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The equation of state of the quark gluon plasma is a key ingredient of heavy-ion phenomenology.
In addition to the traditional Taylor method, several novel approximation schemes have been proposed with
the aim of calculating it at finite baryon density. In order to gain a pragmatic understanding of the limits of
these schemes, we compare them to direct results at μB > 0, using reweighting techniques free from an
overlap problem. We use 2stout improved staggered fermions with eight time slices and cover the entire
Relativistic Heavy Ion Collider Beam Energy Scan range in the baryochemical potential, up to μB=T ¼ 3.
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I. INTRODUCTION

The equation of state (EOS) of QCDmatter under extreme
conditions–high temperatures or baryon densities—plays a
role in many physical systems, such as the early Universe,
heavy-ion collisions, and neutron stars. The most established
first-principles method to study the strongly coupled regime
is lattice QCD [1], which maps the path integral formulation
to a classical statistical-mechanical system, suitable for
simulation with Monte Carlo methods. Many properties
of strongly interacting matter at zero density have been
elucidated using this method, such as the crossover nature of
the transition [2], the transition temperature [3,4], and the
EOS [5,6]. Studies at finite density are, however, hampered
by the sign problem: the Boltzmann weights in the path
integral representation become complex, preventing impor-
tance sampling. Thus, most lattice results on hot-and-dense
QCD matter use extrapolations from zero [7–17] or purely
imaginary chemical potential [18–33], situations with no
sign problem.

In spite of the difficulties, there has recently been
considerable progress on the EOS of the quark gluon plasma
(QGP). First, Taylor coefficients of the pressure p in the
baryochemical potential μB have been calculated up to fourth
order in the continuum [11,12,14] and up to eighth order at
finite lattice spacing [17,26,31]—albeit with large uncer-
tainties at sixth and eighth order. Second, resummation
schemes have been proposed for the Taylor expansion
[34–38], with a promise of better convergence. At the
moment there is no theoretical understanding of the con-
vergence properties of these schemes. It is therefore impor-
tant for phenomenology to determine the region of validity
of these techniques. This is the purpose of this work. To this
end, we use novel developments in simulation techniques
for finite density: Reweighting schemes where the pressure
difference between the simulated and target theories can be
calculated without encountering heavy-tailed distributions—
i.e., an overlap problem. Recently, such studies have become
feasible for improved lattice actions with physical quark
masses for two schemes: sign reweighting and phase
reweighting [39,40]. These have the advantage of giving
direct, reliable results at μB > 0—provided that the expo-
nential sign problem is dealt with by sufficient statistics. By
comparing the EOS calculated using phase reweighting with
the Taylor expansion and its resummations, we can quantify
the systematic bias of the different truncations of these
schemes, giving unprecedented insight into the EOS.
We simulate 2stout improved staggered fermions

with physical quark masses on lattices with eight time
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slices—a discretization that is often used as the first or
second point of continuum extrapolations of thermodynamic
quantities [2,5,24,30,41–46]. Cutoff effects on the EOS are
moderate (after applying a tree-level improvement [5]). We
reimplement all discussed extrapolations using this setup.
Thus, differences can only come from the systematics of the
extrapolation. Since we are interested in a comparison of
various methods for a statistical physics system, the physical
volume can be chosen freely. We use a fixed aspect ratio of
LT ¼ 2, with T the temperature andL the spatial size. As we
perform no finite volume scaling, we must restrict ourselves
to the study of the QGP EOS, leaving that of the fate of the
crossover transition to a later date.

II. OBSERVABLES

The grand partition function of lattice QCD is given
schematically by

ZðT; μÞ ¼
Z

DU det MðU; μÞe−SgðUÞ; ð1Þ

where SgðUÞ is the gauge action, det M is the quark
determinant, implicitly including all flavors, as well as
staggered rooting, μ collectively denotes the chemical
potentials of all quark flavors, and U are the link variables.
We work with the quark chemical potentials μq ≡ μu ¼ μd
and μs ¼ 0. We concentrate on the pressure as a function
of the temperature and dimensionless chemical potential
μ̂B ≡ μB=T ¼ 3μq=T ≡ 3μ̂q, given by

p̂ðT; μ̂BÞ≡ pðT; μ̂BÞ
T4

¼ 1

ðLTÞ3 ln ZðT; μ̂BÞ: ð2Þ

In particular, we study the pressure difference between zero
and nonzero chemical potentials,

Δp̂ ¼ Δp
T4

≡ p̂ðT; μ̂BÞ − p̂ðT; 0Þ: ð3Þ

We also compute the light quark density,

n̂LðT; μ̂BÞ≡ dp̂
dμ̂B

¼ 1

3ðLTÞ3
�
∂ lnZðT; μ̂BÞ

∂μ̂q

�
μs¼0

: ð4Þ

The integral of n̂L over μ̂B is Δp̂. We calculate the EOS
with several methods.

III. REWEIGHTING FROM μB = 0

In what is arguably the simplest reweighting scheme,
simulations are performed at μB ¼ 0 and Δp̂ is recon-
structed via [47]

Δp̂ðT; μ̂BÞ ¼
1

ðLTÞ3 ln
�
det Mðμ̂BÞ
det Mð0Þ

�
μ̂B¼0

: ð5Þ

While Eq. (5) is exact with infinite statistics, the tails of

the distribution of the weights det Mðμ̂BÞ
det Mð0Þ are heavy and so

hard to sample (overlap problem). It is therefore hard to
judge the reliability of results from this method. It was
proposed that the overlap problem can be mitigated by
reweighting in more parameters [48–50]. However, even
with multiparameter reweighting, the overlap problem
remains the main bottleneck (at least around the transition
line [51]). We include results from (one-parameter)
reweighting from μB ¼ 0 for completeness, and because
one of the resummations we will test can be regarded as a
truncation of this scheme.

IV. PHASE REWEIGHTING

Away to avoid heavy-tailed distributions in the weights
is to simulate a theory where these can only take values
in a compact domain. Two examples are sign reweighting
[39,40,52,53] and phase reweighting [40,54,55]. Here we
use the latter: In the simulated theory one replaces the
quark determinant with its absolute value. This is the phase
quenched ensemble, corresponding to a finite isospin
chemical potential, i.e., μu ¼ −μd. The pressure schemati-
cally reads

p̂IðT; μ̂qÞ ¼
1

ðLTÞ3 log
Z

DUj det Mje−Sg : ð6Þ

It is also given by the integral of the isospin density,

n̂IðT; μ̂qÞ≡
�
∂p̂I

∂μ̂q

�
μs¼0

; ð7Þ

from which the pressure at finite μB is obtained as

p̂ðT; μ̂B ¼ 3μ̂qÞ − p̂IðT; μ̂qÞ ¼
1

ðLTÞ3 ln he
iθiPQ; ð8Þ

where eiθ ¼ det Mðμ̂BÞ
j det Mðμ̂BÞj is the complex phase factor of the

fermion determinant and h…iPQ means taking an expect-
ation value in the phase quenched theory. Finally,

Δp̂ ¼
Z

μ̂B=3

0

n̂Iðμ̂q; TÞdμ̂q þ
1

ðLTÞ3 ln he
iθiPQ: ð9Þ

Alternatively, one can calculate n̂L directly,

n̂L ¼ 1

ðLTÞ3heiθiPQ

�
eiθ

∂

∂μ̂B
ln det M

�
PQ

; ð10Þ

from which Δp̂ is obtained via integration. The two
methods are not guaranteed to give compatible results
if the observable in the numerator of Eq. (10), namely
eiθ ∂

∂μ̂B
ln det M, has an overlap problem. This is possible,
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as only the pressure difference pðT; μ̂B ¼ μ̂qÞ − pIðT; μ̂I ¼
μ̂qÞ ∝ heiθiPQ in Eq. (8) is guaranteed to be free of one—
due to the compactness of eiθ.
The phase diagram at finite isospin density was

calculated in Ref. [45]. It has a pion condensed phase
for low T and μq > mπ=2. In this region, the sign problem
is severe. Here we avoid this issue by concentrating on the
EOS of the QGP, and we find a mild sign problem:
heiθiPQ ¼ hcos θiPQ never gets below 0.1 in any of our
ensembles and is always more than 10σ away from zero.

V. TAYLOR EXPANSION

The pressure is expanded in powers of the baryochemical
potential,

p̂ðT; μ̂BÞ ¼ p0ðTÞ þ p2ðTÞμ̂2B þ p4ðTÞμ̂4B þ…: ð11Þ

We calculate the Taylor coefficients two ways: by using
configurations generated at μB ¼ 0 to calculate them
directly and by using simulations at imaginary μB to obtain
them from a fit. These are the procedures used in the
literature so far. For a recent example of the first, see, e.g.,
Ref. [17], and for the second, Refs. [26,31].

VI. RESUMMATIONS BASED ON SHIFTING
SIGMOID FUNCTIONS

A resummation of the Taylor expansion was introduced
in Ref. [34], defined implicitly via

n̂LðT; μ̂BÞ
μ̂B

¼ dn̂L
dμ̂B

ðTð1þ κ2ðTÞμ̂2B þ…Þ; 0Þ: ð12Þ

This is motivated by the empirical observation of the
existence of an approximate scaling variable Tð1þ κμ̂2BÞ,
coming from lattice studies at imaginary chemical potential:
Certain observables collapse on single (sigmoid shaped)
curves when plotted against this variable [33,34]. Up to
μ̂B ¼ 1.5 the existence of an approximate scaling variable
has also been confirmed directly at a real μB by sign

reweighting [40]. This is the n̂LðT;μ̂BÞ
μ̂B

shifting method. This
is a systematically improvable expansion. Its validity is not
predicated on the existence of this approximate scaling
variable, but if an approximate scaling variable exists, we
expect the method to converge fast.
A disadvantage of the previous scheme is that it was

designed to work near the crossover. To make it more
suitable for high T, it was later refined [38] by introducing a
Stefan-Boltzmann correction,

n̂LðT; μ̂BÞ
n̂SBLL ðμ̂BÞ

¼ lim
μ̂0B→0

n̂LðTð1þ λ2μ̂
2
B þ…Þ; μ̂0BÞ

n̂SBLL ðμ̂0BÞ
; ð13Þ

where we introduced the Stefan-Boltzmann limit (SBL),

n̂SBLL ðμ̂BÞ≡ lim
T→∞

n̂LðT; μ̂BÞ: ð14Þ

We call this method the n̂LðT;μ̂BÞ
n̂SBLL

shifting method. Both

shifting methods can be implemented by fitting the κn or λn
coefficients to data at imaginary μB.

VII. EXPONENTIAL RESUMMATION

A different resummation is based on truncating the
reweighting from μB ¼ 0 [35], by approximating det Mðμ̂BÞ

det Mð0Þ ≃
exp ðPN

n¼1
1
n!Dnμ̂

n
BÞ in Eq. (5),

Δp̂ðT; μ̂BÞ ≃
1

ðLTÞ3 ln
�
exp

�XN
n¼1

1

n!
Dnμ̂

n
B

��
μ̂B¼0

; ð15Þ

whereDn ≡ ∂
n

∂μ̂2B
ln det Mðμ̂BÞ andN is the truncation order.

A practical advantage is that the coefficients Dn are needed
for the calculation of the Taylor coefficients p2n anyway.
Thus, this scheme represents an alternative way to analyze
data for the Taylor coefficients. The procedure introduced
in Ref. [35] had the disadvantage of using a biased
estimator for Eq. (15), by exponentiating the stochastic
estimators of theDn. This bias was studied in Ref. [36]. We
remove this bias by calculating the Dn exactly for each
configuration, using the reduced matrix formalism [56].

VIII. LATTICE SETUP AND NUMERICAL
RESULTS

We used a tree-level Symanzik improved gauge action
and two steps of stout smearing [57] with ρ ¼ 0.15 on the
links entering the quark determinant, with physical quark
masses, using the kaon decay constant for scale setting
[58]. We apply a tree-level improvement factor to the
pressure, making the Nτ ¼ 8 2stout results close to the
continuum [5]. This corresponds to division by 1.28 at
infinite volume, which is the correction we apply for
in n̂L and Δp̂.
We study 163 × 8 lattices at various temperatures with

145 ≤ T ≤ 240 MeV and light quark chemical potential
μu ¼ μd ¼ μq ¼ μ ¼ μB=3 with a zero strange quark
chemical potential μs ¼ 0, corresponding to a strangeness
chemical potential μS ¼ μB=3.
We simulate the phase quenched ensemble for μ̂2B ¼ 1.5,

3, 4.5, 6, 7.5, and 9, without an explicit symmetry breaking
term, commonly used at a finite isospin density [45,59].
Instead, we follow the method of Ref. [40]. The resulting
ensemble corresponds to an isospin chemical potential
μI ¼ μu ¼ −μd. We use these ensembles to reweight to a
baryochemical potential with μu¼μd¼μB=3. Determinant
ratios are calculated using the reduced matrix [56,60].
We performed the calculation of Δp̂ in two inequivalent
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ways: the one with no possible overlap problem described
by Eq. (9) and by integration of Eq. (10). We obtain
compatible results for Δp̂ with both methods, as can be
seen in Fig. 1 (left) for T ¼ 160 MeV.
We also simulate μB ¼ 0 for T=MeV ¼ 140, 150, 160,

and 170 to perform reweighting from μB ¼ 0, to calculate
the Taylor coefficients and exponential resummation. For all
of these, we used the reduced matrix formalism [56], so
obtaining the Taylor coefficients without the use of stochas-
tic estimators and obtaining Dn exactly for each configura-
tion, encountering no bias in the exponentiation [35,36].
In Fig. 1 (left) we also show the results for Δp̂ from

reweighting from μB ¼ 0. These results are also in agree-
ment with the two ways of reweighting from the phase
quenched ensemble for all temperatures in our study.
Three different reweighting procedures—including one

with no possible overlap problem—give identical results.
This strongly supports the validity of our results for the
EOS. The full results for Δp̂ from phase reweighting are
shown in Fig. 1 (right). We can safely use these results to
test extrapolations.
Without comparison with phase reweighting, we could

not guarantee the correctness of reweighting from μB ¼ 0,
due to the overlap problem. This problem is inherited by the
Taylor method: Since the expansion coefficients of the
pressure are obtained by Taylor expanding the logarithm

of the reweighting factor, i.e., hdet MðμBÞ
det Mð0Þ i, for any finite

ensemble the Taylor coefficients are exactly the Taylor
coefficients of the reweighted pressure, as opposed to the
exact pressure. Thus, if the reweighted pressure with a

given statistics has a systematic bias due to an overlap
problem, so will the Taylor coefficients. By showing that
reweighting from μB ¼ 0 works for the region μ̂B ≤ 3, we
ensure that we are truly testing the convergence of the
Taylor series, without encountering an overlap problem in
the higher order coefficients.

IX. COMPARISON WITH EXTRAPOLATION
SCHEMES

To implement the resummation schemes based on
shifting sigmoids, we perform simulations at imaginary
chemical potentials, for Im μ̂B

16
π ¼ 0, 4, 6, 7, 8, 9, 10, and

12. We work to order κ4 in Eq. (12) and to order λ4 in
Eq. (13), using a simplified version of the analysis of
Refs. [34,38]. The systematic error includes the fit range in
imaginary μB, the ansatz in μ2B, and the interpolation of the
light quark susceptibility at μB ¼ 0. As a more straightfor-
ward use of the imaginary chemical potential data we
perform a second determination of the Taylor coefficients,
fitting n̂L

μ̂B
with a polynomial of order μ̂6B. For the fits we also

include d2p̂
dμ̂2B

and d4p̂
dμ̂4B

at μB ¼ 0 as further data points.

We show the comparison of extrapolation schemes with
the direct data in Fig. 2, as a function of T at a fixed μ̂B ¼ffiffiffiffiffiffiffi
7.5

p
and 3 (the two largest values where we have direct

data) and in Fig. 3 as a function of the chemical potential at
fixed temperatures of T ¼ 160 MeV and 170 MeV. The
Taylor expansion at next-to-leading order (NLO)—Oðμ4BÞ
in the pressure—is not consistent with the direct data,

FIG. 1. Left: the pressure difference between the zero and nonzero chemical potential theory calculated with several different
reweighting methods as a function of the quark chemical potential at T ¼ 160 MeV. Results at finite isospin chemical potential are
shown as purple points. The nonzero isospin data are direct results in the phase quenched ensemble, obtained without reweighting.
Results reweighted from the phase quenched ensemble to finite μB with the two methods discussed in the text are shown by red and
blue points. Results from reweighting from zero μB are shown in gray. Right: the pressure difference between zero and nonzero
baryochemical potentials, calculated with phase reweighting as a function of T, for different values of μ̂B.
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systematically underestimating nL below 150 MeV and
overestimating it above 150 MeV. This is due to a peak in
p4ðTÞ slightly above the crossover temperature. Including
the p6ðTÞ term, the Taylor method agrees with the direct
data up to μ̂B ¼ 3 at T ¼ 160 MeV and up to μ̂B ≈ 1.2 at
T ¼ 170 MeV. Including the next-to-next-to-next-to-lead-
ing order (NNNLO) term p8ðTÞ, the expansion agrees with
the direct data at all studied temperatures up to μ̂B ¼ 3.
In contrast, exponential resummation shows bad con-

vergence properties from μ̂2B ≈ 4 for all temperatures. While
the N ¼ 2 truncation remains close to the direct results in
the entire range, higher orders make the agreement better
only below this value.
At large T, the method based on shifting n̂L=n̂SBLL

outperforms the method of shifting n̂L=μ̂B. This is

expected, as the Stefan-Boltzmann correction was intro-
duced [38] to improve the scheme at high T.
Thus, both the Taylor expansion to order μ̂8B and the

resummation based on shifting n̂L=n̂SBLL to order λ4
accurately describe the equation of state in the range
0 ≤ μ̂B ≤ 3—the entire range of the RHIC Beam Energy
Scan. Note the faster convergence of the resummation, as the
calculation of λ4 only requires determining the Taylor
coefficients up to order μ̂6B. On the other hand, the shifting
n̂L=μ̂B method at order κ4 has a slight systematic discrepancy
with the direct data at large T, and exponential resummation
shows bad convergence properties above μ̂2B ≈ 4.

X. DISCUSSION

We judged the reliability of different approximation
schemes by comparing them with direct results for
0 ≤ μ̂B ≤ 3. This gives a practical answer to the question
of which approximations to trust. A theoretical understanding
of the reasons would also be welcome. For schemes defined
in terms of thermodynamic quantities, such as the Taylor
expansion or the resummations based on shifting sigmoids,
this requires knowledge of partition function (Lee-Yang)
zeros in the complex μB plane [16,37,60–62]. Exponential
resummation, instead, is not defined in terms of thermody-
namic quantities, but by manipulating the integrand of the
path integral. Understanding its convergence also requires
understanding nuances of the path integral, in addition to
thermodynamic singularities. We speculate that the limited
convergence is due toquarkdeterminant zeros: The sum in the
argument of the exponential in Eq. (15) approximates the
quark effective action in a fixed gauge field background,
with a radius of convergence determined by the determinant
zeros, leading to logarithmic divergences. These are not

FIG. 2. The direct results for n̂L at nonzero μB compared with
different approximations: the Taylor method and the exponential
resummation (exp resum) [35] to different orders calculated from
the ensemble at μB ¼ 0, as well as the shifting nL=nSBLL method
calculated from imaginary chemical potential simulations and
reweighting from μB ¼ 0.

FIG. 3. The density n̂L as a function of T for μ̂B ¼ ffiffiffiffiffiffi
7.5

p
(left) and μ̂B ¼ 3 (right) for the Taylor expansion (bottom) and the

resummation schemes based on shifting n̂L=μ̂B and n̂L=n̂SBLL (top). The direct Taylor data from μB ¼ 0 simulations has smaller errors
than the fit to imaginary μB data, due to the small volume in our study. For larger volumes, the signal-to-noise ratio of the direct p6 and
p8 would be larger. A spline interpolation of the direct results is included to lead the eye.
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simply related to the Lee-Yang zeros and may provide
stronger limitations on convergence. While the lattice action
used in this study is often used as a point in continuum
extrapolations for QCD thermodynamics at zero baryon
density, the size of cutoff effects at nonzero baryon density
are not known at present. Thus, while there is a reasonable
hope that observations made here about the convergence
properties of different expansions carry over to the QCD
continuum, this is not guaranteed and requires further
investigations. In particular, rooted staggered fermions may
lead to spurious singularities in the complex μ plane [60].
Thus, results with other discretizations would be welcome.
An obvious challenge is to extend the range of validity of

the methods studied here to lower T and higher μ̂B, so that
the transition line [15,30,33,63,64] and the location of the
conjectured critical end point [65–70] can be studied. Of
course, the continuum and infinite volume limits will also
have to be taken eventually.
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