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Can modern cosmological observations be reconciled with a general-relativistic Universe without
an antigravitating energy source? Usually, the answer to this question by cosmologists is in the negative,
and it is commonly believed that the observed excess dimming of supernovae relative to that in the
Milne model is evidence for dark energy. In this paper, we develop theorems that clarify the conditions
for such an excess dimming, based on which we argue that the answer to the above question may
counterintuitively be “yes.”
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I. INTRODUCTION

Dark energy first became an established part of the
cosmological paradigm in 1998, when data from super-
novae of type Ia showed a greater dimming in their
luminosity with redshift than what could be explained with
a Milne universe model1 [1,2]. When interpreted within the
general-relativistic Friedmann-Lemaître-Robertson-Walker
(FLRW) models, the data thus indicated the existence of
dark energy, an antigravitating energy source violating the
universally attractive nature of gravity known from ordinary
matter. Shortly after this realization, it was proposed that the
dimming of light from supernovae could alternatively be
explained in universe models with ordinary matter forming
a large-scale cosmic inhomogeneity as modeled by the
Lemaître-Tolman-Bondi (LTB) models [3,4]. These models
exhibit universal deceleration of distances between geo-
desic test particles, but an observer who is placed properly
relative to the inhomogeneity can infer the same trend in
dimming of light from supernovae as is observed in an
FLRW model with an accelerated scale factor; see Ref. [5]
for a review. The LTB metrics that can account for the
observed supernova luminosities are challenged by com-
plementary data [6,7] and are furthermore breaking with the
Copernican principle. It is of fundamental interest if models
that satisfy the strong energy condition and the Copernican
principle could produce an excess dimming of light from
supernovae relative to the Milne model. Despite of the
potentially far reaching implications for fundamental phys-
ics if there is indeed a competitive cosmological model of

this type, there has not yet been any systematic classifica-
tions made of space-time geometries that exhibit super-
Milne dimming of light.
In this paper, we formulate two theorems that bound the

angular diameter distance (luminosity distance) without
employing conjectures for light propagation or any a priori
constraints on the underlying geometry; we only assume
the geometrical optics description for light and general
relativity as the gravitational theory. The theorems define
geometrical conditions (necessary and sufficient, respec-
tively) for the angular diameter distance to exceed that of a
Milne universe model, thus providing the first general
classification of models that qualify for describing the
observations of supernova light curves and complementary
probes of cosmic distances. Based on these theorems,
we discuss the circumstances under which a super-Milne
dimming of light measured by Copernican observers may
occur without dark energy.

II. OBSERVED DISTANCES AND REDSHIFTS
IN A GENERAL SPACE-TIME

A. Assumptions and definitions

Consider a space-time manifold with a metric gμν of
signature ð−þþþÞ and a Levi-Civita connection∇μ. Let a
beam of light pass from a source to an observer in this
space-time, and let the event of observation be labeled O.
We assume that the geometrical optics approximation
holds, such that the photons of the beam can be described
as null geodesic test particles with 4-momentum kμ. We
consider a “cosmic congruence” field with 4-velocity uμ

that is defined in the space-time neighborhood of the null
beam, and make the unique decomposition

kμ ¼ Eðuμ − eμÞ; E≡ −uμkμ; ð1Þ
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1The Milne model (empty FLRW model without a cosmo-

logical constant) defines an upper limit for the distance-redshift
curve of the expanding general-relativistic Friedmann-Lemaître-
Robertson-Walker (FLRW) models that obey the strong energy
condition.
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where eμ is a spatial unit vector that is orthogonal to the
cosmic 4-velocity field uμeν ¼ 0. We define the cosmo-
logical redshift and angular diameter distance as

z≡ E
EO

− 1; dA ≡ ffiffiffiffiffiffi
δA

p
=

ffiffiffiffiffiffi
δΩ

p
; ð2Þ

respectively, where δA is the physical area of the emitting
object perpendicular to the direction of emission of the
null ray and δΩ is its angular size relative to the observer at
O comoving with uμ. We may assume that the photon
number in the light bundle is preserved on the path from
the emitter to the observer, such that Etherington’s reci-
procity theorem [8] holds for deriving luminosity distance:
dL ¼ ð1þ zÞ2dA. In this case, it suffices to analyse angular
diameter distance and redshift, from which the value of
luminosity distance follows.

B. Evolution of cosmic redshift

The evolution of the cosmic redshift, z, along the null ray
is given by

dz
dλ

¼ −EOð1þ zÞ2H; ð3Þ

where d
dλ ≡ kν∇ν is the directional derivative along the null

ray, and where we have introduced the “effective Hubble
parameter”

H≡ dE−1

dλ
¼ 1

3
θ − eμaμ þ eμeνσμν; ð4Þ

which reduces to the Hubble parameter “ _a=a” in an
FLRW geometry. We have made use of the kinematic
decomposition

∇νuμ ¼
1

3
θhμν þ σμν þ ωμν − uνaμ;

θ≡∇μuμ; σμν ≡ hβhνh
α
μi∇βuα; ωμν ≡ hβ½νh

α
μ�∇βuα; ð5Þ

where hμν ¼ gμν þ uμuν is the spatial projection tensor
orthogonal to uμ, and where the triangular bracket hi
around indices selects the tracefree symmetric part of the
spatial tensor and ½� selects the antisymmetric part. The
variables θ, σμν, and ωμν describe respectively the volume
expansion, shear, and vorticity of the cosmic congruence,
and aμ ≡ _uμ is the 4-acceleration of the individual observ-
ers in the congruence, where the overdot _≡ uν∇ν repre-
sents the directional derivative along the cosmic flow-lines.
The second derivative of z is

d2z
dλ2

¼ E2
Oð3þQÞH2ð1þ zÞ3; ð6Þ

where the “effective deceleration parameter”

Q≡ −1 −
1

E

dH
dλ

H2
; ð7Þ

reduces to the usual FLRW deceleration parameter
“−aä= _a2” in an FLRW geometry. In general, Q can be
expressed as [9,10]

Q ¼ −1 −
q
0 þ e · q

1 þ ee · q
2 þ eee · q

3 þ eeee · q
4

H2
; ð8Þ

where e · q
1 ≡ eμq

1

μ, ee · q
2 ≡ eμeνq

2

μν, etc., with multipole
coefficients

q
0 ≡ 1

3
_θ þ 1

3
Dμaμ −

2

3
aμaμ −

2

5
σμνσ

μν;

q
1

μ ≡ − _aμ −
1

3
Dμθ þ aνωμν þ

9

5
aνσμν −

2

5
Dνσ

ν
μ;

q
2

μν ≡ _σμν þDhμaνi þ ahμaνi − 2σαðμωα
νÞ −

6

7
σαhμσανi;

q
3

μνρ ≡ −Dhμσνρi − 3ahμσνρi; q
4

μνρκ ≡ 2σhμνσρκi; ð9Þ

whereDμ is the covariant spatial derivative as projected onto
the 3-dimensional space orthogonal to uμ. Apart from the
volume acceleration term, ∝ _θ, there are a number of terms
arising from anisotropic and inhomogeneous universe
kinematics, which are generally not constrained in sign
or amplitude by general-relativistic energy conditions. The
interpretation ofQ as a direct measure of the deceleration of
distances between test particles is thus generally not valid
except for in the strict FLRW case. While the dimensionless
effective deceleration parameter Q may become singular in
regions where H ¼ 0, the dimensionful effective deceler-
ation parameter H2Q remains finite when the first and
second derivatives of z are finite.

C. Evolution of cosmic distance

The evolution of the cosmic angular diameter distance,
dA, along a null ray of the congruence is given by the
focusing equation, cf. Eq. (44) in [11],

d2dA
dλ2

¼ −FdA; F ≡
�
1

2
σ̂μνσ̂μν þ

1

2
kμkνRμν

�
; ð10Þ

where σ̂μν is the shear tensor of the photon congruence, and
Rμν is the Ricci curvature of the space-time, and where we
have introduced F as a shorthand notation for the com-
bined focusing. The evolution of dA may be solved for with

ASTA HEINESEN PHYS. REV. D 107, L101301 (2023)

L101301-2



knowledge of shear and Ricci curvature by use of the initial
conditions at the vertex of the observer’s light cone

dAjO ¼ 0;
ddA
dλ

����
O
¼ −EO; ð11Þ

which can formally be obtained by expanding the Jacobi
map around the observer [12]. We have from (3) that

dz
ddA

����
O
¼ HO; ð12Þ

which gives the observational interpretation of HO as the
slope of the redshift-distance function at the observer.

III. DISTANCE CONCAVITY IN
GENERAL-RELATIVISTIC SPACE-TIMES

A. Bounds on the dimming of light

Let us consider general-relativistic space-time scenarios
where the null energy condition is satisfied, meaning
kμkνRμν ≥ 0. From this it immediately follows from (10)
that there is a positive focus of the bundle, and together
with the initial condition (11) this means that

ddA
dλ

≥ −EO ð13Þ

at any point along the null ray, where we recall that λ is
increasing toward the observer. We shall prove the follow-
ing theorems that bound the observed angular diameter
distance (or luminosity distance) as a function of the
observed redshift.
Theorem 1 (Sub-Milne dimming): Consider a general-

relativistic space-time obeying the null energy condition.
For a null geodesic congruence withHO > 0, the following
applies: The angular diameter distance, dA, is bounded
from above by the Milne universe model in terms of its
redshift for a section of the null geodesic path ½λ1; λ2� if

⟪QH2⟫ ≥ 0; ⟪QH2⟫≡
R λO
λ dλ0

R λO
λ0 dλ00QH2

1
2 ðλO − λÞ2 ; ð14Þ

is satisfied for all λ ∈ ½λ1; λ2�, corresponding to
dA ∈ ½dAðλ2Þ; dAðλ1Þ�.
Proof.—It follows from (13) that the angular diameter

distance is bounded in terms of the affine distance along the
null geodesic

dA ≤ EOðλO − λÞ: ð15Þ

We use (3) to make the rewriting

1− 1
ð1þzÞ2
2

¼ −
Z

λO

λ
dλ0

dz
dλ0

ð1þ zÞ3 ¼ EO

Z
λO

λ
dλ0

H
1þ z

: ð16Þ

Together with the identity H
1þz −HO ¼ EO

R λO
λ dλ0H2Q

(which follows from multiplying (7) with H2 and integrat-
ing both sides) this yields

1 − 1
ð1þzÞ2
2

¼ HOEOðλO − λÞ
�
1þ EOðλO − λÞ⟪QH2⟫

2HO

�
:

ð17Þ

Combining (15) with (17), and assuming that (14) holds for
a distance interval dA ∈ ½dAðλ2Þ; dAðλ1Þ�, this gives the
following bound for distances in that interval:

HOdA ≤
1

2

�
1 −

1

ð1þ zÞ2
�

ð18Þ

where the right-hand side is the dimensionless angular
diameter distance in the Milne model, cf., e.g., Eq. (6)
in [13]. ▪
Remarks to Theorem 1: Modern cosmological obser-

vations violate the bound (18) for small and intermediate
values of redshift. Assuming that general relativity is the
correct gravitational theory, that the null energy condition is
satisfied, and that the geometrical optics approximation
holds for describing light, Theorem 1 thus implies that
the condition (14) must be violated at these scales, which
again implies that the dimensionful deceleration parameter,
H2Q, must be mostly negative along the null rays. In FLRW
cosmology, the effective deceleration parameter reduces to
the scale factor deceleration such that H2Q ¼ “ − ä=a”,
which, if negative, immediately implies existence of a
gravitationally repulsive source within general relativistic
FLRW solutions. However, the effective deceleration param-
eter has a non-trivial interpretation for general space-time
geometries, and it does not follow from this theorem that the
strong energy condition must be violated to explain the
observed excess dimming. In the below we formulate a
sufficient condition for super-Milne dimming.
Theorem 2 (Super-Milne dimming): Consider as in

Theorem 1 a general-relativistic space-time obeying the
null energy condition. For a null geodesic congruence with
HO > 0, the following applies: The angular diameter
distance, dA, is bounded from below by the Milne universe
model in terms of its redshift for a section of the null
geodesic path ½λ1; λ2�, if

⟪QH2⟫

H2
O

≤ −2
1

HOL
; ð19Þ

is satisfied for all λ ∈ ½λ1; λ2�, corresponding to dA ∈
½dAðλ2Þ; dAðλ1Þ�, where

L≡ 1

dA

E2
O

hF i ; hF i≡
R λO
λ dλ0F
λO − λ

; ð20Þ
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is a length scale set by the accumulated focusing of the null
beam and the distance to the emitter.
Proof.—We write the angular diameter distance as

dA ¼ EOðλO − λÞ þ ΔdA; ð21Þ

where ΔdA is the remainder term of the first order series
expansion of dA, which by (10) can be expressed as

ΔdA ¼
Z

λO

λ
dλ0ðλ0−λÞd

2dA
dλ02

¼−
Z

λO

λ
dλ0ðλ0−λÞFdA; ð22Þ

The null energy condition dictates that dAðλ0Þ ≤ dAðλÞ for
λ0 ∈ ½λ; λO�. Exploring this, and that λ0 ≤ λO for the same
interval, we have

ΔdA ≥ −E2
OðλO − λÞ2L−1; ð23Þ

which when inserted in (21) gives

dA ≥ EOðλO − λÞð1 − EOðλO − λÞL−1Þ: ð24Þ

We now use (17) in combination with the result in (24) to
obtain

1 − 1
ð1þzÞ2
2

≤ HOdA
1þ EOðλO−λÞ⟪QH2⟫

2HO

1 − EOðλO−λÞ
L

: ð25Þ

Assuming that (19) holds for an interval dA ∈ ½dAðλ2Þ;
dAðλ1Þ�, this gives the following bound for distances in that
interval:

HOdA ≥
1

2

�
1 −

1

ð1þ zÞ2
�
: ð26Þ

▪
Interpretation of the length scale L—The inverse length

scale L−1 is zero when the light propagates in empty space
(such that kμkνRμν ¼ 0) and in the absence of Weyl
focusing of the beam (such that σ̂μν ¼ 0). From an order
of magnitude estimate in a dust dominated universe with
negligible Weyl focusing along the beam, we have
F=E2 ≈ 4πGρ, where ρ is the mass density of the dust
and G is the gravitational constant. We thus have from the
definition (20) that L−1 ∼ dA4πGhρ=ð1þ zÞ2i. For typical
light beams in expanding universe models, the average
4πGhρ=ð1þ zÞ2i is usually smaller than or of order the
square of the expansion rate θO, which in turn sets a
characteristic inverse length scale for cosmology (Hubble
length scale in FLRW cosmology). When the emitter is in
the cosmic vicinity of the observer such that dA ≪ θ−1O we
have L−1 ≲ dAθ2O ≪ θO, and in such cases we thus expect
the right hand side of (19) to be small, except for the case of
extremely lensed light beams.

Remarks to Theorem 2: A trivial way to satisfy (19) is
to introduce dark energy or another energy-momentum
source that violates the strong energy condition, but here
we shall focus on situations where the strong energy
condition holds. To satisfy (19) and the strong energy
condition simultaneously, there must be nontrivial local
violations of the FLRW idealization with imprints on the
redshift of light that do not cancel along typical null beams.
Systematic departures of H2Q from the length scale

deceleration ðθ=3Þ2ð−1 − 3_θ=θ2Þ can occur if eμ aligns
systematically with the multipole coefficients in (9). This
happens for instance in the non-Copernican LTB void
models2 [3,4], which is the underlying reason why these
models can produce a breaking of the bound (18) for a
central observer. In general, the spatial propagation direc-
tion eμ of the photons is determined by the equation

hμνkα∇αeν

E
¼ eμeνeρσνρ − eνσμν − eνωμ

ν − eμeνaν þ aμ;

ð27Þ

which can be obtained from the geodesic equation
kν∇νkμ ¼ 0 and the decomposition (1). The differential
equation (27) makes explicit how the photon direction of
propagation is responding to the cosmic kinematics.
Concretely, eμ is driven toward alignment with aμ and
eigendirections of σμν, while ωμ

ν contributes with a
deflection effect perpendicular to the initial direction of
propagation of the photon bundle. In addition, shear
causes squeezing of structures along the shear eigendir-
ections, and photons that propagate along axes of more
expansion (positive shear) will tend to spend more time in
the structure than photons that propagate along axes of
less expansion (negative shear). These systematic trends
caused by anisotropic expansion hold the potential to
produce noncanceling effects that may satisfy the excess-
dimming condition (19) in a universe that is everywhere
locally decelerating.

B. Discussion of model scenarios

In linearly perturbed FLRW models, there is systematic
alignment of eμ with shear eigendirections, but the resulting
systematic contributions from the term eμeνσμν cancels with
systematic contributions from perturbations in the expan-
sion rate θ in (4), such that redshift is well modeled by the
FLRW background expansion rate in these models [14].
Similar cancelations have been noted for Swiss-cheese
models [14,15]. Consequently, the redshift measured by

2Concretely, the terms ∝ eμDμθ [see dipole coefficient in (9)]
give systematic negative contributions in Q when the photon is
propagating toward the center of the void (toward less density and
faster volume expansion).
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observers comoving with the matter in Swiss-cheese models
with LTB and Szekeres structures tends to be well modeled
by the FLRW background model [16–18], although coun-
terexamples exist [19].
The accurate predictions of redshift by the FLRW

relation in models where this would not a priori have
been expected, may be understood through a convenient
choice of cosmic reference frame in these models. If there is
a cosmic reference frame that is kinematically close to a
reference FLRW model such that θ=3 is sufficiently close-
to-homogeneous and such that σμν=θ and aμ=θ have small
norms, and which is in addition close to the observers and
emitters of light in terms of a relative Lorentz boost, it can
be shown from (3) and (4) that the redshift is close to that
predicted by the FLRW reference model.
Hypersurface forming frames where shear is almost

vanishing and expansion of space is almost homogeneous,
thus inheriting the properties of the Poisson gauge from
linearized FLRW perturbation theory, have been shown to
exist in a variety of models, including certain LTB
solutions3 [21], post-Newtonian perturbation theory [22],
and nonlinear numerical simulation studies [23]. This may
be the reason why various (analytical and simulated)
models that have large local density contrasts relative to
an FLRW reference model are well described by the FLRW
distance–redshift relation (or more generally the Dyer-
Roeder relation4 in cases of unfair sampling of the density
of matter by the light) [16,26–31].
We remark that a space-time model that conforms to the

Dyer-Roeder approximation with an expanding FLRW
background reference frame (i.e., H > 0 for the back-
ground) subject to the strong energy condition (i.e., Q ≥ 0
for the background) obeys the sub-Milne bound (18) for the
average observed dA and z of the model. It is therefore
imperative to examine Copernican space-time scenarios in
which the Dyer-Roeder approximation is not accurate,5 if
the observed dimming of supernovae is to be explained
without dark energy. Such model scenarios have been
examined [17,19,37], and while these should not be
considered competitive cosmological models, they do
present proof-of-concept models where the distance–
redshift relation is distorted away from the Dyer-Roeder
prediction. Such models are of great interest to explore

further, with particular focus on models that satisfy the
condition (19).

IV. CONCLUSION

We have investigated light propagation in the geomet-
rical optics limit of general relativity, and examined, from
first principles, the conditions under which cosmological
observations can be made compatible with a Universe with
ordinary matter and radiation only. The effective deceler-
ation parameter Q, which determines the observed dim-
ming of supernovae, was first discussed in detail in [32]
where the implications for the interpretation of supernova
data were also addressed. In this paper we have formulated
Theorem 1 and Theorem 2, which present a necessary and
a sufficient condition, respectively, for the observed super-
Milne dimming of light from supernovae. Systematic
effects from inhomogeneities have previously been pro-
posed to hold the potential to mimic dark energy through
backreaction effects on global volume dynamics [38],
such as the backreaction functionals proposed by
Buchert in [39–41]. An upper bound on the expansion
rate of the cosmic fluid frame in terms of the Milne
expansion rate was formulated by Räsänen for general-
relativistic irrotational-dust space-times [42]. This bound
however, does not imply that the distance–redshift relation
in such space-times is bounded from above by the Milne
model—a counterexample can be constructed with an LTB
model, as discussed in the Introduction.
In this paper, we have analyzed observables directly;

concretely the stated theorems apply to measurements that
probe angular diameter distance (or luminosity distance)
and redshift. In order to arrive at a systematic excess
dimming effect relative to that of a uniform universe model,
photons must systematically “pick up” local irregularities
of the space-time as they propagate through it. As discussed
in the above, we do generally expect photons to system-
atically align with eigendirections of the kinematic varia-
bles of the cosmic reference frame, and such alignments
hold the potential to cause systematic contributions in the
distance–redshift relation that mimic dark energy in our
Universe. Alignments of this type are indeed present in the
ΛCDM model, but the resulting leading order correction
terms to the background FLRW redshift function cancel,
cf. [14], and most modern cosmological simulations agree
well with the FLRW prediction of redshift. Exceptions of
models exist, however, where Copernican observers mea-
sure redshifts with systematic departures from those pre-
dicted by the background FLRW model. While it remains
to show that a competitive cosmological model that exhibits
the discussed excess dimming can be formulated, it is a
possibility that we live in a Universe that exhibits such
properties. In the motivation of this paper, we have focused
on the dimming of light from supernovae, but the deriva-
tions apply to any observational probe of redshift and
angular diameter (or luminosity) distance.

3This is not in contradiction with the fact that the LTB models
can account for supernova dimming for a central observer in a
large underdensity [20].

4The Dyer-Roeder approximation [24,25] asserts that the
average redshift of the light is given by the background FLRW
model, and that the only systematic contribution to the angular
diameter distance from lumpiness of structure along the light
beam comes from a scaling of the mean density of matter.

5See Refs. [16,17,32–36] for investigations into the validity of
the Dyer-Roeder approximation in various model scenarios.
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