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The conventional misalignment mechanism for scalar dark matter depends on the initial field value,
which governs the oscillation amplitude and present-day abundance. We discuss a mechanism by which a
feeble coupling of dark matter to a fermion in thermal equilibrium drives the scalar toward its high-
temperature potential minimum at large field values, dynamically generating misalignment before
oscillations begin. Unlike conventional misalignment production, the dark matter abundance is dictated
by microphysics and not by initial conditions. As an application of the generic mechanism, we discuss a
realistic scenario in which dark matter couples to the muon.
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I. INTRODUCTION

There is by now overwhelming evidence for the
existence of dark matter (DM), which makes up about
a quarter of the energy budget of our Universe [1], but
many open questions about its fundamental nature persist.
Among the most basic of these are the underlying particle
physics dynamics of DM and its genesis in the early
Universe. In a well-motivated and widely studied class
of models, ultralight scalar bosonic DM ϕ with mass
10−22 eV ≲mϕ ≲ keV is generically produced in the early
Universe through the “misalignment mechanism” [2–4].
Starting from some initial field value ϕi at some early time
ti, the scalar field begins to oscillate once the Hubble
expansion rate falls below its mass and subsequently
behaves as cold DM (i.e., its mean energy density scales
with the inverse cube of the cosmic scale factor, it has
vanishing mean pressure, etc.).
In the conventional misalignment mechanism just

described, the late-time oscillation amplitude and resulting
abundance depends on the initial field value ϕi. Unlike
other popular DM production scenarios, such as thermal
freeze-out of weak-scale DM, the abundance is not solely
governed by fundamental particle physics parameters
such as masses and interaction strengths, but is sensitive
to initial conditions. In this Letter, we discuss a simple and
generic mechanism to dynamically generate large scalar

DM misalignment starting from fairly generic initial con-
ditions. The mechanism relies on a finite-temperature scalar
potential generated by a coupling to a fermion in the
thermal bath, which drives the scalar field toward its high-
temperature minimum at large field values, thereby
dynamically generating misalignment. Provided the initial
field value is small in comparison to the eventual oscillation
amplitude, the present-day abundance is completely deter-
mined by the DM microphysics and is insensitive to the
precise initial conditions.
Because of the simplicity of the setup, the thermal

misalignment mechanism can easily be realized in a variety
of realistic particle physics models. In addition, since the
mechanism relies on the coupling of DM to a fermion, there
are, in general, novel phenomenological opportunities to
probe DM in comparison to the conventional misalignment
mechanism. As an illustration, below we examine one
realistic scenario in which the scalar DM couples to the
muon. This scenario features a rich variety of observational
and experimental probes that can test regions of parameter
space explaining the observed DM abundance. We note that
modified scalar dynamics due to thermal effects or novel
interactions has been considered in other contexts, such as
mass varying neutrinos [5–8], moduli abundance [9,10],
DM via phase transition [11,12], scalar trapping [13],
flavon abundance [14], and axions [15–18]. Thermal
misalignment was also discussed in the context of scalar
DM coupled through the Higgs portal [19].

II. MINIMAL MODEL AND MECHANISM

The basic model realizing the dynamical misalignment
mechanism consists of a real scalar DM field ϕ and a Dirac
fermion ψ , with Lagrangian
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−L ¼ 1

2
m2

ϕϕ
2 þmψ

�
1 −

βϕ

Mpl

�
ψ̄ψ ; ð1Þ

where mϕ (mψ ) is the scalar (fermion) mass and Mpl ¼
ð8πGNÞ−1=2 ¼ 2.4 × 1018 GeV is the reduced Planck mass.
The fields interact through a Yukawa coupling, which for
later convenience we have parametrized as −βmψ=Mpl

where β is a real dimensionless parameter.
The envisioned cosmological history is as follows. We

assume the fermion ψ attains thermal equilibrium with the
Standard Model (SM) radiation bath in the early Universe.
The scalar ϕ acquires a time-dependent, spatially homo-
geneous background field value, which evolves according
to the equation of motion,

ϕ̈þ 3H _ϕþ dVeff

dϕ
¼ 0: ð2Þ

Here H ¼ 1=2t ¼ γT2=Mpl is the Hubble parameter in

the radiation era, where t denotes time and γðTÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2g�ðTÞ=90

p
with g�ðSÞðTÞ as the effective number of

relativistic (entropy) degrees of freedom. It will often be
convenient to use the variable y≡ T=mψ . When y ≫ 1

(y ≪ 1), the fermions are in thermal equilibrium
(Boltzmann suppressed). The scalar effective potential
Veff appearing in Eq. (2) includes the tree level contribution
from Eq. (1) along with a finite-temperature correction
arising from the thermal free energy density of ψ [20,21],

δVTðϕÞ ¼ −
gψ
2π2

T4JF

�
m2

ψðϕÞ
T2

�
; ð3Þ

where gψ ¼ 4 counts the fermion spin degrees of freedom,
mψ ðϕÞ ¼ mψ ð1 − βϕ=MplÞ is the effective fermion mass in
the scalar background, and

JFðw2Þ ¼
Z

∞

0

dx x2 log

�
1þ e−

ffiffiffiffiffiffiffiffiffiffi
x2þw2

p �
: ð4Þ

The correction to the effective potential (3) leads to the
development of a high-temperature minimum at large scalar
field values. The scalar will then evolve from generic small
initial field values toward the high-temperature minimum,
generating misalignment.1 As the temperature drops and the
Hubble rate falls below the effective scalar mass, ϕ begins
to oscillate at some temperature Tosc (yosc ≡ Tosc=mψ ) and
ultimately behaves as DM. In Fig. 1, we display the

numerical evolution of ϕwith y for several choices of model
parameters and initial conditions, illustrating the generation
of large scalar misalignment from generic small initial field
values and the subsequent late-time oscillations.
The general features of the thermal misalignment mecha-

nism just outlined are most easily understood through an
analysis of the dynamics at high temperatures, T ≫ mψðϕÞ.
The scalar effective potential in this regime, including the
zero temperature quadratic term (1) and the thermal free
energy density (ϕ-dependent terms) (3), is given by

Veff ≃
1

2
m2

ϕϕ
2 þ T2m2

ψ

12

�
1 −

βϕ

Mpl

�
2

: ð5Þ

The minimum of this potential is

ϕminjT≫mψ ðϕÞ ¼
βm2

ψMplT2

6m2
ϕM

2
plþm2

ψT2β2
¼Mpl

βy2

β2y2þ6κ2
; ð6Þ

where y is defined below Eq. (2) and we have introduced
the dimensionless parameter κ ≡mϕMpl=m2

ψ. The potential
minimum (6) results from the competition between the
linear and quadratic terms in the effective potential (5). We
see that, at very high temperatures, y ≫

ffiffiffi
6

p
κ=β, the second

term in (5) dominates and the minimum is located at the
large field value ϕmin ≃Mpl=β. At somewhat lower temper-

atures, 1 ≤ y ≪
ffiffiffi
6

p
κ=β, the quadratic term is dominated by

FIG. 1. Scalar field evolution for β ¼ 10−2 and
κ ¼ ½10−4; 10−2; 10; 100�, where κ ≡mϕMpl=m2

ψ for yosc > 1

(orange lines, region 1) and yosc < 1 (blue lines, region 2).
Dashed black lines show the analytical approximations of Eqs. (8)
and (15). The final yield is independent of the initial value ϕi of
the scalar field. We have assumed constant g� ¼ 10.75 through-
out the evolution.

1As the mass of the scalar changes, the fermion mass changes,
leading to a small deviation from equilibrium, which leads to an
effective friction term in Eq. (2) [22]. However, if the fermions
equilibrate quickly through fast number changing processes, the
friction term is negligibly small for the parameter space consid-
ered in this work (see [23] for discussion).
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the first term in (5), and the minimum is located at
ϕmin ≃Mplβy2=6κ2. In the very-low-temperature regime,
y ≪ 1, the fermions are Boltzmann suppressed,
δVT ∝ e−mψ ðϕÞ=T , and theminimummoves toward the origin.
During the initial stages of the evolution, the effective

potential (5) is dominated by the linear term,
Veff ⊃ −T2m2

ψβϕ=6Mpl, and the scalar satisfies the con-

dition jϕ̈j ≪ jH _ϕj. Therefore, the equation of motion (2)
simplifies dramatically,

_ϕ ≃
βm2

ψ

18γ
: ð7Þ

Neglecting the mild variation of g� with temperature and
integrating this equation, we obtain

ϕðtÞ ¼ ϕi þ
βm2

ψ

18γ
ðt− tiÞ≃

βm2
ψ

18γ
t→ ϕðyÞ≃ βMpl

36γ2
1

y2
: ð8Þ

Provided the initial value of the field is smaller than its
eventual value at the onset of scalar oscillations, jϕij ≪
ϕosc ≡ ϕðyoscÞ and ϕosc ≪ Mpl=β, we observe that the
approximate early-time solution (8) is not sensitive to
the initial conditions and grows in proportion to the cosmic
time, generating misalignment. This behavior is also
apparent from the numerical solution shown in Fig. 1.
Below wewill use the early-time solution (8) as input in our
estimates of ϕosc.
As the Universe expands and the temperature drops, the

expansion rate eventually becomes smaller than the effec-
tive scalar mass, signaling the beginning of scalar oscil-
lations. From Eq. (5) we obtain the effective scalar mass at
high temperatures,

m2
ϕðTÞ ¼ m2

ϕ þ
β2m2

ψT2

6M2
pl

¼ m2
ϕ

�
1þ β2y2

6κ2

�
: ð9Þ

Considering that the oscillations begin for 3HðToscÞ ¼
mϕðToscÞ, the oscillation temperature is estimated as

yosc ¼
β

6
ffiffiffi
3

p
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1296γ2κ2

β4

s �vuut : ð10Þ

For yosc ≥ 1 and β ≫ 6
ffiffiffiffiffi
γκ

p
, the oscillations begin at

yosc ≃ β=6
ffiffiffi
3

p
γ. However, for β ≪ 6

ffiffiffiffiffi
γκ

p
, yosc ≃

ffiffiffiffiffiffiffiffiffiffi
κ=3γ

p
and is controlled by the zero temperature mass of the scalar.
This motivates a division of the κ − β parameter space into
three regions, with boundaries defined by the conditions
yosc ¼ 1 and β ¼ 6

ffiffiffiffiffi
γκ

p
, as shown in Fig. 2. We now study

both regions 1 and 2, where the scalar begins oscillating
under its zero temperature mass (below the orange line in
Fig. 2), in order to obtain an analytical understanding of theϕ

evolution and the eventual DM yield. In region 3 (above the
orange line), DM is overproduced.
We first discuss region 1, which is defined by

yosc ≃
ffiffiffiffiffi
κ

3γ

r
> 1 ðκ > 3γÞ and β < 6

ffiffiffiffiffi
γκ

p
: ð11Þ

In this region, the scalar oscillations are primarily controlled
by their zero temperaturemass and begin before the fermions
leave the plasma. So, even though the fermions donot control
the onset of oscillations, the amplitude of the oscillations is
dictated by the scalar-fermion coupling β. An estimate of the
field valueϕosc at the beginning of oscillations is obtained by
evaluating Eq. (8) at y ¼ yosc ≃

ffiffiffiffiffiffiffiffiffiffi
κ=3γ

p
,

ϕosc ≡ ϕðyoscÞ ≃
βMpl

12γκ
: ð12Þ

The present-day DM energy density is given by
ρϕ;0 ¼ 1

2
m2

ϕϕ
2
oscðy0=yoscÞ3ðg0�S=gosc�S Þ, where y0 ¼ T0=mψ

with T0 ¼ 2.7 K and g0�S ≃ 3.91. Using this result and
Eqs. (11) and (12), the DM density parameter today, Ωϕ ≡
ρϕ;0=ρc;0 with ρc;0 ¼ 3M2

plH
2
0 the critical density, is esti-

mated as

FIG. 2. Regions 1–3 in the κ − β plane. Parameters predicting
the correct DM abundance, Ωϕ ¼ ΩDM, are indicated by the blue
lines for mψ ¼ 1 and 100 GeV, where for simplicity we have
assumed g� ¼ g�ðmψ Þ. The boundaries defining the three regions
are drawn for g�ðT ¼ 1 GeVÞ ≃ 81.
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Ωϕ ≃ ΩDM

�
mψ

0.1 GeV

��
β

0.1

�
2
�
400

κ

�
3=2

�
10.75
gosc�S

�
5=4

;

≃ ΩDM

�
mψ

0.1 GeV

�
4
�

β

0.1

�
2
�
2 × 10−9 eV

mϕ

�
3=2

×

�
10.75
gosc�S

�
5=4

; ð13Þ

where ΩDM ≃ 0.26 [1]. We next consider region 2, which is
defined by

yosc ≃
ffiffiffiffiffi
κ

3γ

r
< 1 ðκ < 3γÞ and β < 6

ffiffiffi
3

p
γ: ð14Þ

In this region, the oscillations begin after the fermions are
Boltzmann suppressed and no longer affect the evolution
of ϕ. So until y ∼ 1 the solution is given by Eq. (8),
ϕ ∼ βMpl=y2. Then, for yosc ≪ 1, the velocity of ϕ experi-
ences Hubble friction and reaches an asymptotic value of

ϕosc ≃ 0.27
βMpl

γ2
ð15Þ

before oscillations start. Similar to region 1, we can estimate
the dark matter density parameter today,

Ωϕ≃ΩDM

�
mψ

0.1GeV

��
β

10−3

�
2
�

κ

0.01

�
1=2

�
10.75
gosc�S

�
9=4

;

≃ΩDM

�
β

10−3

�
2
�

mϕ

4×10−13 eV

�
1=2

�
10.75
gosc�S

�
9=4

: ð16Þ

This shows that in both regions the DM abundance depends
mainly on the coupling β and the DM mass mϕ.
In Fig. 2, we show the parameter choices where Eqs. (13)

and (16) predict the observed DM abundance. Near κ ∼ 3γ,
the transition between regions 1 and 2, we have extrapo-
lated these predictions to their intersection. In our phe-
nomenological example below, we will compare this with
abundance prediction from the exact numerical evolution of
the system. Figure 2 shows that the correct DM abundance
can be obtained over a broad range of masses and
couplings.
Before examining a realistic scenario in which the

fermion is the muon, a few remarks are in order. First,
we note that, along with the finite-temperature correction
(3), the effective potential receives a zero temperature
correction at one loop, i.e., the Coleman-Weinberg poten-
tial [24]. We assume here that the full zero temperature
effective potential is well described by a simple quadratic
potential as in Eq. (1). This implies the mass term and
quartic coupling λ are fine-tuned for small scalar massesmϕ

and large couplings β. This is a manifestation of the well-
known naturalness problem associated with light scalars. In
our phenomenological example below, we will indicate

regions of parameter space where such fine-tuning is
needed. It can be shown that the scalar does not thermalize
for the small couplings we have considered in this work.
Though beyond our present scope, it would be worthwhile
to explore model building avenues to protect such light,
weakly coupled scalars; see, for example, Refs. [15,25] for
recent promising work in this direction.
The inflationary epoch can potentially impact the ther-

mal misalignment production mechanism. The classical
and quantum evolution of ϕ during inflation leads to a
characteristic range of field values at the end of inflation,
which should be compared with the requirement on our
initial conditions described above, ϕi ≪ ϕðyoscÞ. Moreover,
the scalar fluctuations at the end of inflation contribute to
isocurvature perturbations, which are strongly constrained
by cosmic microwave background data [26]. However,
assuming a long enough inflationary period with a low
enough Hubble scale during inflation (HI ≪ mψ ) (which
relaxes the scalar to its zero temperature minimum and
suppresses the scalar fluctuations), we can avoid both
isocurvature constraints and a fine-tuning of our scalar field
initial conditions [27–29]. See also Ref. [30] for further
discussion of the effective potential in curved backgrounds,
including during inflation.

III. SCALAR DARK MATTER
COUPLED TO THE MUON

We now describe the phenomenology of a scenario in
which ϕ couples to the muon, i.e., ψ → μ.2 To be consistent
with the SM gauge symmetries, the required low-energy
ϕμ̄μ coupling must emerge from the dimension-five oper-
ator ϕL̄LHμR þ H:c:, which may arise in a variety of UV
completions above the weak scale; see, for example,
Refs. [31,32]. In Fig. 3, we show the analytical (exact
numerical) relic density target for this model with dashed
(solid) blue lines along with the associated constraints and
prospects. It is evident from Fig. 3 that a rich variety of
experimental and observational probes are present in this
scenario, as we now discuss.
The first class of probes rely only on the gravitational

interactions of ϕ. In particular, in the ultralow mass “fuzzy
DM” regime [33,34], observations of the Lyman-α forest
flux power spectrum lead to the bound mϕ ≳ 2 × 10−21 eV
[35]. Additionally, the existence of light scalars implies
spin-down of rotating black holes (BHs) through super-
radiance (SR) [36]. Observations of fast-spinning stellar-
mass BHs in x-ray binaries therefore lead to constraints on
the scalar mass [37], as shown in Fig. 3.

2To best illustrate our mechanism, we choose a SM fermion
such that the couplings to the scalar that explain the dark matter
relic density are not already severely constrained (as in the case of
the electron) and the cosmology does not suffer from additional
complications [as in the case of light quarks (hadrons and QCD
phase transition)].
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There are also direct probes of the ϕμ̄μ Yukawa coupling
that generate scalar misalignment and control the DM
abundance. Muons are naturally present in neutron stars
(NSs) and pulsars, and the resulting radiation of the light
scalar can lead to anomalous decay of orbital periods in
pulsar binary systems as well as NS-NS and NS-BH
mergers observed by gravitational wave detectors [38].
The existing constraints from pulsars and future constraints
from NS mergers are shown in purple in Fig. 3. The
variation of muon mass in pulsars can lead to fluctuations
of spins in pulsars observable by the pulsar timing array
(PTA) [39]. We note that muon-storage ring experiments
can provide additional direct tests of the scalar-muon
coupling, albeit at larger values of β above the cosmologi-
cally favored region [40].
The ϕμ̄μ interaction radiatively induces an effective

scalar-photon coupling gϕγγϕFμνFμν. In the absence of
additional UV contributions to this operator, the effective
coupling is given by gϕγγ ¼ −ðαβÞ=ð6πMplÞ, where α is the
fine structure constant. Such a coupling induces a long-
range Yukawa force between matter that violates the
equivalence principle (EP) [41]. The associated constraints
from tests of the equivalence principle [42–44] (Eöt-Wash,
MICROSCOPE) are shown in orange Fig. 3. Furthermore,
in the oscillating DM background, such a coupling leads to
temporal variations in the fine structure constant, which can
be probed by atomic clocks with dysprosium [45] and

rubidium and caesium [46], nuclear clocks [47], mechani-
cal resonators (helium and sapphire) [48], and existing
interferometers [49,50] (LIGO, GEO600), as well as future
terrestrial (space)-based atomic interferometer experiments
[51] AI-TB (AI-SB). These are shown in green in Fig. 3.
Finally, we note that the coupling of the scalar to muons

results in quadratic corrections to the scalar mass as well as
quartic corrections to the scalar potential, the latter of which
prevent the scalar from oscillating like matter. These cor-
rections are naturally small for small β and large mϕ (below
the dashed black lines in Fig. 3), while for large β and small
mϕweassume they are fine-tuned away. Further, we note that
at two loops theQEDcoupling of themuon to the photon also
induces a scalar thermal potential of parametric size δVT;γ ∼
−α2T4 × ðβϕ=MplÞ [52]. ForT ≲mμ=αðy≲ 1=αÞ, themuon
one-loop contribution (3) dominates. In particular, provided
this condition is satisfied by the oscillation temperature yosc
given in Eq. (10), the two-loop effect can be neglected.
In regions 1 and 2, yosc ≃

ffiffiffiffiffiffiffiffiffiffi
κ=3γ

p
, implying that for

mϕ ≲ γm2
μ=α2Mpl ∼ 10−6 eV—the entire mass range stud-

ied here—the one-loop effective potential (3) controls the ϕ
abundance.

IV. CONCLUSIONS

In this Letter, we have discussed “thermal misalign-
ment,” a novel paradigm for the cosmological production of

FIG. 3. Existing constraints and future prospects on a muon-ϕ interaction represented in the mϕ − β plane. The constraints are plotted
assuming ϕ constitutes all of dark matter everywhere in the parameter space. The thermal misalignment production mechanism predicts
the correct dark matter abundance Ωϕ ¼ ΩDM over a wide range of scalar masses, shown as dotted (solid) blue lines for the analytical
approximation (exact numerical solution). The difference between the exact solution and analytical approximation comes from
including the temperature variation in g� in the numerical solution. Further information on the experimental and observational
constraints shown in the figure is provided in the main text.
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ultralight scalar DM. Because of a tiny coupling to a
fermion in the thermal bath in the early Universe, the scalar
field evolves toward the minimum of its thermal potential at
large field values, generating large misalignment prior to
the onset of oscillations. Unlike standard misalignment,
thermal misalignment provides a regulating mechanism
such that any scalar field initial condition respecting ϕi ≪
ϕðyoscÞ leads to the same relic density today, providing a
precise prediction of the DM abundance in terms of the
scalar-fermion coupling β and the scalar mass mϕ.
If the fermions are muons, there is still viable parameter

space for the scalar to be DM. Were any future experiments
to detect such a scalar, the exact relation between β and
mϕ will be a strong smoking gun signal of our model.
Alternatively, assuming standard cosmology, our relic

density line in Fig. 3 (solid blue) presents the strongest
bound over much of the natural ðmϕ; βÞ parameter space.
Avenues for future exploration of this paradigm are

rich, including further investigation of the Higgs portal as
a UV completion [19], consideration of higher-dimension
operators or couplings to different SM fields, and finite-
temperature dynamics of pseudoscalar fields such as axion-
like particles. We leave these possibilities for future work.
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