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We study relativistic fermions in three euclidean dimensions with four- and six-fermion interactions of
the Gross-Neveu type. In the limit of many fermion flavors, and besides the isolated free fixed point, the
theory displays a line of interacting ultraviolet fixed points. At the endpoint of the critical line, we establish
that mass is generated through the spontaneous breaking of quantum scale invariance. Curiously, broken
parity symmetry is a prerequisite for the spontaneous generation of mass rather than a consequence thereof.
We also calculate critical exponents and find that hyperscaling relations are violated. Further similarities
with critical scalar theories, and implications for conformal field theories and higher spin theories are
discussed.
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I. INTRODUCTION

Fixed points of the renormalization group play a funda-
mental role in particle and statistical physics. At fixed
points, theories become scale and possibly conformally
invariant [1], and correlation functions are characterized
by universal numbers [2]. An intriguing scenario arises if
quantum scale invariance is broken spontaneously, leading
to the appearance of a mass which is not determined by
fundamental parameters. It has been speculated that this
type of mechanism may explain the Higgs particle as a light
dilaton in Standard Model extensions [3–5].
The spontaneous breaking of scale invariance was

first observed by Bardeen, Moshe, and Bander (BMB)
in strongly coupled 3d OðNÞ or UðNÞ symmetric scalar
field theories [6–8]. Besides the Wilson-Fisher fixed point,
the theory displays a line of UV fixed points at large N,
curtesy of an exactly marginal sextic scalar self-interaction
[7–11]. At the endpoint, scale symmetry is broken sponta-
neously and hyperscaling relations are violated [9], owing
to a nonanalyticity of the effective potential. Subsequently,
the phenomenon has been observed in multicritical bosonic
theories [12], in finite N extensions [10], and away from
integer dimensionality [13]. Further examples with sponta-
neously broken scale symmetry include Wess-Zumino
models [14–16], and models with a topological Chern-
Simons term [17–20].

In this Letter, we study the spontaneous breaking of scale
symmetry in a purely fermionic theory. This is motivated
by the recent discovery that Gross-Neveu-type ðψ̄ψÞ33d
theories at large N display a line of interacting UV fixed
points and an isolated IR fixed point [21], very much like
bosonic ðϕ2Þ33d theories [6–8] and with identical critical
points and scaling dimensions. It is conceivable that this
equivalence is rooted in a deeper connection between
critical fermions and critical bosons. If so, we expect that
the fermionic theory equally displays a version of sponta-
neous scale symmetry breaking. Here, we demonstrate
that this is indeed the case. Implications of our results for
3d fermion-boson equivalences, conformal field theory, and
higher spin theories are indicated.

II. GROSS-NEVEU THEORY

We recall fermionic quantum field theories in three
euclidean dimensions with fundamental four- and six-
fermion interactions of the Gross Neveu type [22]. The
classical action takes the form

Sf ¼
Z
x

�
ψ̄að∂þMÞψaþ

G
2
ðψ̄aψaÞ2þ

H
3!
ðψ̄aψaÞ3

�
; ð1Þ

where ψa are four-component Dirac spinors, and summa-
tion over the index a ∈ f1;…; Ng is understood. The
theory has a global UðNÞ flavor symmetry. The theory
(1) is nonperturbatively renormalizable, and characterized
by a line of UV fixed points in the limit of many fermion
flavors 1=N → 0 [21]. In terms of the couplings ðm; g; hÞ,
which are the dimensionless counterparts of ðM;G;HÞ in
the action, the line of fixed points reads

m� ¼ 0; g� ¼ −
1

2
; jh�j ≤ hcrit� : ð2Þ

*c.cresswell-hogg@sussex.ac.uk
†d.litim@sussex.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, L101701 (2023)
Letter

2470-0010=2023=107(10)=L101701(7) L101701-1 Published by the American Physical Society

https://orcid.org/0000-0003-2806-5319
https://orcid.org/0000-0001-9963-5345
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.L101701&domain=pdf&date_stamp=2023-05-03
https://doi.org/10.1103/PhysRevD.107.L101701
https://doi.org/10.1103/PhysRevD.107.L101701
https://doi.org/10.1103/PhysRevD.107.L101701
https://doi.org/10.1103/PhysRevD.107.L101701
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


At short distances, the mass ∝ m and the four fermion (4F)
interaction ∝ g are relevant operators, while the 6F cou-
pling h is exactly marginal. Consequently, small deviations
δmðΛÞ and δgðΛÞ at the high scale Λ and the value of the
6F coupling h� characterize UV-complete renormalization
group (RG) trajectories running from the UV to the IR. If
the 6F coupling h� is taken to vanish, the theory is invariant
under a discrete parity symmetry [23,24],

ψ → γ5ψ ; ψ̄ → −ψ̄γ5: ð3Þ

It follows that theories are either strictly massless ðδg > 0Þ,
or massive (δg < 0 or δm ≠ 0) owing to the dynamical or
explicit breaking of parity symmetry.
If the 6F coupling is nonzero, parity symmetry is absent

and explicit mass terms or parity-odd ð4nþ 2ÞF inter-
actions are permitted. For δm ≠ 0, mass is generated
explicitly. For δm ¼ 0 and δg < 0 with jh�j < hcrit� , mass
is generated dynamically through strong interactions, while
for δm ¼ 0 and δg > 0 with jh�j < hcrit� , theories remain
strictly massless, and parity symmetry “emerges” in the
infrared [21]. In this work, we investigate the critical
endpoint jh�j ¼ hcrit� to show that scale symmetry is broken
spontaneously leading to a fermion mass without the
breaking of any other symmetry.

III. RENORMALIZATION GROUP

To uncover the phenomenon in question, we employ
functional renormalization [25–27]. Briefly, the method
proceeds by adding a Wilsonian cutoff term to the path
integral representation of a quantum field theory, which
acts to integrate out momentum modes of the fields. By a
Legendre transform, this defines an effective action Γk,
dependent on the RG scale k, which interpolates between a
classical action S at the high scale Λ and the full quantum
effective action Γ in the IR limit k → 0. The scale
dependence of Γk is governed by an exact functional
identity

∂tΓk ¼
1

2
STr

n
½Γð2Þ

k þ Rk�−1 · ∂tRk

o
; ð4Þ

and t ¼ lnðk=ΛÞ. The right-hand side features a functional
trace over all momenta and a sum over all internal indices.
The bilinear cutoff term added to the action ψ̄Rkψ respects
the discrete symmetry (3) if we take the regulator propor-
tional to =q in momentum space, RkðqÞ ¼ =q · rðq2=k2Þ. The
cutoff shape function r vanishes as q2=k2 grows large,
allowing UV modes to propagate in the trace, and becomes
large as q2=k2 goes to zero, suppressing IR modes [28]. We
adopt the optimized cutoff rðxÞ ¼ ð1= ffiffiffi

x
p

− 1Þ · Θð1 − xÞ
[29,30], involving the Heaviside step function. It allows for
an analytical evaluation of functional traces and improves
the stability and convergence of approximations in a wide
range of quantum and statistical field theories [31–33].

We have checked that our central results are independent of
the choice.
In the large-N limit, we solve the flow equation (4)

exactly using the ansatz

Γk½ψ̄ ;ψ � ¼
Z

ddxfψ̄a∂ψa þ Vkðψ̄aψaÞg; ð5Þ

where we kept space-time dimension d as a free parameter
for now. It consists of a classical kinetic term and an
“effective potential” Vk, parametrizing interactions built
from the scalar combination ψ̄aψa. A virtue of the large-N
limit is that tensor structures other than those already
present in (5) are not generated by fluctuations [34–36].
Higher derivative interactions will likewise remain absent
from the action (5), and the kinetic term remains unrenor-
malized and anomalous dimensions vanish [35,37]. Hence,
the closure of the ansatz (5) under (4) ensures that the
theory can be solved exactly by solving the flow for Vk.
The flow equation for the function Vk is obtained by

inserting the ansatz (5) into (4) and projecting onto constant
fields. It takes the form

∂tv ¼ −dvþ ðd − 1Þzv0 − 1

1þ ðv0Þ2 ; ð6Þ

which is written in terms of the dimensionless variables

z ¼ k1−dψ̄aψa; vkðzÞ ¼ k−dVkðψ̄aψaÞ ð7Þ

with primes denoting partial differentiation with respect to
the field variable z. Prior to taking the large-N limit, each
variable is additionally rescaled with a factor 4NAd, where
Ad ¼ Sd−1=½dð2πÞd� with Sn the surface of a unit n sphere.
The first two terms on the right-hand side of (6) represent
the classical scaling of v and z, and are made explicit due to
our choice of variables, while the final term originates from
integrating out quantum fluctuations, i.e. the right-hand
side of (4). Using the method of characteristics, the most
general solution to (6) is found to be

z · ðv0Þ1−d − Fdðv0Þ ¼ Gðv0etÞ; ð8Þ

where the function GðxÞ ¼ x1−dzΛðxÞ − FdðxÞ is deter-
mined by the boundary condition v0ΛðzÞ at k ¼ Λ, and with
zΛðv0Þ the inverse function of v0ΛðzÞ. The function FdðxÞ
can be expressed in terms of a Gaussian hypergeometric
integral for arbitrary dimension, FdðxÞ ¼ 2

d−2 x
2−d

2F1

ð2; 1 − d
2
; 2 − d

2
;−x2Þ. For d ¼ 3 it can be expressed in

terms of more elementary functions as

F3ðxÞ ¼ −
1

x

�
2þ x2

1þ x2
þ 3x arctan x

�
: ð9Þ

Then, (8) provides implicit solutions zðv0; tÞ which can be
converted into explicit functions v0ðz; tÞ for any scale k and
all fields.
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IV. CRITICAL POINTS

At a fixed point of the renormalization group, the
flow (6) vanishes identically, for all fields, and the theory
becomes scale invariant. To find all possible fixed points of
the theory, the right-hand side of (8) must be t independent,
meaning that the function G can at best be a constant. We
therefore find a one-parameter family of integral curves
zðv0Þ with

z · ðv0Þ1−d − Fdðv0Þ ¼ c; c ∈ R; ð10Þ
which implicitly define all fixed points [21]. A heat map of
the solutions (10) in three dimensions for all c is shown in
Fig. 1. Series expansions about vanishing field values give

v0ðzÞ ¼ mþ gzþ 1

2
hz2 þOðz3Þ; ð11Þ

where m, g, and h are the dimensionless mass, four-
fermion, and six-fermion couplings, respectively. On the
other hand, from the fixed-point solution (10) we find

v0 ¼ −
z
2
þ c
8
z2 −

4 − c2

16
z3 þ 5cð8 − c2Þ

128
z4 þOðz5Þ:

ð12Þ
From the solution (12) we confirm that the couplings
in (11) are given by the fixed point couplings (2), with

h� ¼ c=4: ð13Þ

All fixed points have vanishing mass parameter, identical
4F couplings, and a 6F coupling proportional to the free
parameter c. Hence, the family of solutions corresponds to
a line of fixed points, continuously connected to the parity-
even Gross-Neveu theory by the exactly marginal 6F
coupling h.
The line of fixed points does not extend indefinitely [21],

although the local field expansion (11) is blind to this fact.
In fact, the range is limited to within

0 ≤ jcj ≤ ccrit; ð14Þ
where the critical value ccrit ≡ 3

2
π relates to solutions (10)

which become singular at the origin of field space. This
result can be appreciated by considering the large jv0j limit.
From (9) we have F3ðxÞ ¼ −ccrit − 2

5
x−5þ subleading

(x ≫ 1), which with (10) implies that almost all solutions
have the asymptotic behaviour v0 ∼

ffiffiffi
z

p
. In other words, the

large v0 limit corresponds to the large field limit. For the
critical value ccrit, however, the leading terms cancel out
and the subleading term dictates that large v0 ≫ 1 now
relates to small fields (z ≪ 1) as

v0crit ¼
�
−
5

2
z

�
−1=3

þ subleading; ð15Þ

instead of (12). The singular and nonanalytic behaviour,
which can be seen in Fig. 1 from the line marked
“crit” indicates their borderline nature beyond which
the effective potential becomes ill defined globally [21]
(see also [9–11,15,16]).
We close with a comment on parity symmetry, which is

realized whenever v0 is an odd function of z. Since F3 is an
odd function, it follows from (10) that only the c ¼ 0 and
the 1=c ¼ 0 solutions respect parity. In Fig. 1, the former is
marked “chiral” (white line), while the latter is given by the
vertical line marked “free” (black). For any other value of c,
the fundamental theory is not parity symmetric.

V. SPONTANEOUSLY BROKEN
SCALE INVARIANCE

Quantum field theories at free or interacting fixed points
of the RG are scale invariant by definition. Ordinarily, this
implies the absence of a mass scale. Following [10,11,16],
we explain how scale symmetry may nevertheless be
broken spontaneously even though the theory is at an
exact RG fixed point. To that end, we consider the quantity

Mk ¼ V 0
kðψ̄ψÞjψ̄ψ¼0; ð16Þ

which is extracted from the function Vk at vanishing field,
also using (8). It relates to the physical fermion mass M in
the limit k → 0, irrespective of whether the theory is critical
or not. At a fixed point, then, we have

M ¼ lim
k→0

k ·m�; ð17Þ

FIG. 1. All fixed point v0ðzÞ for all fields z of the large N
ðψ̄ψÞ33d theory, characterized and color coded by the parameter c.
The chirally symmetric fixed point ðcchiral ¼ 0Þ, the critical
solution (ccrit ¼ 3

2
π), and the free fixed point (1=cfree ¼ 0) are

highlighted by a thick white, gray, and black line, respectively. A
further selection of solutions is shown by full (c > 0) or dashed
(c < 0) black lines to guide the eye. Global fixed points arise for
1=c ¼ 0 (free) and for jcj ∈ ½0; ccrit� (interacting). Axes are
rescaled as X → X=ð1þ jXjÞ for better display.
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where the dimensionless fixed point value m� is indepen-
dent of k. Clearly, for finite m� masslessness follows
trivially from (17). Here, m� ¼ 0 for any jcj < ccrit.
However, this conclusion can be upset provided that m�
diverges, which happens precisely at jcj ¼ ccrit.
To see the implications more explicitly, we express the

family of fixed point solutions (10) in terms of the dimen-
sionful mass (16). Taking the limit k → 0 for theories at a
fixed point, we find a gap equation for the physicalmass (17),

	
c −

3π

2
sgnðMÞ



M2 ¼ 0: ð18Þ

The gap equation depends on the parameter c which is
proportional to the critical six-fermion coupling. We empha-
size that the term 3π

2
sgnðMÞ in (18) originates from the

nonanalytical behavior (15). For any value of c within the
range (14), the prefactor is nonzero and the only solution to
the gap equation (18) is that of a vanishing mass,

M ¼ 0; ð19Þ
in accord with (12) and the vanishing of (17). Consequently,
scale invariance at the fixed point remains intact. However, at
the boundary of (14) where c ¼ �ccrit, the prefactor in (18)
vanishes identically, and the fermion mass is unconstrained
and free to take any value,

M ¼ free parameter; ð20Þ
with sgnðMÞ ¼ sgnðcÞ. In consequence, scale symmetry is
broken spontaneously, and precisely because of (15). The
result can also be interpreted as a version of dimensional
transmutation [38], in that the role of a dimensionless
parameter, c, is taken over by a dimensionful one, M, as a
consequence of quantum fluctuations. The value of the
spontaneously generated fermion mass is not determined
by fundamental parameters and cannot be deduced from the
nonanalytic critical potential. In accordancewith Goldstone’s
theorem, a single massless scalar mode should appear in
the spectrum, the dilaton, related to the generator of scale
transformations. We conclude that the critical endpoints
provide explicit examples of critical fermionic quantum field
theories where mass is generated spontaneously.

VI. VIOLATION OF HYPERSCALING RELATIONS

Critical exponents measure the response of macroscopic
observables to changes in the microscopic parameters of a
system close to criticality. Many fluids, magnets, or models
in particle and condensed matter physics share the same
behavior as criticality described by universal numbers,
such as the scaling exponent for the correlation length, ν, or
the anomalous dimension of the order parameter. Further
critical exponents are linked to these two by scaling
relations. We begin by introducing the scaling exponent
ν as

ξ ∝ jrj−ν; r → 0; ð21Þ

where ξ is the correlation length and r is a control
parameter measuring the distance from the critical point.
In the fermionic theory studied here, the correlation length
is set by the physical fermion mass, ξ ∼ 1=M, which
diverges at a critical point. We also introduce the specific
heat exponent α, defined by

χ ∝ jrj−α; r → 0: ð22Þ
In a thermal phase transition, χ relates to the specific heat,
while its zero-temperature analog, a “control parameter
susceptibility,” relates to the second derivative of the free
energy with respect to r [39].
The correlation length exponent ν, the specific heat

exponent α, and the space-time dimensionality d are linked
to each other by the hyperscaling relation

dν ¼ 2 − α; ð23Þ
which generally holds true for all d below the upper critical
dimension [39]. Here, we demonstrate that the hyperscaling
relation (23) is violated.
Since the violation of (23) originates from the nonana-

lytic behavior (15), it invalidates the extraction of critical
exponents as eigenvalues of RG beta functions. Therefore,
we adopt more elementary ideas [9] to identify the BMB
scaling exponents at the critical endpoint. We solve the RG
equation (6) using the initial condition

vðz; t ¼ 0Þ ¼ mzþ 1

2
gz2 þ 1

3!
hz3 ð24Þ

at k ¼ Λ, see (8), and evolve the solution to the IR by
taking k → 0. We then obtain a gap relation at zero field,
whose solution determines the physical massM for a given
choice of the microscopic parameters m, g, h. Fixing g and
h to their critical values allows the scaling ofM withm near
a fixed point to be determined. In this manner we extract the
value for ν from (21) as

M ∝ mν; m → 0þ ð25Þ
in the different parameter regions.
In our setup, the gap relation takes the form of a

transcendental equation m ¼ Gðg; h; M̃Þ, where G is a
function of the initial parameters at the scale Λ and the
physical mass in units of this scale M̃ ¼ M=Λ. Without loss
of generality, we take h positive. An expansion in powers of
M̃ yields

m ¼
�
1 −

g
g�

�
M̃ þ 1

2g2�

�
h −

g
g�

hcrit�
�
M̃2

þ
�
hcrit� h
2g4�

− 2
g
g�

�
M̃3 þOðM̃4Þ; ð26Þ
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where ðg�; hcrit� Þ ¼ ð− 1
2
; 3
8
πÞ denote the critical four- and

six-fermion coupling, respectively.
We are interested in three regions of parameter space,

each giving rise to distinct critical behaviors. The first
region is g > g�, which leads to the free theory in the IR
limit. In this regime (26) dictates m ∝ M for m → 0,
reproducing classical scaling

m ∝ M∶ ν ¼ 1: ð27Þ

The second region are the points on the critical line with
g ¼ g� and h < hcrit� . Upon setting g to its critical value the
linear term in (26) drops out, leading tom ∝ M2 in the limit
m → 0þ, with nonclassical exponent

m ∝ M2∶ ν ¼ 1

2
: ð28Þ

Lastly, we consider the critical endpoint point where g ¼ g�
and h ¼ hcrit� . In this case both the linear and quadratic
terms in (26) vanish while the cubic term remains nonzero,
resulting in m ∝ M3 with nonclassical exponent

m ∝ M3∶ ν ¼ 1

3
: ð29Þ

A linearization of local beta functions also gives the correct
results at the free and the interacting fixed points (27)
and (28), respectively. However, at the critical endpoint, the
result from the local RG flows would have been (28)
instead of (29). The failure of this standard method to
capture the scaling at the endpoints correctly is due to the
fact that the local flow is unaware of the nonanalyticity
(15), which influences the scaling globally [9]. Finally, we
note that it is not possible to make the first three coefficients
in the gap equation (26) vanish simultaneously, meaning
that the three cases cover all possibilities.
We now proceed to calculate the specific heat exponent

α. The ordered phase of the system is characterized by a
fermion condensateQ ¼ hψ̄ψi, which is proportional to the
physical mass M and is the conjugate variable to the bare
mass m in an expansion of the free energy. This latter point
implies that the control susceptibility χ is proportional
to ∂Q=∂m, up to an irrelevant prefactor. We then have
α ¼ 1 − ν, provided α > 0. On the line of interacting fixed
points, but away from the endpoints, we have ν ¼ 1

2
, giving

α ¼ 1

2
: ð30Þ

This result is in accord with the hyperscaling relation (23).
At the critical endpoints, however, we have ν ¼ 1

3
instead,

leading to

α ¼ 2

3
: ð31Þ

We conclude that the hyperscaling relation (23) is violated
at the endpoints, where scale invariance is broken
spontaneously.
As a final remark, we note that our result is in

quantitative agreement with the observed breaking of
hyperscaling relations at the critical endpoint in scalar
ðϕ2Þ33d models [9]. As such, our work adds the new result
that scaling exponents between the fermionic ðψ̄ψÞ33d and
the bosonic ðϕ2Þ33d theories agree at all UV or IR critical
points, including at tricritical endpoints with spontaneously
broken scale symmetry.

VII. DISCUSSION AND CONCLUSIONS

In this Letter, we have established for the first time that
purely fermionic quantum field theories exhibit quantum
critical points with spontaneously broken scale symmetry.
The fingerprint for scale symmetry breaking are non-
analyticities in the effective action at a critical point
(Fig. 1). The spontaneously generated mass breaks the
conformal symmetry and becomes a new free parameter.
Additionally, we have demonstrated that this nonperturba-
tive effect violates hyperscaling relations.
The underlying trigger for scale symmetry breaking in

fermionic theories is similar to what has been observed in
critical scalar [6–11] or supersymmetric models [14–16],
even though these theories appear to be otherwise rather
different. The common denominator is the existence of a
finite line of exactly marginal deformations. Whether the
marginal direction arises out of an asymptotically free
or asymptotically safe fixed point is irrelevant from the
viewpoint of scale symmetry breaking.
The marginality of ðψ̄ψÞ3 interactions at large N was

previously noticed in [40], where it was also found that the
6F fixed point at the next-to-leading order in 1=N is located
in a region of instability. This is consistent with our work in
that the Gat-Kovner-Rosenstein fixed point [40] relates to
one of the solutions with jcj > ccrit, which are unphysical
nonperturbatively (see Fig. 1). This pattern is structurally
mirrored in critical scalar theories where a remnant of the
Pisarski fixed point [41] is similarly located in the unstable
region at the next-to-leading order, and thus unphysical
nonperturbatively [6,7].
We also comment on our results from the viewpoint of

fermion mass generation [21]. A priori, fermion mass in the
theory (1) can be generated both explicitly and dynami-
cally, with or without underlying parity symmetry. What is
new here is that a fermion mass can also arise sponta-
neously at an interacting fixed point. Curiously, for the
theory (1), it turns out that broken parity symmetry is a
prerequisite for the spontaneous generation of mass, and
not a consequence thereof.
At their critical points, our models become conformal

field theories (CFT). It would then be useful to confirm
results using CFT techniques and to understand whether
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CFT three-point functions are modified at critical points
where scale symmetry and hyperscaling relations are
broken [42,43]. This is also of interest for higher spin
gauge theories on AdS4, which relate through the
AdS=CFT conjecture to critical bosonic [44] or critical
fermionic theories [45] on the AdS boundary. While the
duality is well understood for parity-even boundary CFTs,
it would be interesting to understand whether higher spin
duals can also be found for parity-odd boundary CFTs, with
or without spontaneously broken scale symmetry.
Finally, the parallels between fermionic ðψ̄ψÞ33d the-

ories and bosonic ðϕ2Þ33d theories at large N continue to
be striking. Despite of their elementary differences on
the level of the path integral, both display equivalent
fixed points and scaling dimensions, and equivalent
scenarios with spontaneously broken scale symmetry.

The evidence is highly suggestive of a deeper link,
perhaps similar to bosonization dualities and holo-
graphic correspondences observed in Chern-Simons-
matter theories [17–19,42,43,46], or in the spirit of
large N equivalences and orbifold reductions [47],
which we take as natural directions for future work.

ACKNOWLEDGMENTS

This work is supported by the Science and Technology
Facilities Council (STFC) by a studentship (C. C. H.),
under the Consolidated Grant No. ST/T00102X/1 (D. L.),
and was performed in part at the Aspen Center for Physics,
which is supported by the National Science Foundation
Grant No. PHY-1607611 and by a grant from the Simons
Foundation (D. L.).

[1] J. Polchinski, Scale and conformal invariance in quantum
field theory, Nucl. Phys. B303, 226 (1988).

[2] J. Cardy, Scaling and Renormalization in Statistical Phys-
ics, Cambridge Lecture Notes in Physics (Cambridge
University Press, Cambridge, England, 1996).

[3] W. D. Goldberger, B. Grinstein, and W. Skiba, Distinguish-
ing the Higgs Boson from the Dilaton at the Large Hadron
Collider, Phys. Rev. Lett. 100, 111802 (2008).

[4] B. Bellazzini, C. Csaki, J. Hubisz, J. Serra, and J. Terning,
A Higgslike dilaton, Eur. Phys. J. C 73, 2333 (2013).

[5] C. Csaki, C. Grojean, and J. Terning, Alternatives to an
elementary Higgs, Rev. Mod. Phys. 88, 045001 (2016).

[6] W. A. Bardeen, M. Moshe, and M. Bander, Spontaneous
Breaking of Scale Invariance and the Ultraviolet Fixed Point
in OðnÞ Symmetric (ϕ6 in Three-Dimensions) Theory, Phys.
Rev. Lett. 52, 1188 (1984).

[7] W. A. Bardeen and M. Moshe, Phase structure of the OðNÞ
vector model, Phys. Rev. D 28, 1372 (1983).

[8] F. David, D. A. Kessler, and H. Neuberger, The Bardeen-
Moshe-Bander Fixed Point and the Ultraviolet Triviality of
ϕ6 in Three Dimensions, Phys. Rev. Lett. 53, 2071 (1984).

[9] F. David, D. A. Kessler, and H. Neuberger, A study of
ðπ2Þ33 at N ¼ ∞, Nucl. Phys. B257, 695 (1985).

[10] D. F. Litim, E. Marchais, and P. Mati, Fixed points and the
spontaneous breaking of scale invariance, Phys. Rev. D 95,
125006 (2017).

[11] D. F. Litim and M. J. Trott, Asymptotic safety of scalar field
theories, Phys. Rev. D 98, 125006 (2018).

[12] G. Eyal, M. Moshe, S. Nishigaki, and J. Zinn-Justin, The
OðNÞ vector model in the large N limit revisited: Multi-
critical points and double scaling limit, Nucl. Phys. B470,
369 (1996).

[13] C. Fleming, B. Delamotte, and S. Yabunaka, Finite N origin
of the Bardeen-Moshe-Bander phenomenon and its exten-
sion at N ¼ ∞ by singular fixed points, Phys. Rev. D 102,
065008 (2020).

[14] W. A. Bardeen, K. Higashijima, and M. Moshe, Sponta-
neous breaking of scale invariance in a supersymmetric
model, Nucl. Phys. B250, 437 (1985).

[15] D. F. Litim, M. C. Mastaler, F. Synatschke-Czerwonka, and
A. Wipf, Critical behavior of supersymmetric O(N) models
in the large-N limit, Phys. Rev. D 84, 125009 (2011).

[16] M. Heilmann, D. F. Litim, F. Synatschke-Czerwonka, and
A. Wipf, Phases of supersymmetric OðNÞ theories, Phys.
Rev. D 86, 105006 (2012).

[17] O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena, and R.
Yacoby, The thermal free energy in large N Chern-Simons-
Matter theories, J. High Energy Phys. 03 (2013) 121.

[18] W. A. Bardeen and M. Moshe, Spontaneous breaking of
scale invariance in aD ¼ 3 U(N) model with Chern-Simons
gauge fields, J. High Energy Phys. 06 (2014) 113.

[19] M. Moshe and J. Zinn-Justin, 3D field theories with Chern–
Simons term for large N in the Weyl gauge, J. High Energy
Phys. 01 (2015) 054.

[20] S. Sakhi and P. K. Panigrahi, Bifurcation of fixed points in a
O(N)-symmetric (2þ 1)-dimensional gauged ϕ6 theory
with a Chern-Simons term, Phys. Rev. D 99, 036017 (2019).

[21] C. Cresswell-Hogg and D. F. Litim, Line of fixed points in
Gross-Neveu theories, arXiv:2207.10115.

[22] D. J. Gross and A. Neveu, Dynamical symmetry breaking in
asymptotically free field theories, Phys. Rev. D 10, 3235
(1974).

[23] J. Zinn-Justin, Four fermion interaction near four dimen-
sions, Nucl. Phys. B367, 105 (1991).

[24] J. Zinn-Justin, Quantum field theory and critical phenom-
ena, Int. Ser. Monogr. Phys. 113, 1 (2002).

[25] C. Wetterich, Exact evolution equation for the effective
potential, Phys. Lett. B 301, 90 (1993).

[26] U. Ellwanger, Flow equations for N point functions and
bound states, Z. Phys. C 62, 503 (1994).

[27] T. R. Morris, The exact renormalization group and approxi-
mate solutions, Int. J. Mod. Phys. A 09, 2411 (1994).

CHARLIE CRESSWELL-HOGG and DANIEL F. LITIM PHYS. REV. D 107, L101701 (2023)

L101701-6

https://doi.org/10.1016/0550-3213(88)90179-4
https://doi.org/10.1103/PhysRevLett.100.111802
https://doi.org/10.1140/epjc/s10052-013-2333-x
https://doi.org/10.1103/RevModPhys.88.045001
https://doi.org/10.1103/PhysRevLett.52.1188
https://doi.org/10.1103/PhysRevLett.52.1188
https://doi.org/10.1103/PhysRevD.28.1372
https://doi.org/10.1103/PhysRevLett.53.2071
https://doi.org/10.1016/0550-3213(85)90371-2
https://doi.org/10.1103/PhysRevD.95.125006
https://doi.org/10.1103/PhysRevD.95.125006
https://doi.org/10.1103/PhysRevD.98.125006
https://doi.org/10.1016/0550-3213(96)00168-X
https://doi.org/10.1016/0550-3213(96)00168-X
https://doi.org/10.1103/PhysRevD.102.065008
https://doi.org/10.1103/PhysRevD.102.065008
https://doi.org/10.1016/0550-3213(85)90490-0
https://doi.org/10.1103/PhysRevD.84.125009
https://doi.org/10.1103/PhysRevD.86.105006
https://doi.org/10.1103/PhysRevD.86.105006
https://doi.org/10.1007/JHEP03(2013)121
https://doi.org/10.1007/JHEP06(2014)113
https://doi.org/10.1007/JHEP01(2015)054
https://doi.org/10.1007/JHEP01(2015)054
https://doi.org/10.1103/PhysRevD.99.036017
https://arXiv.org/abs/2207.10115
https://doi.org/10.1103/PhysRevD.10.3235
https://doi.org/10.1103/PhysRevD.10.3235
https://doi.org/10.1016/0550-3213(91)90043-W
https://doi.org/10.1093/acprof:oso/9780198509233.001.0001
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1007/BF01555911
https://doi.org/10.1142/S0217751X94000972


[28] D. F. Litim, Optimization of the exact renormalization
group, Phys. Lett. B 486, 92 (2000).

[29] D. F. Litim, Optimized renormalization group flows, Phys.
Rev. D 64, 105007 (2001).

[30] D. F. Litim, Critical exponents from optimized renormali-
zation group flows, Nucl. Phys. B631, 128 (2002).

[31] D. F. Litim, Mind the gap, Int. J. Mod. Phys. A 16, 2081
(2001).

[32] D. F. Litim, Fixed Points of Quantum Gravity, Phys. Rev.
Lett. 92, 201301 (2004).

[33] D. F. Litim and D. Zappala, Ising exponents from the
functional renormalization group, Phys. Rev. D 83,
085009 (2011).

[34] H. Gies and L. Janssen, UV fixed-point structure of the
three-dimensional Thirring model, Phys. Rev. D 82, 085018
(2010).

[35] A. Jakovac and A. Patkos, Local potential approximation for
the renormalization group flow of fermionic field theories,
Phys. Rev. D 88, 065008 (2013).

[36] L. Dabelow, H. Gies, and B. Knorr, Momentum dependence
of quantum critical dirac systems, Phys. Rev. D 99, 125019
(2019).

[37] M. D’Attanasio and T. R. Morris, Large N and the renorm-
alization group, Phys. Lett. B 409, 363 (1997).

[38] S. R. Coleman and E. J. Weinberg, Radiative corrections as
the origin of spontaneous symmetry breaking, Phys. Rev. D
7, 1888 (1973).

[39] T. R. Kirkpatrick and D. Belitz, Exponent relations
at quantum phase transitions, with applications to
metallic quantum ferromagnets, Phys. Rev. B 91,
214407 (2015).

[40] G. Gat, A. Kovner, and B. Rosenstein, Chiral phase
transitions in D ¼ 3 and renormalizability of four Fermi
interactions, Nucl. Phys. B385, 76 (1992).

[41] R. Pisarski, Fixed-Point Structure of ðΦ6Þ3 at Large N,
Phys. Rev. Lett. 48, 574 (1982).

[42] J. Maldacena and A. Zhiboedov, Constraining conformal
field theories with a higher spin symmetry, J. Phys. A 46,
214011 (2013).

[43] J. Maldacena and A. Zhiboedov, Constraining conformal
field theories with a slightly broken higher spin symmetry,
Classical Quantum Gravity 30, 104003 (2013).

[44] I. R. Klebanov and A. M. Polyakov, AdS dual of the
critical O(N) vector model, Phys. Lett. B 550, 213
(2002).

[45] E. Sezgin and P. Sundell, Holography in 4D (super) higher
spin theories and a test via cubic scalar couplings, J. High
Energy Phys. 07 (2005) 044.

[46] O. Aharony, S. Jain, and S. Minwalla, Flows, fixed points
and duality in Chern-Simons-matter theories, J. High En-
ergy Phys. 12 (2018) 058.

[47] A. D. Bond, D. F. Litim, and T. Steudtner, Asymptotic
safety with Majorana fermions and new large N equiva-
lences, Phys. Rev. D 101, 045006 (2020).

CRITICAL FERMIONS WITH SPONTANEOUSLY BROKEN SCALE … PHYS. REV. D 107, L101701 (2023)

L101701-7

https://doi.org/10.1016/S0370-2693(00)00748-6
https://doi.org/10.1103/PhysRevD.64.105007
https://doi.org/10.1103/PhysRevD.64.105007
https://doi.org/10.1016/S0550-3213(02)00186-4
https://doi.org/10.1142/S0217751X01004748
https://doi.org/10.1142/S0217751X01004748
https://doi.org/10.1103/PhysRevLett.92.201301
https://doi.org/10.1103/PhysRevLett.92.201301
https://doi.org/10.1103/PhysRevD.83.085009
https://doi.org/10.1103/PhysRevD.83.085009
https://doi.org/10.1103/PhysRevD.82.085018
https://doi.org/10.1103/PhysRevD.82.085018
https://doi.org/10.1103/PhysRevD.88.065008
https://doi.org/10.1103/PhysRevD.99.125019
https://doi.org/10.1103/PhysRevD.99.125019
https://doi.org/10.1016/S0370-2693(97)00866-6
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevB.91.214407
https://doi.org/10.1103/PhysRevB.91.214407
https://doi.org/10.1016/0550-3213(92)90095-S
https://doi.org/10.1103/PhysRevLett.48.574
https://doi.org/10.1088/1751-8113/46/21/214011
https://doi.org/10.1088/1751-8113/46/21/214011
https://doi.org/10.1088/0264-9381/30/10/104003
https://doi.org/10.1016/S0370-2693(02)02980-5
https://doi.org/10.1016/S0370-2693(02)02980-5
https://doi.org/10.1088/1126-6708/2005/07/044
https://doi.org/10.1088/1126-6708/2005/07/044
https://doi.org/10.1007/JHEP12(2018)058
https://doi.org/10.1007/JHEP12(2018)058
https://doi.org/10.1103/PhysRevD.101.045006

