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Quantum field theory can be a new medium for communication through quantum energy teleportation.
We perform a demonstration of quantum energy teleportation with a relativistic fermionic field theory of
self-coupled fermions, called the massive Thirring model. Our results reveal that there is a close
relationship between the amount of energy teleported and the phase diagram of the theory. In particular, we
show that the teleported energy peaks near the phase transition points. Since these results are obtained by
measuring the two local subsystems, the noise from the quantum computation can be considerably reduced,
allowing for efficient quantum simulations. Moreover, it is a new entanglement-based method that reveals
global structure through local measurements.
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I. INTRODUCTION

Quantum field theory (QFT) has been quite successful in
explaining quantum many-body systems. From condensed
matter physics, such as superconductors and topological
insulators, to the standard model of elementary particles as a
low-energy effective theory of high-energy physics, QFT
can explain a wide variety of experimental results with
extremely high precision. The approach to nonperturbative
phenomena is a remaining challenge for QFT, which has
been explored by various methods such as first-principles
calculations and lattice QCD. In addition, with the advent
of quantum computers, we are able to perform real-time
nonperturbative quantum simulations of many-body sys-
tems. One of the key challenges in studying QFT is the
complexity of the calculations involved. Simulating these
systems using classical computers can be computationally
expensive, as the complexity of the calculations increases
rapidly with the size of the system. Quantum computers, on
the other hand, have the potential to perform these simu-
lations much more efficiently. In addition, the development
of quantum algorithms and quantum computers has greatly
contributed to the fundamental understanding of quantum
mechanics, including the control of quantum states and the
measurement of quantum states.

As such, understanding the behavior of quantum many-
body systems through quantum simulations has been the
primary focus of the recent cross-disciplinary interest
in physics and computer science, but for physics, the
connection with quantum science and technology is not
limited to quantum computation. Regarding the connec-
tion between QFT and quantum information theory, there
are active studies on entanglement entropy and black
holes [1–3]. These studies are mainly concerned with
high-energy physics at the Planck scale. While such
attempts have been extremely successful, new efforts to
reveal the nature of quantum systems and spacetime through
measurement have been active in recent years in a wide
range of fields, including high-energy physics, condensed
matter physics, and quantum computation [4–9].
Quantum energy teleportation (QET) is a protocol for

the study of local energies that takes advantage of the
entanglement nature of the ground state of quantum many-
body systems [10–18]. Just as quantum teleportation can
transfer quantum states to remote locations [19–23], it is
expected that QET can transfer energy to remote locations
using local operation and classical communication
(LOCC) only. The role of QET in physics and information
engineering is largely unexplored, as the theory has not
received much attention for a long time since it was
proposed about 15 years ago. An interesting property of
QET is that multiple people in different locations who
share the same ground state initially can simultaneously
lower the energy of their local systems by applying
conditional operations. This is only possible when the
sender and receivers of the energy conduct the appropriate
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LOCC and cannot be obtained by any unitary operation or
random conditional operations. (To explain this better, I
disclosed the code used for quantum simulation of QET
with an IBM quantum computer [17]. The code is available
on both GitHub and Google Colab [24].) Therefore, QET
will not only help enhance our understanding of funda-
mental issues in quantum statistical mechanics, condensed
matter physics, and high-energy physics, but it will also
provide interesting perspectives for engineering applications
of quantum computation and quantum communication.
The purpose of this Letter is to investigate the role and

properties of QET in field theory. From the viewpoint of
quantum computer applications, we simulate QET using
the massive Thirring model [low-dimensional quantum
electrodynamics (QED)], which is one of the most widely
used (1þ 1)-dimensional models of QFT. First, we esti-
mate the phase diagram of the massive Thirring model
using entanglement entropy and chiral condensate. The
main result of this Letter is the identification of a sharp peak
in teleported energy near the phase transition point. We also
analyze the time evolution of the entanglement entropy
difference ΔSAB using Alice’s postmeasurement state and
show numerically how the entanglement entropy lost in
Alice’s measurement is recovered over time due to particle-
particle interactions in the system if Bob does nothing after
Alice’s measurement. Some of the results in this Letter are
based on simulations of quantum gate operations using the
Qasm_Simulator provided by IBM, and we confirm that all of
these results are fully consistent with those obtained by
exact diagonalization. These results provide new insights
into local operations of quantum fields based on remote
communication and nontrivial energy flow mediated by
many-body quantum systems.

II. LOW-DIMENSIONAL QFT

The (1þ 1)-dimensional QFTs are of significant interest
since they are simpler and more tractable than higher-
dimensional QFT, and they have rich mathematical struc-
tures that have been studied extensively from various
motivations, including condensed matter physics, high-
energy physics, statistical mechanics, and mathematical
physics [25]. Some of the models have a number of
interesting properties, including confinement and the chiral
anomaly; therefore, they are useful toy models of QCD. The
typical models preferred in studies of (1þ 1)-dimensional
QFTs are the Thirring model and the Schwinger model. In
particular, they are attractive models in terms of quantum
simulation and quantum computation [26–32].
The Thirring model is a simplified version of QED in

(1þ 1) dimensions, which was introduced by Walter
Thirring in 1958 [33]. It is a theory of a self–coupled
Dirac field, and it can be used to describe a variety
of physical systems, such as superconductors [34], stat-
istical mechanics, high-energy physics, and mathematical
physics [35].

While the Thirring model and the Schwinger model
are models for fermions, there is a significant (1þ 1)-
dimensional model for bosons called the sine-Gordon
model, which is of significant interest in theoretical
physics due to its integrability, soliton solutions, and
relations to other models such as the Thirring model,
massive Schwinger model, and the XY model. The sine-
Gordon model is a (1þ 1)-dimensional field theory that is
described by the sine-Gordon equation, which is a non-
linear partial differential equation. The soliton solution of
this model describes a kink or antikink solution which is a
topological mode in the field that can be interpreted as
particlelike excitation [36]. The topological nature of the
solitons ensures the stability, and the solitons retain their
shape even during collision.
It has been widely known that both models are related by

the bosonization. By representing the fermionic fields in
terms of bosonic fields, the bosonized version of the
Thirring model becomes the sine-Gordon model. This
is known as the S duality between the two models.
More detailed theoretical descriptions are given in the
Supplemental Material [37].
Throughout this work, we consider the massive Thirring

model, whose Lagrangian is

LTh ¼ ψ̄ðiγμ∂μ −mÞψ −
g
2
ψ̄γμψψ̄γμψ ; ð1Þ

where m is the fermion mass, g is the dimensionless four-
fermion coupling constant, and ψ ¼ ψðxÞ is a spinor field
with two components ψ1ðxÞ and ψ2ðxÞ. It is widely known
that the massive Thirring model is dual to the sine-Gordon
model and the classical two-dimensionalXY model [38]. For
example, a Kosterlitz-Thouless phase transition at T ∼ Kπ=2
in the XY model corresponds to a critical point g ∼ −π=2
called Coleman’s instability point in the Thirring model.
They are also related to a critical point at t ∼ 8π in the sine-
Gordon model.
It turns out that the spin representation of the massive

Thirring model is

HTh ¼ −
1

4a

XN−2

n¼0

ðXnXnþ1 þ YnYnþ1Þ þ
m
2

XN
n¼0

ð−1Þnþ1Zn

þ ΔðgÞ
a

XN−2

n¼0

�
Zn þ 1

2

��
Znþ1 þ 1

2

�
; ð2Þ

whereΔðgÞ ¼ cosðπ−g
2
Þ, and a is the lattice spacing [38–43].

The theoretical background of the lattice Hamiltonian is
described in the Supplemental Material [37]. Note that only
mass m and lattice spacing a have mass dimension, and ma
is a dimensionless parameter. We take ℏ ¼ 1.
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III. SIMULATION OF QUANTUM ENERGY
TELEPORTATION

To facilitate clarity of the results, we add a constant ϵi to
every local Hamiltonian of the Thirring model

HTh ¼
X
n

Hn; ð3Þ

where Hn is the local Hamiltonian including the nearest-
neighbor interactions, and each ϵn should be chosen in such
a way that

hgjHThjgi ¼ hgjHnjgi ¼ 0; ∀ i ∈ E; ð4Þ

where jgi is the ground state of the total Hamiltonian HTh.
Note that, in general, jgi is not the ground state of local Hn.
The explicit form of Bob’s local Hamiltonian and the details
of computation are given in Supplemental Material [37]
Eq. (A9). It is important that nontrivial local manipulations,
including the measurement of the ground state, yield excited
states and thus increase the energy expectation value. The
increase in energy is supplied by the experimental appara-
tus. Moreover, our ground state jgi is an entangled state in
general.
The QET protocol is as follows. First, Alice measures her

Pauli operator σnA by PnAðμÞ ¼ 1
2
ð1þ μσnAÞ and obtains

either μ ¼ −1 or þ1. The local measurement of the
quantum state at a subsystem A destroys this ground state
entanglement. At the same time, energy EA from the device
making the measurement is injected into the entire system.
The injected energy EA is localized around the subsystem A
in the very early stages of time evolution; however, it is not
possible for Alice to extract EA from the system by her
operations alone at nA. This is because information about
EA is also stored in remote locations other than nA due to the
entanglement that exists prior to the measurement. In other

words, Alice’s energy EA can be partially extracted at any
location other than nA. Now let us consider taking advan-
tage of the quantum many-body nature of the quantum
many-body system to extract energy from a different
location other than nA. This can be accomplished by
LOCC, as shown below.
Via a classical channel, Alice sends her measurement

result μ to Bob, who applies an operation UnBðμÞ to his
qubit and measures his local operators XnB; YnB; ZnB
independently. The density matrix ρQET after Bob operates
UnBðμÞ to PnAðμÞjgi is where ρQET is

ρQET ¼
X

μ∈f−1;1g
UnBðμÞPnAðμÞjgihgjPnAðμÞU†

nBðμÞ: ð5Þ

Using ρQET, the expected local energy at Bob’s local system
is evaluated as hEnBi ¼ Tr½ρQETHnB �, which is negative in
general. Because of the conservation of energy, EB ¼
−hEnBið> 0Þ is extracted from the system by the device
that operates UnBðμÞ [44]. In this way, Alice and Bob can
transfer the energy of the quantum system only by
operations on their own LOCC. These are summarized
in Fig. 1.
It should be noted that the Thirring model is a relativistic

field theory in performing QET, which could be a problem
if the particle is massless since the speed of classical
communication does not exceed the speed of light. We will
consider a massive particle and assume that Bob can
receive energy faster than the time-evolution rate of the
system.
In what follows, we give the details about the operations

of Alice and Bob. We define UnBðμÞ by

UnBðμÞ ¼ cos θI − iμ sin θσnB; ð6Þ

FIG. 1. Protocol of quantum energy teleportation (left) and the corresponding quantum circuits (right). First, Alice measures her local
operator XnA and tells her result (μ ∈ fþ1;−1g) to Bob. At this point, Alice’s local energy is excited EnA > 0. Then, to obtain energy,
Bob applies conditional operation UnBðμÞ to his local qubit and measures the corresponding terms of his local Hamiltonian HnB .
Statistically, he will observe hHnBi ¼ Tr½ρQETHnB � < 0 and gain EnB ¼ −hHnBi through his measurement device.
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where θ obeys

cosð2θÞ ¼ ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ η2

p ; ð7Þ

sinð2θÞ ¼ −
ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þ η2
p ; ð8Þ

where

ξ ¼ hgjσnBHσnB jgi; ð9Þ

η ¼ hgjσnA _σnB jgi ð10Þ

with _σnB ¼ i½H; σnB �. The local Hamiltonian should be
chosen so that ½H; σnB � ¼ ½HnB; σnB �. The average quantum
state ρQET is obtained after Bob operates UnBðμÞ to
PnAðμÞjgi. Then, the average energy Bob measures is

hEnBi ¼ Tr½ρQETHnB � ¼
1

2

�
ξ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ η2

q �
; ð11Þ

which is negative if η ≠ 0. If there is no energy dissipation,
the positive energy of −hEnBi is transferred to Bob’s device
after the measurement due to energy conservation. Based on

the quantum circuit in Fig. 1, we performed a quantum
simulation of QET for N ¼ 6, 10, 14 at ΔðgÞ ¼ −0.2;
a ¼ 0.2, and the results are shown in Fig. 2(f). Dashed lines
correspond to the exact results. In this work, we put
Alice and Bob near the boundary nA ¼ 1; nB ¼ N − 2.
Bob’s local energy can be calculated by the explicit form
of his local Hamiltonian given in Eq. (A9) in the
Supplemental Material [37]. The simulation results are given
in Table I in the Supplemental Material [37].
Here let us describe the importance of the results. First,

the efficiency of this work can be explained as follows. First
of all, in general, to measure physical quantities in a
quantum many-body system using a quantum computer,
it is customary to measure all the qubits. However, the
measurement of each qubit is accompanied by noise,
making it extremely difficult to accurately measure physi-
cal quantities in large systems. Given that error correction
also requires a huge number of qubits, it is not realistic to
measure all qubits accurately. In contrast, the method using
energy teleportation reproduces the basic structure of the
phase diagram by measuring only the six terms of the local
Hamiltonian (as shown in Table I in the Supplemental
Material [37]), regardless of the system size (see also Fig. 1
in the Supplemental Material [37]). This dramatically
improves computational efficiency.

FIG. 2. (a) Heat map of entanglement entropy atN ¼ 6. The Thirring model has three distinct phases, which can be clearly read off the
diagram at N ¼ 6. (b) Heat map of entanglement entropy difference ΔSAB. (c) Heat map of teleported energy hHnBi at N ¼ 6. It is
crucial that the value of the teleported energy peaks at the phase transition points, showing a clear correspondence to the phase diagram.
(d),(e) Time evolution of the entanglement entropy difference. This is due to the natural time evolution of the system, as seen when Bob
does not perform any operations on his system after Alice’s local operations. Decreasing 1 − ΔSAB

SAB
in the early stages of time evolution

means that entanglements broken by Alice’s observations are recreated by the interactions in the system. (f) Simulation results of
expected energy of Bob’s local system obtained by QET. Error bars indicate statistical errors.

KAZUKI IKEDA PHYS. REV. D 107, L071502 (2023)

L071502-4



Additionally, it is extremely nontrivial that long-range
correlations can be captured by measuring only two points.
This is because the overall structure is not determined
solely by local properties. Our results provide an affirma-
tive and explicit solution to this nontrivial question by using
entanglement in the ground state of quantum many-body
systems. This result will have major implications for
experiments and measurements of quantum many-body
systems. In fact, similar reports are provided in symmetry-
protected topological materials and the Ising model [45].
We next study the entanglement entropy between two

subsystems A, B such that A∩B¼∅;A∪B¼f1;2;…;Ng.
It is known that entanglement entropy is a good order
parameter in spin chains [46]. Let ρ be a density operator on
the entire system A ∪ B. Then, the entanglement entropy
between A and B is defined by

SðρÞ ¼ −TrAðρA log ρAÞ; ð12Þ

where ρA is defined by tracing out the Hilbert space of B:
ρA ¼ TrBρ. In this study, we choose ρ as the ground state jgi
of the Hamiltonian ðρ ¼ jgihgjÞ. Figure 2(a) shows the
entanglement entropy between the left and right half sub-
systems, i.e., A ¼ f0;…; N

2
g. The figure exhibits sharp

peaks at the critical points of phase transitions that can be
understood by the phase diagram of chiral condensate in
Fig. 1 in the Supplemental Material [37]. Figure 2(c) shows
the teleported energy Tr½ρQETHnB � to Bob’s local system. It
is significant that the teleported energy is enhanced along the
critical points of the phase transition. This will be understood
by a relation between Bob’s energy Tr½ρQETHnB � and the
entanglement entropy difference ΔSSA, which is shown in
Fig. 2(b).
The change in entropy before and after the measurement

by Alice can be evaluated as follows:

ΔSAB ¼ SAB −
X
μ

pμSABðμÞ; ð13Þ

where pμ is the probability distribution of μ, and SABðμÞ
is the entanglement entropy after the measurement
ξ ¼ arctanðkhÞ. After Alice’s postmeasurement, the state
is mapped to

jAðμÞi ¼ 1ffiffiffiffiffipμ
p PnAðμÞjgi: ð14Þ

Then, SABðμÞ is calculated with the density matrix
jAðμÞihAðμÞj.
As discussed in Refs. [11,47], ΔSAB is bounded below

by a function fðξ; ηÞ in such a way that

ΔSAB ≥ fðξ; ηÞEB: ð15Þ

This indicates that the transferring energy involves a
commensurate consumption of entropy. Similar to the
Maxwell demon argument [48,49], Bob’s conditional
operations reduce the entropy of the local system. If
Bob does nothing after Alice’s measurement, Figs. 2(d)
and 2(e) illustrate how the entanglement entropy is re-
created by the natural time evolution of the system.
Moreover, the maximal energy that Bob would receive is
bounded below by the difference in entropy:

max
U1ðμÞ

EB ≥ hðξ; ηÞΔSAB; ð16Þ

where hðξ; ηÞ is a certain function.
Although it is difficult to analytically obtain the concrete

forms of functions f and h, the results of this study show
that there is a clear correspondence between the energy
obtained by QET and the phase diagram of QFT.
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