty cone-shaped void in the distribution in velocity
space which satisfies ∂F

∂v⊥ > 0 [2,12]. Such a scenario was
proposed to explain population inversion in the non- or
mildly relativistic environments such as AKR (e.g.,
[1,2,11]). Following observations suggesting the “loss
cone” was insufficient [13], the “ring-shell” model was
developed [14,15], where a combination of the magnetic
mirror and parallel electric fields produces a ring-shaped
particle distribution, characterized by the absence of low
energy particles. The loss cone is then part of the ring in

velocity/momentum space, rather than being part of an
isotropic distribution as in the magnetic mirror.
In contrast to the non- or mildly relativistic plasma in the

scenarios discussed above [2], the environment around
FRB emission regions is expected to be relativistic, namely
the particle’s temperature is kBT ≈mc2, where m is the
particle mass and c is the speed of light in vacuum [16].
Previous works on such environments have focused on
inversions formed by strongly magnetized relativistic
shocks propagating perpendicularly to the background
magnetic field, thereby heating the plasma to relativistic
temperatures (e.g., [17–19]). At the shock front a soliton-
like structure is formed, in which particles gyrate around
the enhanced magnetic field and form a semicoherent ring
in momentum space [20]. Like the distributions discussed
above, this distribution can also support SME [21]. The
existence of this “ring” has been demonstrated in particle-
in-cell simulations (e.g., [17,19,20,22]).
While these works provide a viable mechanism for the

formation of a population inversion, we show here that a
population inversion leading to very high efficiency SME
can also be naturally achieved through nonresonant inter-
actions between Alfvén waves and a plasma without
requiring a relativistic shock wave. In objects such as
FRBs the environment is highly magnetized, namely the
relativistic plasma is expected to have a low β, where β is
the ratio of the plasma and magnetic pressure. This
provides the necessary condition that enables the nonreso-
nant interaction between Alfvén waves and particles [16].
Due to the problem’s complexities, this interaction has
previously only been studied in the nonrelativistic regime
[23,24]. Nonresonant wave-particle interactions in such
plasmas result in pitch-angle diffusion, deforming the
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initially isotropic distribution into a crescentlike shape in
momentum space capable of supporting SME, similar to
the ring-shell distribution discussed above [25,26]. An
example plot of the change in distribution is shown
in Fig. 1.
To investigate the applicability of this mechanism to

fully relativistic plasmas, we examine the full nonresonant
relativistic interaction with Alfvén waves for the first time.
Our semianalytical treatment enables direct measurement
of the energy available to the maser as well as the parameter
space where the inversion forms. As we show here, high
efficiencies of several percent are achieved for conditions
that can represent emission from FRBs, providing a direct
explanation for the key physical ingredient that underlines
their high brightness temperature.
To examine the problem we consider a relativistic plasma

of density n embedded in a background magnetic field B0.
The initial particle distribution F0ðT0Þ is given by a
Maxwell-Jüttner distribution of temperature T0. As the
particles interact with the waves, their distribution evolves
and is specified at time t by Fðpk; p⊥; tÞ, where p⊥ ¼
γmv⊥=c and pjj ¼ γmvk=c are the relativistic momenta in
the perpendicular and parallel directions to the background
magnetic field, respectively. Here, γ ¼ ð1þ ðp⊥=mÞ2 þ
ðpk=mÞ2Þ1=2 is the Lorentz factor. In addition to the steady
magnetic field, we assume Alfvén waves propagate through
and interact with the plasma. These waves are taken to have
a broad spectrum that only varies slowly in time [23,24]. As
the waves are assumed to originate from a central neutron
star in the FRB scenario, the wave vector in this case is
expected to be in the parallel direction only. We also
assume the Alfvén waves have a flat spectrum as a test case,
though numerical results can be obtained for any spectrum.
The waves are described by spectral magnetic and electric
fields of Bk and Ek, respectively, where k is the wave
number.
We use kinetic theory to study the interaction between

the waves and particles. To examine how the particle

distribution changes due to the interaction with the
Alfvén waves, we use the quasilinear approximation of
this theory [27,28], where the variables of the Vlasov
equation are split into slowly varying average and first
order fluctuation terms. Reference [29] starts from the
Vlasov equation and provides a complete derivation of the
full relativistic quasilinear kinetic equation describing
the temporal evolution of the particle’s distribution function
due to interaction with the Alfvén waves at resonance. We
added nonresonant terms following Ref. [24]. The com-
plete equation, that contains both the resonant (line 2) and
the nonresonant (line 3) terms and is correct in both
relativistic and nonrelativistic regimes, is
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Here e is the unit electric charge, ωc ¼ eB0=γmc is the
cyclotron frequency, ω is the Alfvén wave frequency given
by the linear theory, PV is the principal value, kk is the
wave number in the direction parallel to the background
magnetic field, and l ¼ 1; 2;… is the harmonic number.
The particle distribution’s evolution is determined by the

partial derivative terms and their coefficients. First and
second order derivatives in both directions are present,
which describe advection and diffusion, respectively. The
coefficients’ relative magnitude dictates which process is
most influential. These depend on the linear Alfvén
dispersion relation ωðkÞ, as each contains the factor
ðkk=ωÞα, where α ¼ 0; 1; 2. The equation is also governed

by whether the resonance condition ω − lωc −
kkpk
γm ¼ 0 is

satisfied. While this is the case in many plasmas, it is not in
FRB emission regions. Due to strong magnetic fields,
plasmas in these environments have a low β. For Alfvén
waves in such a plasma, the inequalities ωc ≫ ω and
ωc ≫

kkpk
γm hold [23], resulting in no contribution from

the resonant term (note that when the nonresonant term is
dominant the evolution depends on the temporal change of

the Alfvén wave electric field ∂jEkj2
∂t , rather than its magni-

tude as in the resonant case).
As for the nonresonant term, using the inequalities

above, the principal value part of the equation can be
simplified as follows [24]:
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FIG. 1. A contour plot showing the difference between the
particle distribution at Ωτ ¼ 0.23 compared to an initial Max-
well-Jüttner distribution with θ ¼ 0.01 and σ ¼ 0.1. The for-
mation of the crescent shape is observed by noting that the
increase in parallel momentum is larger closer to γβ⊥ ¼ 0.
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where the higher harmonics’ (l ¼ 2; 3; ::) contribution is
neglected.
After expanding the equation and separating the terms

for clarity, using only the dominant (l ¼ 1) harmonic,
Eq. (1) becomes
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where q ¼ p=m ¼ γ v
c ¼ γβ, and I1 ¼

R
dk ∂jEkj2

∂t
kk
ω ,

I2 ¼
R
dk ∂jEkj2

∂t

ck2k
ω2 , and I3 ¼

R
dk ∂jEkj2

∂t
1
c. Equation (3) is

correct in the limit of strong magnetic field, in both the
relativistic and nonrelativistic regimes. The integrals I1 and
I2 are calculated using either the nonrelativistic Alfvén
dispersion relation ω ¼ kvA, where vA is the Alfvén
velocity, or the full relativistic solution given by [30,31]

ω2 − c2k2 ¼
X
s

ω2
pðsÞ

ω0

fsγsω0 − ωcs
; ð4Þ

where ω0 ¼ ω − kv0, v0 is the particles’ bulk velocity (in
case it is nonzero), ωpðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πnse2=ms

p
is the plasma

frequency, fs ¼ K3ðmsc2

kBTs
Þ=K2ðmsc2

kBTs
Þ is the plasma’s

enthalpy, and the subscript s denotes the particle species
(electrons and ions). Here Kl is a modified Bessel function
of the second kind of order l. In the nonrelativistic regime
the ratio between the integrals is simply given by
I1 ¼ vA

c I2 ¼ c
vA
I3. In this limit, therefore, I2 > I1 > I3

for all vA < c, though such a concise connection does
not exist for the relativistic case.
We solve Eq. (3) numerically using MATLAB on a term by

term basis using a combination of the Crank-Nicolson and
upwind differencing finite difference methods [32]. The
initial conditions are the initial distribution function F0,
which is taken to be a Maxwell-Jüttner distribution with
a normalized temperature θ ¼ kBT

mc2 and the magnetization
σ ¼ Ω2=ω2

p, as well as kmax and kmin. Here,Ω ¼ eB0=mc is
the gyration frequency of the plasma as a whole. We further
assume a single temperature and density describing all
species. To check the code’s accuracy, comparisons were
made to the analytical nonrelativistic solution found in
Eq. (9) of Ref. [23]. In all cases investigated the full
solution and nonrelativistic result agree (see Supplemental
Material [33]).

We present results for four scenarios with temperatures
θ ¼ 0.01, θ ¼ 0.1, and θ ¼ 1 as evidence for the formation
of population inversions in relativistic plasmas. These runs
show the change from the initial symmetric Maxwell-
Jüttner distribution to the crescent shape required for the
inversion. The time units are given in terms of Ωτ. Here
τ ¼ Γηt, where Γ ≪ 1 is the temporal growth rate of the
Alfvén wave relative to Ω, and η ¼ jEkj2=B2

0 ≪ 1. Figure 1
shows a contour plot of the difference between the particle
distribution at Ωτ ¼ 100 and an initial Maxwell-Jüttner
distribution with θ ¼ 0.01, σ ¼ 0.1, kmin ¼ 0, and
kmax ¼ 0.1Ω=c. The distribution evolves primarily in the
parallel direction through advection, which has two char-
acteristics which result in a population inversion. First, for
certain parameters, the advection is in the same direction
for all values of qk, resulting in motion in the positive
parallel direction only. This can be seen by examining the
coefficient of the ∂F=∂qk term in Eq. (3). This term’s sign

changes at qk ¼ I1
ffiffiffiffiffiffiffiffiffi
1þq2⊥

pffiffiffiffiffiffiffiffi
I2
2
−I2

1

p . Therefore, when I2 < I1, no sign

change ever occurs, while for I2 > I1 the value of qk at
which the sign changes becomes closer to zero as I2=I1
increases. If I2=I1 is too large, no crescent shape can form,
as the direction of motion will change near qk ¼ 0. Second,
the advection depends on q⊥, resulting in varying advection
strength across the distribution. Perpendicularly, there is
only very slight diffusion, with no advection. Together,
these features result in deformation into the expected
crescent shape, with the distribution near q⊥ ¼ 0 advecting
further in the positive parallel direction than the distribution
at larger values of q⊥. This can be seen in Fig. 1, with the
largest change in the distribution centered at qk ¼ 0.14 for
q⊥ ¼ 0, compared to the smaller value of qk ¼ 0.09 for
q⊥ ¼ 0.2. Similar behavior is found in the distributions
with higher initial temperatures, though on longer
timescales.
To determine the fraction of energy in the crescent-

shaped population inversion finv, we compare the energy of
the distribution Etot to the total energy of a bi-Maxwellian
distribution Ebi, with the same θk and θ⊥. finv is then
obtained using finv ¼ ðEtot − EbiÞ=Etot, where Etot is the
energy of the actual distribution. finv therefore is the
amount of excess energy contained in the crescent of
the deformed distribution, but does not include any con-
tributions from changes in energy that are not associated
with the population inversion. The value of finv is therefore
the absolute upper limit on the amount of energy available
for masing.
The fraction of energy contained in the inversion finv

increases with time for all four parameter sets, as seen in
Fig. 2. This figure shows finv for fθ; σg of f10−2; 0.1g,
f10−2; 100g, f10−1; 100g, and f1; 100g. For all four cases,
kmin ¼ 0 and kmax ¼ 0.1Ω=c. In all cases the trend is the
same. Once the inversion begins to form, finv initially
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increases steeply and continues to increase with gradually
decreasing rates of change at longer times, before con-
verging to a value of finv ∼ 0.19 at Ωτ > 0.2 in the case
of fθ ¼ 10−2; σ ¼ 0.1g, finv ∼ 0.02 at Ωτ > 1.6 for
f10−2; 100g, finv ∼ 0.02 at Ωτ > 10 for f10−1; 100g, and
finv ∼ 0.02 at Ωτ > 80 for f1; 100g. While the asymptotic
values of finv are similar for the different temperatures, the
timescales become longer as θ increases.
It is useful to compare the efficiency in the population

inversion achieved by nonresonant interactions, to that
found by numerical studies of relativistic shocks, as both
are viable candidates in explaining SME in relativistic
environments (e.g., [17–19]). For σ ≫ 1, an efficiency of
∼10−3σ−1 was found in relativistic shocks [34]. For
σ ¼ 100 this is an efficiency of ∼10−5, three orders of
magnitude less than the values found in this work.
However, for σ ∼ 0.1 the shock efficiency was found to
be ∼0.1 [19], the same order as the asymptotic value of
finv ∼ 0.19 found in this work. It is important to note that
the efficiency in the relativistic shock scenario and finv is
not a one-to-one comparison, as while the efficiency
provides a direct measure of the amount of energy radiated
by the maser, finv on the other hand is an upper limit on the
total energy available, which may not be fully extracted due
to the influence of other plasma processes. For instance, the
SME growth rate may be reduced at higher temperatures
[18,22,35], potentially reducing the amount of energy
extracted due to the impact of other plasma instabilities.
To estimate the importance of these instabilities, we

conduct the following brief analysis. We note that the
deformed distribution is close to a bi-Maxwellian, which is
susceptible to the firehose and mirror instabilities. These
have stability criteria of T⊥=Tk > 1 − 1=βk and
T⊥=Tk < 1þ 1=βk, respectively [36]. Here βk ¼ 2θk=σ
is the parallel plasma beta. For σ ¼ 100, βk is therefore
always small. For the σ ¼ 0.1 case, the low temperature
ensures βk ≪ 1. Combined with the small temperature
anisotropies (0.5 < T⊥=Tk < 1), both criteria are satisfied

for the runs presented. As the distribution is not susceptible
to these other plasma instabilities for these parameters, the
maser should therefore extract a significant fraction of finv,
provided that the growth rate is sufficiently fast to extract
the energy within the size of the masing cavity.
We do point out that this will not be the case for some

parameters not explored in this work, especially those with
σ < 1 and higher temperatures, where the growth rates of
the mirror and firehose instabilities can become significant.
In such a scenario, the SME energy may be lower than finv.
The plasma may also be susceptible to turbulent cascades
when Alfvén wave spectra with perpendicular components
are considered [37].
In order for this mechanism to be applicable to FRBs the

inversion must form with realistic parameter values.
Observed signals from FRBs are in the gigahertz band,
with frequencies of 111 MHz [38] to 8 GHz [39]. When
σ > 1, themaser’s peak frequency isωm ∼ Ωγ−1 [16], requi-
ringmagnetic fields ofB0 ∼ ð40 − 2.9 × 103Þ γGandmaxi-
mumnumber densities ofn∼ð1.5×108−7.9×1011Þ γcm−3.
When σ < 1, SME peaks at ωm ≈ ωpmin fγ; σ−1=4g [10].
Due to the very weak dependence on σ, the peak frequency
will never be much greater than ωp, allowing the approxi-
mation ωm ∼ ωp. This results in a requirement of
n ∼ ð1.5 × 108 − 7.9 × 1011Þ γ cm−3, with a maximum
allowed background field of B0 ∼ ð40 − 2.9 × 103Þ γG,
using σ < 1. As the values for the magnetic field in the
σ < 1 case and the number density in the σ > 1 case are both
upper limits, a large parameter space is viable for SME.
The population inversion formation time must also be

realistic. The leading candidates for FRB progenitors are
magnetars, neutron stars with extremely high surface
magnetic fields of ∼1015 G, with the Galactic magnetar
SGR 1935þ 2154 directly associated with an FRB [40].
Magnetars have two timescales of interest to the variability
in the Alfvén wave field necessary for nonresonant wave-
particle interaction. First, the magnetar radius R� corre-
sponds to a timescale of ∼R�=c ¼ 3.3 × 10−5R�;6 s. Here,
R�;x ¼ R�=10x. The second timescale is the star’s period,
typically ∼1–10 s [41–43], though young magnetars are
expected to havemillisecond periods [44]. The time taken to
reach the asymptotic timescale is t ∼ 2 × 10−10ðΩ9ΓηÞ−1 s
for fθ ¼ 0.01; σ ¼ 0.1g, t ∼ 1.6 × 10−9ðΩ9ΓηÞ−1 s for
f0.01; 100g, t ∼ 10−8ðΩ9ΓηÞ−1 s for f0.1; 100g, and t ∼
8 × 10−8ðΩ9ΓηÞ−1 s for f1; 100g. Therefore, the neutron
star period timescale is attainable for values of Γη >
2 × 10−11Ω−1

9 , Γη > 1.6 × 10−10Ω−1
9 , Γη > 10−9Ω−1

9 , and
Γη > 8 × 10−9Ω−1

9 , respectively. However, the neutron star
radius timescale imposes considerably more stringent limits
of Γη > 6 × 10−6ðΩ9R�;6Þ−1 for f0.01; 0.1g, Γη > 5×
10−5ðΩ9R�;6Þ−1 for f0.01; 100g, Γη>3×10−4ðΩ9R�;6Þ−1
for f0.1; 100g, and Γη > 2.4 × 10−3ðΩ9R�;6Þ−1 for
f1; 100g. As both Γ ≪ 1 and η ≪ 1, these results show
that higher temperaturesmay not be viable on this timescale.

FIG. 2. Fraction of energy in the inversion (finv) versus time for
initial Maxwell-Jüttner distributions with θ ¼ 0.01, σ ¼ 0.1
(green), θ ¼ 0.01, σ ¼ 100 (black), θ ¼ 0.1, σ ¼ 100 (blue),
and θ ¼ 1, σ ¼ 100 (red). kmin ¼ 0 and kmax ¼ 0.1Ω=c in all
four cases.
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The density and magnetic field constraints derived
above can be satisfied in two different magnetar scenarios.
First, we consider a relativistic magnetar wind, where the
magnetization is comparable to this work, with σwind ∼
280B8=9

�;15R
24=9
�;6 M−2=3

3 P−2 [16]. Here B� is the surface
magnetic field, M is the pair multiplicity, and P is the
period. Using the required range for B0 when σ > 1,
emission could take place at distances of R ∼ ð1.5 × 1010 −
1.1 × 1012Þγ−1B�;15R3

�;6P
−2 cm from the neutron star,

assuming the azimuthal magnetic field B ∝ 1=R dominates
outside the light cylinder. The number density at this
distance is significantly below the upper limits, indicating
that SME is possible in magnetar winds.
Another possible scenario involves a subrelativistic

wind with βw ≲ 1 and σw ≲ 1 from a magnetar or other
compact object [6]. In this case the wind density is
n ∼ 1.6 × 105 _M21R−2

14 β
−1
w cm−3. Here, _M is the mass loss

rate, which is normalized to constraints obtained from FRB
121102, where _M ∼ 1019–1021 g s−1 [45]. At distances of
greater than R ∼ 4.5 × 1010 − 3.3 × 1012 cm this environ-
ment satisfies the constraints for n and B in the σ < 1
regime, providing another region in which the population
inversion could form.

The results presented in this Letter show that nonreso-
nant interaction of Alfvén waves with a relativistic plasma
can produce population inversions for temperatures in the
range θ ¼ 0.01–1, and that a large fraction of the overall
energy is contained in the inversion, with values of
finv ≥ 0.01. This energy is comparable to or greater than
that expected from SME from relativistic shocks in similar
conditions. Furthermore, we have demonstrated that these
conditions are realistic for two models of FRBs. A further
exploration of the full parameter space in temperature,
magnetization, and wave number range is currently in
preparation and will be presented in a future work.
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