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We propose a theory to systematically construct a complete set of on-shell effective operator bases
involving massive particles with any spins. The amplitude bases involving massive fields can be factorized
into two charged and neutral parts under the little groups of massive particles, respectively. The complete
bases of these two parts can be constructed by the Young diagrams of Lorentz subgroup SUð2Þr and global
symmetry UðNÞ (N is the number of external particles), respectively, without any redundancies. The
corresponding effective field theory bases with the lowest dimension can be obtained by eliminating the
linear correlation bases from a complete but redundant set of bases with all possible polarization tensors.
Based on this theory, the amplitude bases involving identical particles can be constructed by a matrix
projection method. A generic massive effective field theory can thus be constructed automatically by
computer programs.

DOI: 10.1103/PhysRevD.107.L111901

I. INTRODUCTION

The standard model (SM) successfully describes particle
physics up to the TeV scale, but it cannot explain some
puzzles such as Higgs naturalness [1,2], dark matter [3,4],
neutrino mass [5,6], etc. These puzzles suggest that SM is
incomplete and that new physics (NP) should be intro-
duced. Nevertheless, NP is not observed, indicating that
the scale of NP may be too high to be within the direct
experimental search. So detecting its indirect low-energy
effects may be the only available way to search for NP
currently, which motivates the study of effective field
theory (EFT).
A complete set of EFT bases is essential for fully

parametrizing the infrared effects of any ultraviolet theory.
But constructing the EFT bases is difficult in traditional
field theory because of EFT operator redundancy from the
equations of motion (EOMs) and integration by parts
(IBPs). Recently it was found that scattering amplitudes

are efficient in dealing with some problems in EFT, such as
calculating SM EFT running [7–10] and constructing scalar
EFTs with nontrivial soft limits [11–14]. Especially it can
efficiently construct EFT bases of massless particles, called
amplitude bases [15–18], without EOM and IBP redun-
dancy through the semistandard Young tableaux (SSYTs)
of the global symmetry of massless spinors [19].
However, this method only applies to constructing

amplitude bases for massless fields. On the other hand,
EFTs involving massive particles are also widely applied in
particle physics, such as Higgs EFT (HEFT) [20,21], dark
matter EFT [22–26], and high spin particles [27,28].
Previous attempts have been focused on constructing the
EFT bases of massive particles with spin ≤ 1=2 [29,30],
which can be directly mapped from massless bases since
the number of physical degrees of freedom is the same. For
the case of generic massive EFT, there is no efficient
method to construct their EFT bases involving massive
higher spin particles.
In this paper, we propose a novel theory to solve this

problem. We first split the massive amplitude basis into two
parts: the massive little group (LG) tensor structure
(MLGTS), which is required to be the holomorphic
function of massive right-handed spinors, and the massive
LG neutral structure (MLGNS), which is only charged
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under LGs of massless particles. The complete bases of
MLGTS and MLGNS can be constructed by the repre-
sentations of Lorentz subgroup SUð2Þr (SOð3; 1Þ≃
SUð2Þl ⊗ SUð2Þr) and the UðNÞ global symmetry, respec-
tively. Then the complete massive amplitude bases can be
obtained by contracting the MLGTS bases with their
corresponding MLGNS bases (the procedure is shown
in Fig. 1).
Based on these complete bases, using the group repre-

sentation theorem and some algebraic methods (details can
be found in [31]), a set of lowest-dimensional scattering
amplitude bases that can be directly mapped to operator
bases can be constructed systematically. The amplitude
bases involving identical particles can be projected by acting
the Young operators on the lowest dimensional amplitude
bases [31].Within our framework, the complete bases of any
massive EFT, such as HEFT and dark matter EFT, can be
constructed automatically by computer programs.

II. CONSTRUCTING AMPLITUDE BASES

The modern on-shell method is to directly construct
scattering amplitudes based on some physical principles,
such as Lorentz invariance and locality. Lorentz symmetry
requires that amplitudes should be covariant under the LG,
thus being the functions of spinor-helicity variables
charged under the LG. Massive spinors can be decomposed
from the momentum of a massive particle-i,

ðpiÞ _αα ≡ ðpiÞμðσμÞ _αα ¼ ϵIJjiI� _αhiJjα; ð1Þ

where the massive right/left-handed spinor jiI� _α=jiJiα is
in the fundamental representation of Lorentz subgroup
SUð2Þr (SUð2Þl) and LG SUð2Þi [the massless spinor
ji� _α=jiiα is similar, except that its LG isUð1Þi]. Two spinors
with the same chirality can contract together to form the
Lorentz invariant building block of scattering amplitudes.
The massive left- and right-handed spinors can be related to
each other through EOMs, pijiI� ¼ mijiIi. The amplitudes
for a massive (massless) particle with its spin s (helicity h)

should be in the (2sþ 1)-dimensional representation of LG
SUð2Þ [take 2h unit charge of LG Uð1Þ] [32,33]. The
locality principle requires that the amplitude bases of EFT
should be the independent polynomials of scalar products
of the spinors.
Since the left-handed spinor can be transferred into the

right-handed spinor through EOMs, the polarization tensor
of a massive particle can always be expressed as a
holomorphic function of right-handed spinors. Therefore
each monomial term of the scattering amplitude of m
massive and n massless particles can be factorized into
MLGTS A, which is the linear function of holomorphic
polarization tensors of massive particles, and MLGNS G.
The amplitude can be written as the combination of the
terms with different A or G structures,

MfIg
m;n ¼

X
fA;Gg

X
f _αg

AfIg
f _αgðfϵigÞGf _αgðjj�; jji; piÞ; ð2Þ

where ϵi ≡ ji�fI1_α1
;…; ji�I2sig_α2si

is the holomorphic polarization

tensor of massive particle-i with its spin si. The bracket
fIi1;…; Ii2sig in the ϵsi expression means that these 2si
indices of LG SUð2Þi are totally symmetric. Therefore, the
EFT amplitude bases can be chosen as the polynomials of
spinors which are the product of structures A and G.
SinceA is the linear function of holomorphic ϵi, it is free

of EOM and IBP redundancy because it does not contain
any momentum factor. For the MLGNS G, it is only
charged under the massless LG Uð1Þj associated with
massless particle-j, so it is the function of massless spinors
(jj� and jji) and massive momentums (pi).

A. A bases

SinceA is linear in ϵi, it must belong to the outer product
of all the massive polarization tensors’ SUð2Þr representa-
tions, A ⊂ ⊗m

i¼1 ð2si þ 1Þ. So all the bases of MLGTS A
one-to-one correspond to all the SUð2Þr irreducible repre-
sentations decomposed from this ⊗m

i¼1 ð2si þ 1Þ represen-
tation. The complete set of A bases can be constructed as
follows: Based on the Littlewood-Richardson rule, we first
find all the irreducible SUð2Þr representations decomposed
from the outer product of the m massive polarization
tensors’ SUð2Þr representations. Then all the MLGTS
bases can be read off from the Young diagrams (YDs)
of these irreducible representations according to the SUð2Þr
index permutation symmetry.
Next, we will demonstrate how to use YDs to construct

MLGTS bases, taking four-point vertices of massive
fermion-fermion-vector-scalar ψψ 0Vh as an example.
The polarization tensors are in the ð2si þ 1Þ representations
of SUð2Þr, and their YDs are

ð3Þ

FIG. 1. Procedure for constructing A ·G bases.
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where the number in the box is used to label the SUð2Þr
indices of different polarization tensors, and the bullet •
represents the SUð2Þr singlet. Then we can reduce the
outer product of these four YDs to the irreducible repre-
sentations by Littlewood-Richardson rule and get four
representations [34],

ð4Þ

where the subscript ½r1; r2;…; rn� denotes the shape of YD,
having n rows and rj boxes at the jth row, and the
superscripts in ½ð3; 1Þ1;2� denote two different SSYTs with
the same shape of [3, 1]. Then the complete set of MLGTS
bases can be read off from the above YDs filled with
numbers. For example, according to the SUð2Þr index
permutation symmetry of these polarizations in the YD, the
first base A½2;2� is given by

ð5Þ

Since A is the linear function of polarization ϵi, the above
expression contains one j1I�, one j2J�, and two j3K� s.

B. G bases

The massless amplitude bases can automatically get rid
of EOM redundancy because the left-handed and right-
handed spinor bases cannot be related by the EOM of
massless spinor (=pjjj� ¼ 0). So they only have IBP
redundancy (corresponding to momentum conservation),
which can be systematically eliminated by the SSYT
method [19]. Different from the massless case, MLGNS
G bases can suffer from both EOM (pα _α

i jiI� _α ¼ mijiIiα) and
IBP redundancy.
We find that EOM redundancy in G bases can be

eliminated by first constructing the massless limits of
MLGNS G bases and then one-to-one mapping them into
massive G bases. Since Gðjj�; jji; piÞ is massive LG
singlet, it has a definite massless limit, equal to the value
as all the massive momentums inG go to the massless limit,

gðjj�; jji; ji�hijÞ ¼ Gðjj�; jji; piÞjpi→ji�hij; ð6Þ

where ji� _αhijα is the massless limit of massive momentum
pi;α _α, and g is the massless limit of G. We know that the
difference between two G bases related to each other
through EOM must be proportional to the terms with the

mass factors, which can only be generated through EOMs
of massive spinors, so their massless limits must be the
same. Therefore a set of fGg bases with different massless
limits must be free of EOM redundancy.
To construct a complete set of fGg bases without EOM

and IBP redundancy, we should first construct the complete
set of massless fgg bases without IBP redundancy via the
SSYT method proposed in [19], and then one-to-one map
fgg into fGg through recovering massive spinors from
their massless limits, ji�; jii → jiI�; jiI0 i, and choosing any
kind of LG index contractions between jiI� s and jiI0 i s,
equivalent to the momentum replacement ji� _αhijα → pi; _αα

(two Gs generated from different contractions of LG
indices are related by EOMs).
In order to form Lorentz singlet amplitudes, A’s partner

fGg bases should be in the same representation as the A
basis. The G bases should also be SUð2Þl singlet, requiring
that the total number of left-handed spinors should be evenPmþn

k¼1 nk ¼ even≡ L, where nk is the number of massive
or massless spinor jkIi or jki in G bases. To be neutral
under massive LGs, the number of massive spinors jiI� and
jiI0 i should be equal, and massless LG symmetry requires
that the difference between the number of massless spinors
jj� and jji in G should be equal to twice the helicity hj of
massless particle-j,

ñi−ni ¼ 0; with i¼ 1;…;m

ñj−nj ¼ 2hj; with j¼mþ 1;…;mþn; ð7Þ

where ñi (ñj) is the number of spinor jiI� (jj�). The
corresponding fgg bases should also satisfy these
constraints.
Next, we will briefly discuss how to systematically

construct the complete set of fgg bases without IBP
redundancy. The massless spinors of N external momentums
λ̃k_α ≡ jk� (λkα ≡ jki) are embedded into the (anti)fundamental
representation of UðNÞ symmetry with k ¼ 1;…; N. So
one basis of the UðNÞ representation [i.e., a UðNÞ SSYT]
corresponds to a polynomial of massless spinors.
Conversely, this polynomial can also be written down
through the SSYT according to the permutation symmetry
of the UðNÞ indices. For example, the scalar product of a
right/left-handed spinor pair can be obtained from theUðNÞ
SSYT with shape ½12�=½1N−2� (the ½12� is the short notation
of [1, 1] and so is ½1N−2�):

ð8Þ
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where εijk1���kN−2 is the epsilon tensor. Notice that the
columns in the SSYT associated with the UðNÞ indices
of λ are bold to distinguish them from λ̃ indices.
If some gðλ̃Þ [gðλÞ] polynomials, which are holomorphic

functions of right-handed (left-handed) spinors, furnish a
UðNÞ representation, they must be free of IBP redundancy
because there is no momentum factor in their expressions.
Since λ̃ (λ) only has theUðNÞ and SUð2Þr [SUð2Þl] indices,
the Lorentz and UðNÞ YDs of g are correlated. So the
expression of the g basis can be determined by its UðNÞ
SSYT. For example, if gðλ̃Þ is the holomorphic function of
ðr1 þ r2Þ λ̃s and in the (r1 − r2 þ 1) symmetric representa-
tion ofSUð2Þr, itsUðNÞYD is in the shape of ½r1; r2� [see the
white YD in Eq. (9)]. While, if gðλÞ is the holomorphic
function of L λs and is Lorentz scalar, its UðNÞ YD has
N − 2 rows and L=2 columns [see the tall YD on the left in
Eq. (9)]. For the nonholomorphic case, if the spinors λs (λ̃s)
of gðλ; λ̃Þ are in the sameUðNÞ representation as gðλÞ [gðλ̃Þ],
gðλ; λ̃Þ equals the outer product of UðNÞ representations of
gðλÞ and gðλ̃Þ. It can be decomposed into irreducible
representations via Littlewood-Richardson rules,

ð9Þ

where⊕ � � � represents the other irreducible representations.
Only the g bases in the first irreducible YD representation,
obtained by gluing the tall (bold) YD and the short YD
without shifting around the short YD, are independent [19].
Then the MLGNSG bases can be obtained from the g bases
in the above UðNÞ representations by restoring massive
momentums from their massless limits,

Gðjj�; jji; piÞ ¼ gðjj�; jji; ji�hijÞjji�αhij _α→piα _α
: ð10Þ

Finally, a complete set of massive amplitude bases can be
constructed as in Fig. 1. We can prove that the amplitude
bases constructed in this way are independent because of
the independence of fAg and fgg bases (rigorous proof is
presented in Supplemental Material [35]).
Based on the constraints on G bases, if A is in the

ðΔrþ 1Þ SUð2Þr representation, its partner G bases should
have the following SSYTs:

(i) UðNÞ YD ½ðL=2þ r1Þ; ðL=2þ r2Þ; ðL=2ÞN−4� filled
with L=2 number-i for massive particle-i and
ðL=2þ 2hjÞ number-j for massless particle-j.

(ii) The shape of the YD is determined by

L ¼ D − N −
X

si −
X

hj;

r1 ¼
1

2

�
D − N −

X
si þ

X
hj þ Δr

�
;

r2 ¼
1

2

�
D − N −

X
si þ

X
hj − Δr

�
; ð11Þ

where D is the dimension of the operator mapped from
amplitude basis A ·G, and

P
si and

P
hj are the sums of

all massive particle spin and massless particle helicity,
respectively.

III. EXAMPLES

Next, we demonstrate how to construct four-point
massive amplitude bases of ψψ 0Vh at dimensions D ¼ 6
and 8, corresponding to the operators ψψ 0ð∂VÞh and
ψψ 0ð∂VÞh∂2. The complete set of MLGTS bases A is
shown in Eq. (4). Since the first basis A½2;2� is a Lorentz
scalar and its operator dimension is D ¼ 6, the basis at
D ¼ 6 is just A½2;2� (the corresponding MLGNS G is a
constant). Since the dimension of the other MLGTS bases
is the same as A½2;2�, and they are not Lorentz singlet (their
G bases are nontrivial), the amplitude bases with these
MLGTS bases must be at a dimension larger than 6.
The D ¼ 8 bases ψψ 0ð∂VÞh∂2 should take the structures

A½2;2�, A½ð3;1Þ1�, and A½ð3;1Þ2� [36]. According to the con-
ditions in Eq. (11), we can get the Uð4Þ SSYTs of their G
bases as follows:

ð12Þ

where the first (second) line is the G bases of A½2;2�
(A½ð3;1Þ1;2�), and the superscript ½ðr1; r2Þi� of G basis denotes
the ith UðNÞ SSYT with the shape of ½r1; r2�. Focusing on
A½2;2�’s partner bases G½ð2;2Þ1;2�, we can read off their
expressions from their SSYTs,

G½ð2;2Þ1� ¼ ðhi1i2iε13i1i2 ½24� þ hi1i2iε23i1i2 ½14�
þ hi1i2iε14i1i2 ½23� þ hi1i2iε24i1i2 ½13�Þjji�hij→pi

¼ h2J4Ii½4I2J� − h1J4Ii½4I1J�
− h2J3Ii½3I2J� þ h1J3Ii½3I1J�: ð13Þ

In the last identity, we add the massive LG indices to these
massless limit spinors and choose one contraction pattern
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of these LG indices to restore massive momentums.G½ð2;2Þ2�
can be obtained in the same procedures. Combining them
with tensor structure A½2;2�, we get the explicit expressions
of amplitude bases A½2;2� ·G½2;2� at D ¼ 8,

AI
½2;2� ·G

½ð2;2Þ1� ¼ 8½1I3K1 �½2J3K2 �ðs12 þ 2s13Þ þOðm2
i Þ;

AI
½2;2� ·G

½ð2;2Þ2� ¼ 8½1I3K1 �½2J3K2 �ð2s12 þ s13Þ þOðm2
i Þ;
ð14Þ

where sij ¼ ðpi þ pjÞ2. It is apparent that these two bases
are independent (the other amplitude bases at D ¼ 8 are
presented in Supplemental Material [35]).

IV. LOWEST DIMENSIONAL AMPLITUDE BASES

Since A is the holomorphic function of right-handed
spinors, some spinors jiI� in A may contract with momen-
tums pi in G bases to produce an overall mass mi factor,
which makes fA ·Gg bases cannot be directly mapped into
EFToperator bases.Toovercome this issue,we should reduce
the dimension of fA · Gg bases to the lowest dimension,
which means that any basis in this set cannot be decomposed
into a combination of lower-dimensional bases.
A complete set of amplitude bases with the lowest

dimension can be constructed in the following way [31].
First, we find that all the possible unfactorizable amplitudes
can be classified by the massive particle-i’s polarization
tensor configuration (PTC),

ϵlii ≡ ðjifIiÞliðjiIg�Þ2si−li ; ð15Þ
where li ∈ ½0; 2si� is the number of left-handed spinors in
the polarization tensor, parametrizing different PTCs, and
the LG indices should be totally symmetric. Any basis with
the lowest dimension must have one kind of PTCs, so a
complete set of amplitude bases with this PTCmust contain
it. Then all the lowest dimensional amplitude bases must
belong to all the complete basis sets, each with a different
PTC. Meanwhile, each complete basis set with one kind of
PTC can still be constructed by SUð2Þr and UðNÞ SSYT,
similar to fA · Gg bases construction. Thus a complete but
redundant basis set containing the complete bases with the
lowest dimension can be systematically constructed. Then
we can always decompose these redundant bases from low
to high dimension to fA ·Gg bases, and eliminate the
linear correlation bases according to their coordinates in
fA ·Gg space. Based on the independence and complete-
ness of fA ·Gg bases, a complete set of amplitude bases
with the lowest dimension can be picked up.

V. IDENTICAL PARTICLES

If the amplitude bases involve n identical bosons
(fermions), they should be in the permutation group Sn’s
totally (anti)symmetric representation [the corresponding
Sn YD is [n] (½1n�)]. Within the framework of our theory,

the lowest dimensional amplitude bases involving identical
particles can be systematically constructed by the Plethysm
operation [37,38]. However, we find a much simpler way to
construct such amplitude bases [31]. Based on group
theory, the Young operator Y½R� of ½R�≡ ½n� (½1n�) is the
permutation operation that makes the wave function of the
n identical particles totally (anti)symmetric. So if an ampli-
tude basis is in the [R] representation, it should be the
eigenstate of the Young operator Y½R�. To find these eigen-
states, we can useY½R� to act on the complete amplitude bases
and then get the representation matrix of Y½R� in the basis
space. Finally, the amplitude bases in [R] representation
correspond to the eigenvectors with nonzero eigenvalue.

VI. CONCLUSION AND OUTLOOK

The EFT of massive particles is widely applied in various
fields of physics. How to construct massive EFT bases is
still a problem. This work proposes a theory that can
systematically build a complete set of on-shell massive
amplitude bases without EOM and IBP redundancies. Some
examples are given to demonstrate how to construct massive
amplitude bases. Based on the independence and complete-
ness of these bases, a complete set of amplitude bases with
the lowest dimension that can be directly mapped into EFT
operators could be obtained [31,39]. For the massive
amplitude bases involving identical particles, it can be built
through the Young operator of the permutation symmetry
representation required by the spin statistic. Based on our
theory, the generic EFTs involving massive fields with any
spin can be automatically constructed by computer pro-
grams [31,41], such as HEFTand various dark matter EFTs,
etc. The massive EFT could have many advantages in
various physics research, and a lot of its exciting applica-
tions deserve to be explored in the future.
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