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We propose to replace the exact amplitudes used in Monte Carlo event generators for trained machine
learning regressors, with the aim of speeding up the evaluation of slow amplitudes. As a proof of concept,
we study the process gg → ZZ, whose leading-order amplitude is loop induced. We show that gradient
boosting machines like XGBoost can predict the fully differential distributions with errors below 0.1%, and
with prediction timesOð103Þ faster than the evaluation of the exact function. This is achieved with training
times ∼ 23 minutes and regressors of size≲ 22 Mb. We also find that XGBoost performs well over the entire
phase space, while interpolation gives much larger errors in regions where the function is peaked. These
results suggest a possible new avenue to speed up Monte Carlo event generators.
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I. INTRODUCTION

The success of the LHC in discovering the Higgs boson
is a testament to the impressive advancements made by the
high-energy physics (HEP) community in understanding
accelerators, detectors, and to make accurate Standard
Model (SM) predictions. As a result, the LHC is rapidly
evolving from an energy frontier machine, capable of
discovering new resonances, to a precision machine,
capable of measuring small deviations over precise SM
predictions.
Due to the key role of higher-order corrections in precision

physics, there has been a Herculean effort in recent years
to compute, store, and automate higher loop calculations
for SM and beyond-the-SM (BSM) processes [1–20]. As
impressive as this has been, the widespread usage of these
results by the broader high-energy physics community has
been relatively low, in part due to the long computing times
required to evaluate amplitudes beyond tree level. This
evaluation time increases dramatically with the loop order,
and makes certain Monte Carlo (MC) event simulations
at one loop already unfeasible. Nonetheless, higher loop
effects will become more important as the precision from
the experimental and theoretical sides keeps improving.
This calls for innovations to reduce evaluation times for

slow amplitudes. One possible avenue to do just that is to
improve the traditional tools and techniques—an effort that
is well underway. In this work, however, we take a new and
different approach to address these issues.
The main goal of this work is to show that thanks to

advances inmachine learning (ML) algorithms and tools, it is
now possible to train ML regressors with precomputed slow
amplitudes, and use them to predict the same amplitudes
accurately and in a fraction of the time. In recent years, ML
algorithms have increasingly been finding new applications
inHEP research. For example, seeRefs. [21–51] for concrete
applications and Refs. [52–62] for recent reviews.
While we focus on a one-loop-induced process in this

work, the ultimate goal is to apply the methods developed
here to the finite remainder of two-loop virtual amplitudes.
The evaluation of these amplitudes is currently the leading
bottleneck inMC event generation at next-to-next-to-leading
order (NNLO) [63]. In particular, the slowest amplitudes
arise from the interference between the leading (Born)
amplitude and the highest loop-order one. Thus, for any
given process, these amplitudes will have the lowest final-
state multiplicity because they do not involve any extra real
emissions. And, since most of the available two-loop
amplitudes are for 2 → 2 processes, our focus will be on
low-dimensional phase spaces. For a practical implementa-
tion of our regressors, we only need to generalize our results
to four dimensions to allow for off-shell bosons. While this
generalization is yet to be fully demonstrated, preliminary
results lead us to believe that it will be achievable.
As a proof of concept, we study the gg → ZZ process,

which is loop induced at leading order (see Fig. 1). We find
that ML regressors can achieve prediction times of Oð103Þ
times faster than traditional tools, while the predicted
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values for single- and double-differential distributions have
errors below 0.1%. This performance is achieved with
training times≲ 23 minutes on a single CPU core, and with
a disk size for the trained regressors of a few to tens of
megabytes (Mb). We also compare the performance of our
ML regressors with interpolation in the Supplemental
Material [65]. We find that the regressors perform well
over the entire phase space (PS), while interpolation gives
larger errors in regions where the function is peaked.
A logical next step after this work would be to test the

ML regressors on other processes and implement them into
a MC generator: particularly, the aforementioned two-loop
virtual amplitudes for diboson processes. We comment on
this, and further applications, at the end of this paper. It is
also worth emphasizing that the regressors we develop here
cover the entire phase space of a given process. This means
that they only need to be trained once and used repeatedly
for any combination of kinematic selection cuts that could
be imposed during event generation. Furthermore, the gain
in speed compensates for the training time after the first
∼ 150 k evaluations ever.

II. A PROOF OF CONCEPT WITH gg → ZZ

We choose to test the performance of ML regressors in
approximating the gg → ZZ squared amplitude for several
reasons. First, the LO contribution to this process arises at
one loop (Fig. 1) and is, therefore, relatively slow. Second,
it was shown in Ref. [66] that this process contributes
the bulk (∼ 60%) of the full NNLO correction of hadronic
Z-boson pair production, making its computation imper-
ative when performing phenomenological studies to test the
SM or to search for new physics (NP). In addition, it is
relevant for NP searches where it constitutes a background
to pp → ZH with H decaying to b̄b or to invisible new
particles [67–72]. At the same time, this process is simple
enough to avoid unnecessary complications: the squared
amplitude only depends on two variables, the center-of-
mass energy and the polar angle θ—i.e., jMð ffiffiffî

s
p

; cos θÞj2.
Furthermore, when the pair of Z bosons are exactly on
shell, there are no resonant peaks [73]. We leave the study
of processes with s-channel resonances for future work.
Moreover, since the αs dependence amounts to an overall

rescaling of the squared amplitude, we can approximate the
function using a fixed value of αs and restore the scale
dependence afterwards.

III. ML ALGORITHM AND TRAINING

A. Choosing a machine learning algorithm

The problem we are trying to address here requires,
above all, two features from an ML algorithm: first, it
must be able to approximate the true function over the
entire domain as accurately as possible; second, it must
be able to do so faster than existing dedicated programs,
which consume ∼ 5 × 10−3 ½s� per phase-space point [74].
An additional bonus feature is for the model to be light-
weight—i.e., to have a small disk size, ≲Oð100Þ Mb, so
that it is easy to distribute quickly.
With this in mind, we evaluated several algorithms

suited for regression in the early stages of this work. In
particular, we tested deep neural networks (DNNs) with
TensorFlow [76], random forests [77–79], and gradient
boosting machines (GBMs) [80,81]. From the outset,
GBMs as implemented in XGBoost [82] outperformed the
others by far in terms of speed and accuracy with very little
tuning [83]. Therefore, all the results presented in this paper
were obtained with XGBoost via the SCIKIT-LEARN API.
As discussed above, we used the default or close to the

default values for the hyperparameters, except for the number
of estimators (n), the maximum depth of the trees (md), and
the learning rate (lr), for which we performed a small scan:
n ∈ ½10; 1000�, md ∈ ½10; 800�, and lr ∈ ½0.01; 0.3�. Based
on this bare-bones optimization, the final set of parameters
used in this work are given in Table I.

B. Datasets for training and prediction

To train and test the XGBoost regressor, we gene-
rated 16.5 × 106 (16.5M) pairs of phase space points,
ð ffiffiffî

s
p

; cos θÞ, uniformly distributed in the region defined by

FIG. 1. SM LO diagrams for gg → ZZ, up to fermion momen-
tum flow and crossings.

TABLE I. Hyperparameter settings used for all XGBoost re-
gressors in this work. The parameters we attempted to optimize
are shown above the split. The values for the parameters below
the split are the XGBoost default ones with the exception of
“subsample,” see the text for details.

XGBoost parameter Value

n_estimators 200
max_depth 50
Learning rate 0.1

min_child_weight 1
γ 0
colsample_bytree 1
Subsample 0.75
Booster gbtree
Objective reg:squarederror
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ffiffiffî
s

p
∈ ½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Z þ p2
T;cut

q
; 3 TeV�;

cos θ ∈ ½−1; 1� ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4p2
T;cut

ŝ − 4m2
Z

s
: ð1Þ

We then computed the squared matrix element, hjMj2i,
using OpenLoops 2 [75]. Here, the angle brackets denote an
average over the colors and helicities of the incoming
gluons and a sum over the polarizations of the Z bosons.
The transverse momentum cut, pT;cut ¼ 1 GeV, is used to
regulate a singularity in the limit pT;Z → 0, similarly to
what is done in MCFM [86] and Madgraph_aMC@NLO [2]. We
chose ð ffiffiffî

s
p Þmax ¼ 3 TeV as an arbitrary cutoff relevant for

LHC physics. Nevertheless, it is straightforward, and
inconsequential, to extend the cutoff to the collider
center-of-mass energy by adding a new regressor for the
extended PS region without a penalty on the precision; we
checked this explicitly up to

ffiffiffî
s

p ¼ 14 TeV.
The full sample of 16.5M points was split into training

and prediction datasets with 1.5M and 15M points,
respectively. To ensure that the datasets are statistically
independent, we generated the phase-space points using
the PYTHON implementation of the Mersenne twister
algorithm [87] which, when initialized properly, has a
period of 219937 − 1.

C. Phase-space partitioning and multiple regressors

The function, hjMj2i, that we are trying to approximate
is peaked at the threshold and at cos θ → �1 (see the
Supplemental Material [65]). This motivates an ansatz to
break up the full phase space into smaller subregions of
roughly equal phase-space volumes with the purpose of
training one regressor per subregion. The aim of this
procedure is to have more regressors in regions where
the derivatives of the function are large and fewer regres-
sors where the derivatives are small.
For example, choosing cos θ and

ffiffiffî
s

p
regions defined by

cos θ ∈ f−1;−0.94;−0.7; 0.7; 0.94; 1g ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4p2
T;cut

ŝ − 4m2
Z

s
;

ffiffiffî
s

p
∈ f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Z þ p2
T;cut

q
; 1.3 ½TeV�; 3 ½TeV�g ð2Þ

partitions the full phase space into ten subregions, each
with its own dedicated XGBoost regressor. These partitions
are delineated by dashed gray lines in the right half
of Fig. 2.
For the remainder of this paper, we will refer to the

ansatz with ten regressors as the “ten-region” regressors,
and to the one trained on the full domain defined by Eq. (1)
as the “one-region” regressor. To compare the performance
of the one-region and ten-region regressors, we first train
the one-region regressor on a given dataset of sizeN points.

We then train each of the ten regressors that make up the
ten-region set on a dataset of size N=10, such that the total
number of training points is the same in both cases.

D. Training time

We benchmark the time it took to train the one-region
and each of the ten-region regressors on a single CPU core
of an Intel®Xeon® CPUmodel E5-2640V4@2.40 GHz
on x86_64 architecture. Since XGBoost can train and
predict on multiple cores by default, the times reported
here are quite conservative. In practice, modern desktop
machines with at least four cores are increasingly common,
and so training and prediction times can easily be improved
by a factor of a few to 10.
For a training dataset size of 1.5M PS points, the one-

region (ten-region) regressors took ∼ 4ð23Þ minutes to
train. In the ten-region case, we sum the times it took to
train each of the ten regressors. The results of the timing
tests for the training phase are good fits to simple power
laws:

One-region∶ t ¼ 2.45 × N1.35;

Ten-region∶ t ¼ 15.5 × N0.957; ð3Þ

whereN is the size of the training set in millions (106) and t
is the total training time in minutes.

IV. RESULTS

In order to benchmark the trained one-region and ten-
region regressors defined above, we study the relative error
of their predictions and measure their evaluation times. The
relative error at each phase-space point is defined as

FIG. 2. Absolute value of the percentage relative error per bin
of the double differential distribution, d2hjMj2i=d cos θd ffiffiffî

s
p

.
Each bin has size 141 × 0.2 (GeV, cos θ). The total number of
training (prediction) points is 1.5M (15M). Left: “one-region”
regressor. Right: “ten-region” regressor, where the dashed gray
lines delineate the subregions defined in Eq. (2).
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ε ¼ hjMj2iOpenLoops − hjMj2iXGBoost
hjMj2iOpenLoops

: ð4Þ

As for the training times, we measure the prediction times
on a single core of the same CPU described above.

A. Accuracy of predictions

Figure 2 shows the relative error, as defined in Eq. (4), on
the sum of the predicted d2hjMj2i=dPS values in each bin
for the one-region and ten-region regressors. Each of the
regressors was trained on 1.5M points, and the relative
errors were computed from predictions of 15M points.
Each bin has a size of 141 GeV × 0.2, which is appropriate
for phenomenological studies at the LHC. The left and right
sides of the plot correspond to the one-region and ten-
region regressors, respectively, and they are shown side by
side for ease of comparison. In addition, the right panel is
overlaid with the boundaries of the subregions defined in
Eq. (2). We find that the one-region regressor has a
maximum relative error per bin of 0.4%, while the ten-
region regressor has a maximum error of 0.07%.
For phenomenological studies, another important dis-

tribution is the singly differential one with respect to
ffiffiffî
s

p
.

The relative error for this distribution is shown in Fig. 3 and
is of OðpercentÞ and OðpermilleÞ for the one-region and
ten-regions cases, respectively.
In order to assess the effect of the size of the training set

on the performance of the regressors, we show in Fig. 4 the
fraction of points with relative error greater than 1%, 5%,
and 10% using the full 15M phase-space point prediction
dataset. The dashed (solid) curves correspond to the full
(subdivided) phase space. Again, it is clear that subdividing
the phase space is very effective in reducing the errors.
Figure 4 also shows that, for the chosen hyperparameters
(Table I), there is little benefit from using training datasets
larger than 1M points. Furthermore, we find no over-
training even up to training datasets of 1.5M points.

From the results presented in this section, the benefit of
subdividing the phase space and training separate machines
on the subregions is clear: the error between the one-region
and ten-regions cases is reduced by an order of magnitude
(see Figs. 2 and 3), while the prediction time is reduced by a
factor of 2 (see Fig. 5).

B. Prediction speed

The time required to predict one phase-space point is a
crucial performance metric for the trained regressor.
Clearly, it must be much faster than the time required to
evaluate the exact function (we use OpenLoops as our
benchmark; see Ref. [88]). The results of the timing tests
for the training phase are shown in Fig. 5 for both the one-
region and ten-region regressors. In addition, a simple
power-law fit to the points is shown for each one on the
plot. For the ten-region regressor trained on 1M points,
the prediction time is ∼ 1 × 10−5 seconds in comparison to

FIG. 3. Relative error of dhjMj2i=d ffiffiffî
s

p
. The red and the blue

curves correspond to the one-region and ten-region regressors,
respectively—see Eqs. (1) and (2).

FIG. 4. Percentage of predicted points with an error greater than
1% (blue), 5% (red), and 10% (black) as a function of the number
of trained points (the number of predicted points is 15M). The
solid (dashed) curves correspond to the ten-region (one-region)
regressors.

FIG. 5. Prediction time per point as a function of the size of
training set. The open circles (crosses) correspond to the results
for the one-region (ten-region) regressors. The solid curves are
simple power-law fits and are shown in the plot.
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8.7 × 10−3 seconds for the Fortran interface of OpenLoops—
i.e., a factor of ∼ 1000 speedup.
Note that the trained regressors can be packaged as a

single, standalone C library. We checked that calling
this library during an event generation run has negligible
overhead.

C. Disk size

Another desirable feature for the standalone library is to be
lightweight in terms of disk size. We find that for 1.5M
points, the one-region (ten-region) regressor has a size of 2.6
(22) Mb. This makes these regressors ultraportable, and they
could be downloaded on the fly duringMC event generation.
We envision that using these approximate amplitudes—i.e.,
regressors—could be given as an option to the user when
generating events with popular MC event generators such as
MG5_aMCNLO [1], Sherpa [89], and Whizard [90].

V. SUMMARY AND CONCLUSIONS

The idea of using ML regressors to approximate squared
amplitudes proposed in this work is a new application of
machine learning techniques in high-energy physics. Our
goal is to accurately predict the squared amplitudes using
pretrained regressors in a fraction of the time it takes to
evaluate the exact ones.
As a proof of concept, we studied the accuracy and speed

of XGBoost regressors to predict the squared amplitude for
the gg → ZZ process which is generated at one loop. Our
results show that these regressors deliver a thousandfold
speedup in evaluation timewith respect to OpenLoops with no
more than 0.07% error relative to the exact double differ-
ential distribution binned as in Fig. 2.
Another convenient feature of the XGBoost regressors

studied in this paper is their fast training time. Using the
hyperparameters given in Table I, training on 1.5M uni-
formly generated phase-space points takes about 23minutes
on one CPU core. Moreover, since XGBoost is by default
able to train and predict on multicore CPUs, actual training
and prediction times will be, in practice, faster by a factor
proportional to the number of available CPU cores. In
addition, the disk size of the trained regressor for this
process is at most 22 Mb, making it easy to distribute on the
fly during process generation in MC event generators.
Another important result of this work is to demonstrate

that the errors on the predictions of the XGBoost regressor
can be reduced by an order of magnitude by training
independent regressors on separate subregions of the full
phase space. A bonus feature of training more regressors on
subregions is that their aggregate prediction time for a
given dataset is reduced with respect to training a single
regressor on the full phase space.
In Table II, we summarize the aforementioned perfor-

mance benchmarks for one XGBoost regressor (one-region)

trained on the full phase-space region, and for ten regres-
sors (ten-region) each trained on a subregion.
The success of the proof of concept studied in this work

suggests many applications and further ideas to explore:
(1) Test the performance of ML regressors on qualita-

tively different channels with slow amplitudes. For
instance, i) amplitudes with resonant s-channels (see
the discussion in Ref. [73]), ii) (N)NLO amplitudes,
and iii) 2 → n processes.

(2) Test and benchmark other ML algorithms.
(3) Implement the trained regressors into an MC event

generator. For this, it is necessary to generalize to a
four-dimensional phase space to accommodate off-
shell gauge bosons; this is of immediate interest as a
followup.

(4) On a side note, it would be interesting to test the
performance of GBMs on interpolating PDFs and
NNLO grids.
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TABLE II. Main characteristics of the two ML regressors
trained on 1.5M points and predicting on 15M. The relative
errors εbinsmax and εbinsmin stand for the relative errors in the bins of size
141 × 0.2 (

ffiffiffî
s

p ½GeV� × cos θ) from Fig. 2.

One-region Ten-region

jεbinsmin j [%] 8 × 10−4 6 × 10−5 Fig. 2
jεbinsmaxj [%] 0.4 0.07 Fig. 2

tð1 coreÞ
predict ½s=point� 2 × 10−5 10−5 Fig. 5

tð1 coreÞ
train ½s� 254 1374 Fig. 5

Size [Mb] 2.6 22
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