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We determine complex saddles of three-dimensional gravity with a positive cosmological constant by
applying the recently proposed holography. It is sometimes useful to consider a complexified metric to
study quantum gravity as in the case of the no-boundary proposal by Hartle and Hawking. However, there
would be too many saddles for complexified gravity, and we should determine which saddles to take. We
describe the gravity theory by three-dimensional SLð2;CÞ Chern-Simons theory. At the leading order in the
Newton constant, its holographic dual is given by Liouville theory with a large imaginary central charge.
We examine geometry with a conical defect, called a de Sitter black hole, from a Liouville two-point
function. We also consider geometry with two conical defects, whose saddles are determined by the
monodromy matrix of Liouville four-point function. Utilizing Chern-Simons description, we extend the
similar analysis to the case with higher-spin gravity.
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I. INTRODUCTION

When considering the path integral for quantum
gravity, it is sometimes useful to analytically continue
the geometries to complex ones; however, as recently
pointed out in [1], not all complexifications of a real
geometry yield physically sensible answer. A nice canoni-
cal example is provided by the geometry obtained from
complexifying (dþ 1)-dimensional sphere ðSdþ1Þ metric
ds2 ¼ l2ðθ0ðuÞ2du2 þ cos2θðuÞdΩ2

dÞ. Here l is a real
length scale and dΩ2

d is a metric of Sd, while θ and u
are both complex valued such that θðuÞ gives the immer-
sion of the resultant metric into the complex manifold.
We now consider the no-boundary proposal by Hartle and
Hawking [2], where the Universe starts from nothing.
For complex θðuÞ, the Universe can start from any of θ ¼
ðnþ 1=2Þπ with n ∈ Z and then go to i∞, this may imply
that we need to sum over infinite number of saddle points
when evaluating the path integral, which are obviously too
many. However using the criterion that all exact forms have
norms with non-negative real parts, as proposed in [1,3,4],
it was shown recently in [1] that the allowable geometry

here is only given by n ¼ −1; 0 saddle points, which are
exactly the geometry analyzed in [2].
The non-negative real norm criterion can be applied

to many examples of complex analytic continuation in
principle, but it can be difficult to implement explicitly.
In this paper, we propose a different approach to identify
the appropriate saddle points of complex geometry path
integral for quantum gravity theories from their holo-
graphic duals. Explicitly we consider a simple setup,
i.e., three-dimensional gravity with a positive cosmological
constant, and derive its complex saddle points. The gravity
theory can be described by SLð2;CÞ Chern-Simons gauge
theory [5–7]. Recently, it was proposed that the leading
effects in the Newton constant GN can be captured
by a specific limit of holographic dual field theory, i.e.,
Liouville theory [8–11]. See, e.g., [12] for a related work on
three-dimensional gravity with a negative cosmological
constant.
The holography considered here is in fact an

explicit example of the general proposal posed abstractly
in [13], see also [14,15]. We prepare the Hartle-

Harking wave functional of the Universe as Ψ½χð0Þj � ¼R
Dχj expðiSdS½χj�Þ. Here SdS½χj� is the action of gravity

theory on de Sitter (dS) space-time and fields χj of the

theory are required to satisfy the boundary conditions χj ¼
χð0Þj at future infinity. We consider the geometry created due
to the backreaction of a scalar field with large energy E.
Suppose that the saddle points of the path integral are
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realized by χj ¼ χnj with label n. Then the wave functional
can be written as

Ψ ∼
X
n

exp ðSðnÞGH=2þ iI ðnÞÞ ð1Þ

at the semiclassical limit. The fields are assumed to take
complex values, which leads to the complex action as in (1)

with real SðnÞGH and I ðnÞ. The largest SðnÞGH gives the dominant
contribution to Gibbons-Hawking entropy associated with
the geometry [16–18].
According to the proposal of [13], the wave functional of

the Universe can be evaluated with the correlation functions
of dual conformal field theory (CFT). As mentioned above,
we introduce a bulk scalar field with energy E, which
creates a backreacted geometry. The dual CFT operator Vh

should have conformal weight h ¼ ihðgÞ with real hðgÞ with
2hðgÞ ¼ lE. The central charge of dual CFT c ¼ icðgÞ

ðcðgÞ ∈ RÞ is related to gravity parameters as cðgÞ ¼
3l=ð2GNÞ [14]. Since the bulk scalar field connects two
boundary points, the configuration should be related to
two-point function of the dual CFT operators as

Ψ ¼ hVhðz1ÞVhðz2Þi;

¼
Z

Dϕje−SCFT½ϕj�Vhðz1ÞVhðz2Þ: ð2Þ

Here we denote the dual CFT fields and their action by ϕj

and SCFT½ϕj�, respectively. We assume that the conformal
weight satisfies h ∼ c, and in that case the insertion of
vertex operators can be regarded as a part of modified
action. Suppose that the saddle points of the modified
action are given by ϕj ¼ ϕn

j . Then the two-point function
can be put into the form of (1), from which we can read off
the map between the saddle points of gravity theory and
dual CFT. In general, quantum gravity is not well defined,
at least nonperturbatively, but its dual CFT is well for-
mulated and can be analyzed more deeply. Therefore, our
holographic approach provides useful insights on allowed
geometry. Above, we explained the case with CFT two-
point functions for simplicity, but the procedure can be
extended to the case with CFT multipoint function as
studied below.
Specifically, we consider three-dimensional de Sitter

(dS3) space-time with a conical defect, which is often
called as dS3 black hole [19] in this paper. There are
additional complex saddles of Chern-Simons theory related
by large gauge transformations. We determine which
saddles to take from the semiclassical analysis of the
two-point function in Liouville theory by [20]. We also
deal with geometry including two conical defects con-
structed in [8,9], where the dual CFT partition functions
were obtained in terms of modular S matrix [21]. Here we
derive the same relation from the monodromy matrix of

four-point functions of Liouville theory. Utilizing the
Chern-Simons description, we extend the analysis to the
case with higher-spin gravity as well.

II. THREE-DIMENSIONAL DS BLACK HOLE

The metric of black hole solution on dS3 is given by

ds2 ¼ l2½dr2=ð1 − 8GNE − r2Þ
−ð1 − 8GNE − r2Þdt2 þ r2dϕ2�: ð3Þ

Here l is the radius of dS3 and E is the energy of an
excitation [22]. The periodicity is assigned as ϕ ∼ ϕþ 2π
and the horizon is located at r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8GNE
p

.
We may consider a Wick rotation as it ¼ tE, then the
smoothness at the horizon requires the periodicity
tE ∼ tE þ 2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8GNE

p
. The Gibbons-Hawking entropy

associated with the horizon is [16–18,23]

SGH ¼ πl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8GNE

p
2GN

: ð4Þ

We describe the gravity theory by SLð2;CÞ Chern-
Simons gauge theory with the action [5]

S ¼ SCS½A� − SCS½Ã�;

SCS½A� ¼ −
κ

4π

Z
tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ð5Þ

The Chern-Simons level κð∈ RÞ is related to the gravity
parameters as κ ¼ l=ð4GNÞ. As explained in [6,7], we treat
A; Ã as two independent one-form fields taking values in
slð2;CÞ. For convention, we use the generators of slð2Þ
Lie algebra given by L0; L�1 satisfying ½Ln; Lm� ¼
ðn −mÞLnþm. We choose its normalization as trðL0L0Þ ¼
1=2 and their complex conjugations as ðL0Þ� ¼ −L0,
ðL�1Þ� ¼ L∓1. If we choose a real slice Ã ¼ −A�, then
the equation of motion is the same as the Einstein equation
with positive cosmological constant for Lorentzian
space-time.
The solutions to the equations of motion are given by flat

connections. We put the gauge fields in the form

A ¼ e−iθL0aeiθL0 þ iL0dθ;

Ã ¼ −eiθL0 ãe−iθL0 − iL0dθ: ð6Þ

We consider a solution

a ¼ i

ffiffiffiffiffiffiffiffiffi
2πL
κ

r
ðL1 − L−1Þðdϕþ idtÞ;

ã ¼ −i
ffiffiffiffiffiffiffiffiffi
2πL
κ

r
ðL−1 − L1Þðdϕ − idtÞ: ð7Þ

CHEN, HIKIDA, TAKI, and UETOKO PHYS. REV. D 107, L101902 (2023)

L101902-2



The bulk metric can be read off from

gμν ¼ −
l2

2
trðAμ − ÃμÞðAν − ÃνÞ; ð8Þ

which leads to

ds2 ¼ l2

�
dθ2 −

8πL
κ

sin2θdt2 þ 8πL
κ

cos2θdϕ2

�
: ð9Þ

The coordinate transformation r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πL=κ

p
cos θ with

8πL=κ ¼ 1–8GNE maps the above metric to the one
in (3). Performing the Wick rotation as it → tE, the
smoothness at the horizon requires the periodicity tE ∼
tE þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

πκ=2L
p

as before. Note that theWick rotation breaks
the condition Ã ¼ −A�, and the corresponding geometry is
now complexified.
In order to characterize the black hole geometry in terms

of Chern-Simons theory, it is convenient to introduce a
holonomy matrix along the time cycle as [24,25]

Pe
H

A ¼ Pe
H

dtEAtE ¼ e−iθL0eΩeiθL0 : ð10Þ

Here P indicates the path ordering. The eigenvalues of Ω
for the configuration (7) are ðπi;−πiÞ. As saddle points,
we pick up nonsingular geometry in the sense that the
holonomy matrix is trivial, i.e., �1. It can be realized also
by the cases with eigenvalues ð2πñi;−2πñiÞ, where ñ ∈ Z
or ñ ∈ Zþ 1=2. A configuration of gauge fields with the
holonomy matrix may be given by

a ¼ i

ffiffiffiffiffiffiffiffiffi
2πL
κ

r
ðL1 − L−1Þðdϕþ 2ñdtEÞ;

ã ¼ −i

ffiffiffiffiffiffiffiffiffi
2πL̃
κ

s
ðL−1 − L1Þðdϕ − 2ñdtEÞ: ð11Þ

The metric from the configuration can be read off as

ds2 ¼ l2

�
dθ2 þ 8πð2ñÞ2L

κ
sin2θdt2E þ 8πL

κ
cos2θdϕ2

�
:

ð12Þ

The complex geometry with the metric contributes to the
real part of (1) and its Gibbons-Hawking entropy is
evaluated as

SðñÞGH ¼ 8πñ
ffiffiffiffiffiffiffiffiffiffiffi
2πκL

p
¼ 2ñ

πl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8GNE

p
2GN

: ð13Þ

See [8,9] for the case with conical defect geometry.
In this way, the saddle points of the Chern-Simons theory

can be labeled by ñ. Solutions with different ñ are related
by large gauge transformation as the holonomy condition

suggested. As pointed out in [7,20], the large gauge
transformation is not a symmetry of the complexified
theory but generates new saddles. As mentioned above,
the saddle points associated with ñ ¼ �1=2 are allowed
geometries of [1]. These two should have the same
geometrical interpretation, since they can be mapped by
replacing tE with −tE. In the following, we obtain the same
conclusion via holography.

III. DUAL LIOUVILLE FIELD DESCRIPTION

The action of Liouville theory is given by

SL ¼ 1

2π

Z
d2z

ffiffiffĩ
g

p �
∂ϕ∂ϕþQ

4
R̃ϕþ πμe2bϕ

�
: ð14Þ

The “physical” metric is given as gij ¼ e
2
Qϕg̃ij. We mainly

work with the flat reference metric such that the curvature is
R̃ ¼ 0. The vertex operators are defined by Vα ¼ e2αϕ with
conformal weights h ¼ h̄ ¼ αðQ − αÞ. The central charge
c is related to the background charge Q ¼ bþ b−1 as
c ¼ 1þ 6Q2. In order to obtain finite action, we also need
to add proper boundary terms and assign boundary con-
ditions as explained in [20,26].
We are interested in the regime with a cðgÞð≡ − icÞ that is

real and very large, thus we may approximate as follows
(see [9]):

b−2 ¼ icðgÞ

6
−
13

6
þOððcðgÞÞ−1Þ; ð15Þ

which indicates b ∼ 0. The contribution of orderOððcðgÞÞ0Þ
implies that Reb−2 < 0. For b ∼ 0 with ϕc ¼ 2bϕ, the
action may be written as

b2SL ¼ 1

8π

Z
d2z½∂ϕc∂ϕc þ 4λeϕc �: ð16Þ

For our purpose, it is convenient to choose λ≡ πμb2 real
and finite, see [27] for the details.
We evaluate the two-point function of heavy operators,

hVαðz1ÞVαðz2Þi

≡
Z

Dϕce−SL exp ðb−1αðϕcðz1Þ þ ϕcðz2ÞÞÞ: ð17Þ

A heavy operator is defined with α ¼ η=b, where we
choose 0 ≤ η ≤ 1=2 for b ∼ 0. The parameter η is related
to E in (3) as 1 − 2η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8GNE
p

, see, e.g., [8,9]. We
may regard the insertions of heavy operators as a part of
action. Then, the equation of motion becomes

∂∂ϕc ¼ 2λeϕc − 2πη½δð2Þðz − z1Þ þ δð2Þðz − z2Þ�: ð18Þ
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Notice that the equation is invariant under the constant
shifts ϕc → ϕc þ 2πinwith integer n. Therefore, once ϕ0

c is
a solution to the equation of motion, then the same is true
for ϕn

c ¼ ϕ0
c þ 2πin. The classical action with ϕn

c was
evaluated in [20] as

b2SL ¼ 2πiðnþ 1=2Þð1 − 2ηÞ þ ð2η − 1Þ ln λ
þ 4ðη − η2Þ ln jz12j
þ 2½ð1 − 2ηÞ lnð1 − 2ηÞ − ð1 − 2ηÞ�: ð19Þ

We thus read off relevant saddles from the exact expression

hVαðz1ÞVαðz2Þi ¼ jz12j−4αðQ−αÞ 2π
b2

½πμγðb2Þ�ðQ−2αÞ=b

× γð2α=b − 1 − 1=b2Þγð2bα − b2Þδð0Þ
ð20Þ

by taking the semiclassical limit. Here we set γðxÞ ¼
ΓðxÞ=Γð1 − xÞ. The delta function comes from hVαVα0 i ∝
δðα − α0Þ. For b ∼ 0 with Reb−2 < 0, we find [20]

hVαðz1ÞVαðz2Þi ∼ jz12j−4ηð1−ηÞ=b2λð1−2ηÞ=b2

× ðe−πið1−2ηÞ=b2 − eπið1−2ηÞ=b2Þ

× exp

�
−

2

b2
½ð1 − 2ηÞ lnð1 − 2ηÞ

− ð1 − 2ηÞ�
�
δð0Þ: ð21Þ

This can be reproduced from the sum of e−SL at the saddle
points with n ¼ −1; 0, such that the leading n ¼ −1
contribution yields the correct Gibbons-Hawking entropy
(4). The answer seems natural since the conformal weight is
invariant under the exchange of�ð1 − 2ηÞ. However, this is
not the case as the usual choice Reb−2 > 0 forces n to take
whole non-negative or nonpositive integers [20]. The label
ñ for saddles of Chern-Simons gravity is related via 2ñ ¼
nþ 1=2 or 2ñ ¼ n. In the current case, the saddle points are
given by ñ ¼ �1=2, which reproduces the allowable
geometry mentioned above. Following the analysis in
Sec. 6 of [20], even the classical configurations of
Liouville field theory could be mapped to those of
Chern-Simons theory in this specific example.
Before moving to more complicated examples, wewould

like to clarify the holography considered here. In [8–11], a
dS3=CFT2 correspondence was proposed, which can be
obtained as an analytic continuation of anti-dS3 counterpart
by [28]. In particular, the dual CFT is given by an analytic
continuation of Virasoro minimal model, whose correlation
functions can be computed by Liouville theory [29]. The
states of the dual CFT belong to degenerate representations
in terms of Liouville theory, which are dual to composite
particles and/or conical geometries, see, e.g., [30–32].

In the current case, the CFT is deformed by insertions
of heavy operators, which are dual to the same gravity
theory but on an asymptotic dS3 black hole geometry.

IV. GEOMETRY DUAL TO FOUR-POINT
FUNCTION

We consider the complex saddles of Chern-Simons
gravity dual to multipoint functions of Liouville theory
next. The geometry may be created due to the backreaction
of scalar field departing from multipoints of the future
boundary and connecting at some bulk points. For instance,
the analytic structure of Liouville three-point functions
were examined in [20], and results analogous to the case of
two-point functions can be obtained [27]. Here we instead
focus on complex saddles dual to CFT four-point functions
and develop a new method for identifying Chern-Simons
gravity solutions corresponding to the insertions of two
linked (unlinked) Wilson loops in Euclidean dS3 analyzed
in [8,9].
Let us assume that the dual CFT is rational, such as the

SUðNÞk Wess-Zumino-Witten model as in [8,9] for the
time being. We define a correlation function as

Cijðz; z̄Þ ¼
hO†

i ð∞ÞO†
jð1ÞOiðzÞOjð0Þi

hO†
iOiihO†

jOji
; ð22Þ

which can be expanded by conformal blocks as

Cijðz; z̄Þ ¼
X
p

F ii
jjðpjzÞF̄ ii

jjðpjz̄Þ: ð23Þ

Here p labels the exchange primary operators with scaling
dimensions ðhp; h̄pÞ. For simplicity, let us consider z ∼ 0,
then the function approximates as Cijðz; z̄Þ ∼ 1. As in [33]
(see Fig. 1), we start from z ∼ 0, go around z ¼ 1
anticlockwise, then back to z ∼ 0. This move yields a
nontrivial monodromy matrix Mpq acting on the con-
formal block as

F ii
jjðpjzÞ →

X
q

MpqF ii
jjðqjzÞ: ð24Þ

We perform the move only for the holomorphic part and
keep the antiholomorphic part untouched. Taking a large
central charge limit as in [8,9], such that the scaling
dimensions all external operators hi;j; hp also scale as
central charge, then the identity block with hp ¼ 0 domi-
nates [34]. Gluing the two parts, we have

Cijðz; z̄Þ ∼M00F ii
jjð0jzÞF̄ ii

jjð0jz̄Þ ð25Þ

for z ∼ 0. The monodromy matrix is known to be [35,36]
(see also [37])
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M00 ¼
S�ijS00S00
S00S0iS0j

; ð26Þ

where Sij is the modular S matrix of CFT character. As in
Fig. 1, the correlator can be interpreted as a partition
function of SUðNÞ Chern-Simons theory with two linked
Wilson line loops on S3. We thus deduce that

jhO†
jOjij ∼ jS0jj ð27Þ

and

jhO†
i ð∞ÞO†

jð1ÞOiðzÞOið0Þij ∼ jSijj: ð28Þ

Here and in the following, we change the normalization
of correlators by jS00j−1. These results reproduce those
in [8,9].
Let us first comment on the two-point functions. In the

above, we have assumed that CFT is rational. We may
apply the modular S-matrix element of Liouville theory for
the identity operator and nondegenerate operator [38],

S0j¼−2
ffiffiffi
2

p
sin2πbðαj−Q=2Þsin2πðαj−Q=2Þ=b; ð29Þ

then we find

jS0jj ∼
			eπ

6
cðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8GNEj

p
− e−

π
6
cðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8GNEj

p 			: ð30Þ

The expression reproduces the result obtained by the
Liouville theory (21) including the subleading saddle.
We next consider geometry corresponding to two

unlinked Wilson loops on S3 in the Chern-Simons theory.
We do not perform any move in this case, thus we should
have Cijðz; z̄Þ ∼ 1. Using (27), we find

jhO†
i ð∞ÞO†

jð1ÞOiðzÞOjð0Þij ∼
				 S0iS0jS00

				: ð31Þ

This also reproduces a finding in [8,9] for two unlinked
Wilson loops.
One may be concerned with the assumption of the

rationality of dual CFT. We thus want to reexamine the
four-point conformal block F ii

jjðpjzÞ in terms of Liouville
theory. Here we set Oa ¼ e2ηaϕ=b (a ¼ i, j) with b ∼ 0.

According to Eq. (2.43) of [39], the conformal block
behaves near z ∼ 1 as

F ii
jjðpjzÞ ∼

X
m;δκ¼�

cδκmð1 − zÞc6κδκm ;

κδκm ¼ mð1 −mÞ − 1

2
− δκ

ð1 − 2ηiÞð1 − 2ηjÞ
2

þ
�
1

2
−m

�
ðð1 − 2ηiÞ þ δκð1 − 2ηjÞÞ: ð32Þ

Here cδκm are coefficients of order OððcðgÞÞ0Þ. Since the
expression is independent of p, we consider again
the identity block with ηp ¼ 0, which are normalized by
the two-point functions as in (22). Note that the vacuum
state is included in the Hilbert space of analytically
continued minimal model. Performing the monodromy
move of z from 0 to 1 and then from 1 to 0 only for the
holomorphic part of Cijðz; z̄Þ, the absolute value of four-
point function schematically becomes

jhO†
i ð∞ÞO†

jð1ÞOiðzÞOjð0Þij

∼
X

δi;δj;δκ¼�

X
m

				hO†
iOiiδihO†

jOjiδj exp
�
πcðgÞκδκm

3

�				:
ð33Þ

The two-point function is written as the sum of hO†
jOjiδj

ðδj ¼ �Þ, where

jhO†
jOjiδj j ∼ exp

�
δj
πcðgÞ

6
ð1 − 2ηjÞ

�
: ð34Þ

The saddles of conformal blocks are given as in (32), and
hence m should depend on δi, δj labeling the saddles of
two-point functions. We may choose m ¼ ðδi þ 1Þ=2 and
m ¼ ðδjδκ þ 1Þ=2 such that the terms linear in ð1 − 2ηiÞ
and ð1 − 2ηjÞ come from the two-point functions in the
right-hand side of (33). We then reproduce (28) with the
modular Smatrix of Liouville theory among nondegenerate
operators.

V. HIGHER-SPIN GENERALIZATION

Replacing the gauge group SLð2;CÞ with SLðN;CÞ in
Chern-Simons action, the previous analysis can be
extended to a higher-spin gravity, whose classical behavior
can be captured by slðNÞ Toda theory with large
central charge [8–11]. For this extension, we adopt the
following notations of slðNÞ Lie algebra. Let us denote the
basis ofRN by ϵj ðj ¼ 1; 2;…; NÞ satisfying ðϵi; ϵjÞ ¼ δi;j.
Then, the simple roots are given by ej ¼ ϵj − ϵjþ1

ðj ¼ 1; 2;…; N − 1Þ, which satisfy ðei; ejÞ ¼ Kij with
Kij being the Cartan matrix of slðNÞ. The fundamental

FIG. 1. In CFT four-point function, we move z from 0 to 1 and
then back to 0 as indicated in the left figure. In terms of Chern-
Simons theory, two Wilson lines are winded. Gluing the anti-
holomorphic part, two linked Wilson loops are constructed.

COMPLEX SADDLES OF THREE-DIMENSIONAL DE SITTER … PHYS. REV. D 107, L101902 (2023)

L101902-5



weights ωj ðj ¼ 1; 2;…; N − 1Þ satisfy ðωi; ejÞ ¼ δi;j and

are given by ωj ¼
Pj

l¼1 ϵl −
j
N

P
N
l¼1 ϵl. The Weyl vector ρ

is the half of the sum over all positive roots or equivalently
the sum over fundamental weights as ρ ¼ P

N−1
j¼1 ωj ¼P

N
j¼1 ρjϵj with ρj ¼ Nþ1

2
− j.

We first study the possible saddle points of SLðN;CÞ
Chern-Simons gauge theory. As in the case with N ¼ 2, we
classify the nontrivial saddles of Chern-Simons theory
by the holonomy matrix (10), see [24,25]. For non-
singular geometry, we require that the eigenvalues of Ω
introduced in (10) are 2πiðλ1; λ2;…; λNÞ with
λj ¼ mj þ ρj. With even N (odd N), mj ∈ Z or Zþ 1=2
ðmj ∈ ZÞ for all j but with

P
j mj ¼ 0. Defining

½eij�kl ¼ δi;kδj;l, the corresponding gauge configuration
may be given in a diagonal form as

a ¼ i
XN
j¼1

ejjððρ − ηÞjdϕþ λjdtEÞ;

ã ¼ −i
XN
j¼1

ejjððρ − ηÞjdϕ − λjdtEÞ: ð35Þ

Here η ¼ ðη1;…; ηNÞwith ηj related to higher-spin charges
of corresponding dS3 black hole. We set 0 ≤ ηj ≤ ρj for
j ¼ 1;…; bNþ1

2
c and 0 ≥ ηj ≥ ρj for bNþ1

2
c þ 1;…; N.

Defining λ ¼ P
j λjϵj, the Gibbons-Hawking entropy cor-

responding to the configuration can be evaluated as

SðλÞGH ¼ π

3
cðgÞ

ðρ − η; λÞ
ðρ; ρÞ ; ð36Þ

see [9] for the details.
We then move to the Toda theory and find out the set

of saddle points. The Toda theory has a parameter b as in
the Liouville theory, and the central charge is given by
cð≡icðgÞÞ ¼ N − 1þ 12ðQ;QÞ with Q ¼ ðbþ b−1Þρ. We
are interested in the large cðgÞ regime, which can be realized
by small b with Reb−2 < 0 as

b−2 ¼ icðgÞ

NðN2 − 1Þ −
1

NðN þ 1Þ þOððcðgÞÞ−1Þ: ð37Þ

In order to evaluate two-point functions, we adopt the
result (27) to make an explanation short. We can analyze in
a way analogous to the Liouville case, which leads to the
same conclusion as we will show in [27]. Denoting
α ¼ ðρ − ηÞ=b, the modular S matrix of the Toda theory
with large cðgÞ is given by [9,40]

S0α ∼
X
w∈W

ϵðwÞ exp
�
π

6
cðgÞ

ðρ − η; wðρÞÞ
ðρ; ρÞ

�
; ð38Þ

where W denotes the Weyl group of SUðNÞ and ϵðwÞ is a
sign related to w. We can see that the possible saddles
of Chern-Simons theory are with λ ¼ wðρÞ. The leading
contribution is given by λ ¼ ρ and the corresponding
Gibbons-Hawking entropy is (36) with λ ¼ ρ. Since
higher-spin charges are known to be invariant under the
action of Weyl group, see, e.g., [41,42], all the subleading
saddles has the same higher-spin charges. This means that
the all solutions should have the same geometric interpre-
tation as the leading one. We can check that the analysis
reduces to the previous one for N ¼ 2.

VI. DISCUSSION

We examined dS3 gravity described by SLð2;CÞ Chern-
Simons theory and its higher-spin generalization. In gen-
eral, there can be too many complex saddles of gravity path
integral and we determined the set to take by applying
recently proposed holography [8–11]. In this paper, we
investigated geometry dual to Liouville two- and four-point
functions. It is an important future problem to systemati-
cally formulate how to describe generic complex geometry
from dual CFT multipoint functions.
We further extended the result to higher-spin gravity

described by SLðN;CÞ Chern-Simons theory. We presented
only partial result on Toda two-point functions here, but we
are planing to report on a more detailed analysis in [27].
In particular, we examine effects of higher-spin charges in
dS3 black hole (or cosmological background) along the line
of [24,25], see, e.g., [43] for a previous attempt. As was
done in [8,9,44–48], quantum information quantities are
useful to examine the properties of dS higher-spin gravity
and its holography. We also would like to comment
on them.
In the introduction, we have introduced bulk fields χj

and boundary fields ϕj. In generic holography, they are not
directly related, since the bulk fields χj are dual to the
boundary operators Oj and not the boundary fields ϕj.
However, in the current situation, bulk fields are given by
Chern-Simons gauge fields A; Ā, and after taking the
diagonal gauge, we may relate the diagonal components
of A; Ā to the Liouville/Toda fields ϕL

j ðzÞ;ϕR
j ðz̄Þ, where

ϕjðz; z̄Þ ¼ ϕL
j ðzÞ þ ϕR

j ðz̄Þ. See [49] in the case of anti-dS3.
The precise map between the bulk and boundary degrees of
freedom should be useful to make the geometrical inter-
pretation of dual CFT much clearer.
For our analysis, we utilized the known exact answers of

Liouville/Toda field theory in order to determine the
allowable saddles of gravity theory. However, it is quite
rare that exact answers are available for the CFT dual to
gravity theory. Even so, as mentioned above, CFT is usual
much well-formulated than quantum gravity, so our holo-
graphic method should work more generically. For in-
stance, conformal bootstrap technique is largely developed
these days (see [50,51] for reviews), and the technique
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could be useful for our purpose. In any cases, it is important
problem to extend the current analysis to other complex
gravity theories, like a higher-dimensional one in [52].
Furthermore, Liouville/Toda correlators used in this

paper only tell us the possible saddles of corresponding
gravity solutions, and they do not say anything about the
properties of other gravitational saddles. However, as
explained in [20], the other saddles of Liouville field
theory can be selected if the region of complex parameter
b is changed. We expect that some information on the other
saddles can be obtained by carefully treating the expanding
parameter, and we are currently working on a related topic.
It is also an important future problem to generalize it such
as to be applicable to other complex gravity theories.
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