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It is a long-standing problem in general relativity that the notion of angular momentum of an isolated
system has supertranslation ambiguity. In this paper, we argue that the ambiguity is essentially because of
the gravitational wave memory. When properly subtracting the memory effect of the observer, one can
introduce a supertranslation invariant definition of the angular momentum at null infinity even for
dynamical process.
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I. INTRODUCTION

More than 60 years ago, Bondi and collaborators
established an elegant framework [1,2] of formulating
the Einstein equation as a characteristic initial value
problem to understand the gravitational radiation in full
Einstein theory. In Bondi’s framework, a surprising result
is that the asymptotic symmetry group consists of the
semidirect product of the group of globally defined
conformal transformations of the unit 2-sphere, i.e., the
Lorentz group, and an infinite dimensional Abelian normal
subgroup, the supertranslations. Consequently, the unex-
pected enhancement from translations to supertranslations
arises crisis in the definition of angular momentum in
gravitational systems with radiation, the long-standing
problem of supertranslation ambiguity issue of angular
momentum [3], see also [4–12] for previous efforts and
[13] for a recent review. The most direct resolution for this
ambiguity issue is simply to modify the known definition of
the angular momentum by adding some terms with respect
to the transformation law of the supertranslation and to
construct a supertranslation invariant definition of angular
momentum [14–19]. Nevertheless, the current progress
along this direction is mainly about the mathematical
construction and the physical meaning of such modifica-
tions, in particular, to the observer who detects the angular
momentum, is less known. The aim of the present work is to
fill in this gap. To achieve that, we need first to figure out the
essence of the supertranslation ambiguity.

In this paper, we argue that the reason of the ambiguity
issue of angular momentum is because of the gravitational
memory effect [20–26], rather than the infinite dimen-
sional supertranslation. In four dimensions, gravitational
memory is mathematically equivalent to supertranslation
[27], see also [28] for a comprehensive review. Naively,
our proposal that attributes the supertranslation ambiguity
to the memory effect is just rephrasing the problem in an
alternative way. However, there are at least two examples
to distinguish those two. The first example is that the
asymptotic symmetry group of three dimensional Einstein
gravity without cosmological constant also includes a
supertranslation part [29,30]. However, the definition of
angular momentum in three dimensions is free of super-
translation ambiguity [31]. One can introduce the notion of
intrinsic angular momentum in its rest frame if the super-
momentum is brought to a constant [31]. Because there is
no gravitational wave in three dimensional Einstein grav-
ity. Once the supermomentum is brought to a constant, it
will not be changed. The second one is from an electro-
magnetic analog. If one considers a charged observer at
rest in the beginning, the charged observer is forced to
accelerate by electromagnetic waves. Finally the observer
will be in another inertial frame with certain velocity after
the electromagnetic wave passed by. This is the electro-
magnetic analog of the gravitational memory effect [32].
Definitely, the angular momentum measured by this
observer is problematic in the context of special relativity
as the final stage and the initial stage of the charged
observer are in two different inertial reference systems.
And the transition of the charged observer is not related to
the larger gauge transformation though it is equivalent to
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the electromagnetic memory [33]. The reason is that the
large gauge transformation does not reflect the action of the
electromagnetic fields on the charged observer. Neverthe-
less, this has never been a real problem in defining angular
momentum in electromagnetism, because the definition of
conserved quantities is normally in the laboratory frame. The
observer in this frame is neutral and does not interact with
electromagnetic waves. In contrast, no observer can be free
of the gravitational effect. In particular, gravitational waves
will induce permanent change to the observer which is the
memory effect. Hence the subtlety in defining angular
momentum in the gravitational system is similar to the
problematic situation of a charged observer in electromag-
netic waves. All in all, the long-standing problem in general
relativity, the ambiguity in the definition of angular momen-
tum, can be summarized as follows. If one gravitational
observer is set to be in the rest frame initially, e.g., in the
context of post-Minkowskian approximation, the gravita-
tional memory will finally force this observer out of the rest
frame. Consequently, the final measurement of angular
momentum and hence the flux of the angular moment
will include reference frame effect. Note that the observer
with memory effect can properly describe the fundamental
laws of physics in the context of general principle of
relativity. However, physical quantities are transformed
covariantly. Reference frame effect is just encoded in the
transformations between different observers, e.g., the
definition of angular momentum for different Lorentz
frames in special relativity. Hence, the key point to resolve
the subtlety in the definition of angular momentum is to
subtract the gravitational memory effect. This is precisely
what we propose for computing the flux of the angular
momentum. And the formula of angular momentum when
the gravitational memory effect has been subtracted is
supertranslation invariant even in the course of the gravi-
tational radiation. When restricted to a stationary case, our
result recovers the supertranslation invariant definitions
in [14–19]. Considering the equivalence of supertransla-
tion and the memory effect in four dimensional gravita-
tional theory [27], the subtraction of the memory effect is
realized by a supertranslation. Thereupon, the observer
with the supertranslation invariant definition of angular
momentum must undergo a supertranslation at the final
stage to subtract the memory effect which is characterized
by the additional terms to the angular momentum defi-
nition in [14–19]. And this should be the physical meaning
of modifying the definition of angular momentum with a
supertranslation invariant expression.
The organization of this paper is very simple. In Sec. II,

we show that the charged observer has a problem with
defining conserved quantities for electromagnetic waves
with memory and the problem has no symmetry origin.
This is a very simple example of how the memory effect is
the essential obstacle for the observer to define conserved

quantities. In Sec. III, we give the definition of angular
momentum at null infinity which is free of the memory
effect. In the stationary case, our definition recovers the
known supertranslation invariant definition of angular
momentum. The last section is devoted to our conclusion
and discussions for future directions.

II. CHARGED OBSERVER
IN ELECTROMAGNETISM

Gravitational memory effect reflects the interaction of
the observer with gravitational waves. The passage of
gravitational waves will cause some permanent changes to
the observer. Obviously, any change of the observer would
affect its measurement. Let us first demonstrate this by a
simpler analog, the electromagnetism. Though an electro-
magnetic analog of gravitational wave memory is known
[32], it is never a problem for defining conserved quantities
for electromagnetism. The reason is that there is a good
observer that is in the laboratory frame and does not
interact with electromagnetic waves. Physical quantities,
such as stress tensor and angular momentum density, are
well defined in the laboratory frame. For instance, if we
start from the Lagrangian of the electromagnetic theory,

L ¼ −
1

4
FμνFμν; ð1Þ

the symmetric conserved stress tensor is

Tμν ¼ −FμρFν
ρ − ημνL; ð2Þ

and the angular momentum density is [34]

Mμνλ ¼ xμTνλ − xνTμλ: ð3Þ
However, if we consider a charged observer that is initially
set to be in the laboratory frame, it will interact with
electromagnetic waves. For simplicity, considering a har-
monic wave whose vector potential in the Cartesian coor-
dinates is given by

Ay ¼ −
cB0

ω
sinω

�
t −

x
c

�
; At ¼ Ax ¼ Az ¼ 0; ð4Þ

a charged particle with certain initial conditions will follow
the relativistic trajectory [35]

x ¼ c
4

�
Ω
ω

�
2
�
τ −

sin 2ωτ
2ω

�
;

y ¼ c

�
Ω
ω

�
1 − cosωτ

ω
;

z ¼ 0;

t ¼ τ þ 1

4

�
Ω
ω

�
2
�
τ −

sin 2ωτ
2ω

�
; ð5Þ
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where τ is the proper time, e and m are the electric charge
and mass of the observer, and Ω ¼ eB0

mc is the cyclotron
frequency. It is easy to see that the charged observer is not
even in an inertial frame along its trajectory. Hence, one has
to introduce a fictitious force or fictitious field in the frame
of the charged observer to describe physical process.
Suppose that the sources of electromagnetic radiation only
exist for a finite time. Finally, the charged observer will be
back to an inertial frame. The charged observer can finally
have a velocity with respect to the laboratory frame which is
just the electromagnetic memory [32]. Generically, the
charged observer at the initial and final stage is in different
Lorentz frames. So the flux of the radiated angular
momentum evaluated directly by the charged observer is
in principle nonphysical and must be different than the
observer in the laboratory frame. For the charged observer,
the angular momentum at the final stage should be first
transformed back to the laboratory frame through a Lorentz
transformation plus a displacement of the spatial origin.
Then the difference of the transformed angular momentum
at the final stage and the initial angular momentum will be
just the flux of angular momentum in the laboratory frame.
Alternatively, one can consider that the procedure of
transforming back to the laboratory frame at the final stage
is to subtract the electromagnetic memory effect.
It seems redundant to consider a charged observer in

electromagnetism. But a neutral observer does not exist in
gravitational theory at all and any observer must interact
with gravitational waves, just like a charged observer in
electromagnetic wave. Of course, any observer is as good
as they should be in the context of the general principle of
relativity. However, the principle is for the description of
the fundamental laws of physics. For concrete physical
quantities such as angular momentum, the measurements
do have reference frame dependence. This is relevant to the
physical usefulness of the concept of angular momentum.
For instance, only the angular momentum of a star with
respect to its rest frame is important for the description of
stellar structure rather than the orbital angular momentum
with respect to, e.g., the Galaxy [7]. Correspondingly, it can
only make sense to consider the flux of the angular
momentum when the effects from the reference frame
are properly subtracted as we have commented on pre-
viously for the charged observer in electromagnetic waves.
This is also what we will propose for defining angular
momentum for isolated gravitating systems in the presence
of gravitational waves.

III. SUPERTRANSLATION INVARIANT
ANGULAR MOMENTUM

In this paper, we will work in the Newman-Penrose (NP)
formalism [36] and use asymptotic analysis in the Newman-
Unti (NU) gauge [37]. The connection of the NU gauge and
the Bondi gauge [1,2] can be found, for instance, in [38].
We will use the retarded coordinates ðu; r; z; z̄Þ, where

A ¼ ðz; z̄Þ are the complex stereographic coordinates. The
future null infinity is precisely the submanifold r → ∞, with
topology R × S2. The metric of the celestial sphere in the
complex stereographic coordinates is given by

ds2 ¼ 2γzz̄dzdz̄ ¼
2dzdz̄
P2
s

; Ps ¼
1þ zz̄ffiffiffi

2
p : ð6Þ

The angular momentum current derived from surface charge
analysis in NP formalism in natural units 8πG ¼ 1 is [39]

JY ¼ −
1

Ps
½Yz̄ðΨ0

1 þ σ0ðσ̄0Þ þ YzðΨ̄0
1 þ σ̄0ð̄σ0Þ�; ð7Þ

where YA is a Killing vector of the celestial sphere, i.e.,
DAYB þDBYA ¼ 0, and DA is for the two-dimensional
covariant derivative on the celestial sphere. For other
notations, we would also refer to [39]. The angular mom-
entum current has certain reference frame dependence
which is somewhat similar to the definition of angular
momentum in relativistic theory, such as electromagnetism.
The issue in gravitational theory with radiation, e.g., in post-
Minkowskian approximation, is that even though the
observer is initially set to be in the rest frame, it will be
out of this frame after the gravitational wave passing by
[40–48] because of the gravitational memory effect which is
similar to the case of a charged observer in electromag-
netic waves.
The gravitational memory in NP formalism is the

permanent change of the asymptotic shear σ0 [26]

ð2ðΔ�σ0Þ ¼ −Δ�ðΨ0
2 þ σ0∂uσ̄0Þ þ

Z
∞

−∞
∂uσ0∂uσ̄0du; ð8Þ

where Δ� denotes the permanent change in the retarded
time. This formula basically is indicating that once there is a
gravitational wave, there must be permanent change in the
asymptotic shear σ0. Then the angular momentum flux
computed from the definition (7) will inevitably include
the effect from gravitational memory which we would refer
to as reference frame effect. Hence, it is reasonable to
consider that the σ0 dependence in the angular momentum
current (7) is purely reference frame effect that should be
subtracted from the definition. The physical angular momen-
tum at null infinity is supposed to be defined in the
asymptotically shear-free frame [7], i.e., the good cut
σ0 ¼ 0, see, e.g., [49] for a review on the physically
significant effects of asymptotically shear-free null geodesic
congruences. Such a configuration is called the canonical
gauge in [50]. One can consider this frame as the asymptotic
gravitational laboratory frame though no observer can
always stay in this frame due to the gravitational memory
effect [7]. Thus, the strategy for computing the angular
momentum flux is as follows. Initially the observer should
be chosen as in a good cut. Finally the observer will not be in
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a good cut due to the memory effect. Nevertheless, one can
always use a supertranslation to turn off the asymptotic
shear. The angular momentum flux should be computed by
the difference between the final data in a good cut and the
initial data. The supertranslation at the final stage to turn off
the asymptotic shear σ0 is precisely the procedure to subtract
the reference effect in the definition of angular momentum,
see also [7,51,52] for relevant discussions. Supposing that
the gravitational system is back to the stationary case after
the gravitational wave passed, the asymptotic shear σ0 does
not have the retarded time dependence. Under a super-
translation which is characterized by the transformation
along the time direction u0 ¼ uþ fðz; z̄Þ, the asymptotic
shear is transformed as σ00 ¼ σ0 þ ð2f. The solution for the
good cut is simply a solution of f for the differential
equation ð2f ¼ −σ0. Note that gravitational memory based
upon physically realistic systems is only of an electric
type [53], namely only changing the real part of the
asymptotic shear. Hence it is always possible to turn off
the asymptotic shear arisen by the memory effect, consid-
ering that it is initially set to be in a good cut. For a generic
case, one has to complexify the time coordinate u to solve
the good cut equation [49].

The transformation law of the Weyl tensor component
Ψ0

1 under supertranslation is [54]

Ψ00
1 ¼ Ψ0

1 − 3ðfΨ0
2: ð9Þ

Note that we consider the supertranslation at the final
stage where the gravitational wave has passed and the
spacetime is back to being stationary for which one has
∂uσ0 ¼ Ψ0

3 ¼ Ψ0
4 ¼ 0. Consequently, the angular momen-

tum current is deduced to

JG ¼ −
1

Ps
½Yz̄ΨG

0
1 þ YzΨ̄G

0
1�; ð10Þ

where we use the subscript G to denote the quantities in
the good cut. In the present case, it is just ΨG

0
1 ¼

Ψ0
1 − 3ðfΨ0

2. This formula of angular momentum is
equivalent to the known supertranslation invariant defi-
nitions of angular momentum in [14–19]. To manifest the
relation, we need to write the NU solution [37] in the
Bondi gauge and to switch to the ð−;þ;þ;þÞ signature.
The metric is given by

ds2 ¼
�
1 −

2m
ρ

þOðρ−2Þ
�
du2 þ 2ð1þOðρ−2ÞÞdudρ

−
�
DzCzz þ

4

3ρ
ðNz þ u∂zmÞ − 1

8ρ
∂zðCABCABÞ þOðρ−2Þ

�
dudz

−
�
Dz̄Cz̄ z̄ þ

4

3ρ
ðNz̄ þ u∂z̄mÞ − 1

8ρ
∂z̄ðCABCABÞ þOðρ−2Þ

�
dudz̄

− ½Czz þOðρ−1Þ�dz2 − ½Cz̄ z̄ þOðρ−1Þ�dz̄2 − 2½ρ2γzz̄ þOð1Þ�dzdz̄; ð11Þ

where the NU radial coordinate r is related to the Bondi
radial coordinate ρ as [38]

r ¼ ρþ 1

16
CABCAB 1

ρ
þOðρ−3Þ; ð12Þ

and the NP quantities are related to the fields in the
metric as

Ψ0
2 ¼ −m −

1

16
∂uðCABCABÞ; 2σ0

P2
s
¼ Cz̄ z̄;

Czz̄ ¼ 0;
Ψ̄0

1

Ps
¼ −Nz − u∂zm: ð13Þ

Inserting those relations into (10), one can obtain the
angular momentum current in the Bondi gauge for the
stationary case as

JG ¼ YA½NA þ u∂Am − 3m∂Af�: ð14Þ

Note that we are now in a good cut, so the time coordinate
is u0. Hence ∂Au0 ¼ 0. Using integration by part and the fact
that YA is a Killing vector on the celestial sphere, the
angular momentum current is reduced to

JG ¼ YA½NA −m∂Aðuþ fÞ − 2m∂Af�
¼ YA½NA −m∂Au0 − 2m∂Af�
¼ YA½NA − 2m∂Af�: ð15Þ

Direct calculation shows that f ¼ − 1
2
c where c is the

closed potential of asymptotic shear CAB which is defined
in [15]. Hence, to our surprise, the last expression in (15)
recovers explicitly the supertranslation invariant definition
of angular momentum proposed by Chen et al. [15].
Note that there is an extra term − 1

4
YACABDECBE in the

angular momentum in [15]. But we have chosen a good
cut initially, so this extra term vanishes for the good cut
case. At the final stage, the memory effect only changes
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the electric part of the asymptotic shear. So it can be
decomposed as CAB ¼ −ð2DADB − γABD2Þf. Then this
extra term is a total derivative [18,55]

−
1

4
YACABDECBE ¼ 1

4
DA

h
YBCABðD2 þ 2Þf

þ 1

2
YAððD2 þ 2ÞfÞ2

i
; ð16Þ

where one needs to apply the commutator ½D2; DA�f ¼
DAf on the celestial sphere and the fact that YA is a Killing
vector on the celestial sphere, namely,DAYB ¼ −DBYA and
DAYA ¼ 0. Thus, by subtracting the memory effect and
writing the angular momentum in the good cut, we end up
with a supertranslation invariant definition of angular
momentum. That means the angular momentum expression
in the good cut is a supertranslation invariant one. Actually,
the key point is to subtract the memory effect and to define
the angular momentum in the frame with a fixed asymptotic
shear. Thus the angular momentum defined in any fixed cut
should be supertranslation invariant by construction. We
will postpone commenting on this point and its possible
applications in the last section.
The subtraction procedure in computing the angular

momentum can be even performed for dynamical process,
i.e., in the course of gravitational radiation. The key
ingredient is the real part of the potential of asymptotic
shears σ0 and σ̄0. Let us define ð2ηðu; z; z̄Þ ¼ −σ0 and
ð̄2η̄ðu; z; z̄Þ ¼ −σ̄0

1 at any cross section (any constant u
slicing) on the null infinity. Wewould refer to the real part of
the potential β ¼ ReðηÞ as supertranslation field. We define
the angular momentum current at any cross section as

JnewY ¼ −
Yz̄

Ps

h
Ψ0

1 − 3ððβÞΨ0
2 þ 3ððβÞ2Ψ0

3 − ððβÞ3Ψ0
4

i

−
Yz

Ps

h
Ψ̄0

1 − 3ðð̄βÞΨ̄0
2 þ 3ðð̄βÞ2Ψ̄0

3 − ðð̄βÞ3Ψ̄0
4

i
: ð17Þ

It is straightforward to prove that the new angular momen-
tum current is supertranslation invariant J0newY ¼ JnewY fol-
lowing the transformation laws [54]

β0 ¼ β − f; ð18Þ

Ψ00
4 ¼ Ψ0

4; ð19Þ

Ψ00
3 ¼ Ψ0

3 − ððfÞΨ0
4; ð20Þ

Ψ00
2 ¼ Ψ0

2 − 2ððfÞΨ0
3 þ ððfÞ2Ψ0

4; ð21Þ

Ψ00
1 ¼ Ψ0

1 − 3ððfÞΨ0
2 þ 3ððfÞ2Ψ0

3 − ððfÞ3Ψ0
4: ð22Þ

Actually, this definition is a direct extension of the definition
for the stationary case. The quantity Ψ0

1 − 3ððβÞΨ0
2 þ

3ððβÞ2Ψ0
3 − ððβÞ3Ψ0

4 is just ΨG
0
1 at any cross section.

However, the presence of gravitational waves will create
a magnetic part in the asymptotic shear. So it is impossible to
set the observer back to the good cut through supertrans-
lation. Nevertheless, the new formula of angular momentum
is supertranslation invariant at any cross section.
To close this section, it is worthwhile to point out

that there are ambiguities when deriving the potential of
the asymptotic shear. This can be seen clearly from the
expansion of the spin weighted spherical harmonics [57].
More precisely, the l ¼ 0, 1 components in the spherical
harmonic expansion of the potential cannot be fixed by
construction. Those four components correspond to the
translation ambiguity. It is obvious that the l ¼ 0 component
would not affect the definition of angular momentum. So
this ambiguity is equivalent to the choice of spatial origin for
defining angular momentum in special relativity.

IV. CONCLUDING REMARKS

In this paper, we argue that the supertranslation ambiguity
in the definition of angular momentum for isolated gravi-
tational system is essentially because of the gravitational
memory effect. Then we propose a new formula of angular
momentum which is free of memory effect, namely the
memory effect has been subtracted from the definition of
angular momentum. The new proposal for the angular
momentum is supertranslation invariant even for dynamical
process. For the stationary stage, we choose the good cut
σ0 ¼ 0 to construct the angular momentum. Nevertheless,
one can indeed choose any cut to define the angular
momentum. The main point of our proposal is that one
should properly subtract the gravitational memory effect
and maintain the evaluation of the angular momentum
always in the same cut. The physical consequence of other
cuts for the definition of angular momentum has been
addressed in [50]. It should be very meaningful to test our
proposal in the post-Minkowskian approach which has
more direct applications in gravitational wave detection.
The radiated angular momentum becomes a relatively
urgent issue [19,50,58–60] since the seminal work [61]
for highly accurate calculation of post-Minkowskian
dynamics. In particular, setting the asymptotic shear in
the intrinsic gauge defined in [50], we expect that the
angular momentum flux in [58] can be recovered from the
supertranslation invariant definition, for which one needs to
apply the connections between the asymptotic expansion in
the Bondi framework and the post-Minkowskian expansion
[62]. Meanwhile, it is important to point out that our
prescription is valid in general for defining conserved
quantities for observers with memory effect. More precisely,
our prescription can be directly applied for defining con-
served quantities from the near horizon symmetries [63] that
are compatible with the black hole memory effect [64–66],

1The derivation of the potential for generic asymptotic shear
can be found, e.g., in [56].
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which has a very important application for the under-
standing of the black hole soft hairs [67].
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