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Starting from a reanalysis of previous work, we construct the proper low-energy quantum field theory
(QFT) limit of a full quantum gravity theory in the Born-Oppenheimer approach. We separate the
gravitational sector into a classical background, given by a vacuum diagonal Bianchi I cosmology, and its
quantum perturbations represented by the two graviton degrees of freedom; we further include quantum
matter in the form of a test scalar field. We then implement a Born-Oppenheimer separation, where the
gravitons and matter play the roles of “slow” and “fast” quantum components, respectively, and perform a
WKB expansion in a Planckian parameter. The functional Schrödinger evolution for matter is recovered
after averaging over quantum-gravitational effects, provided that a condition is imposed on the gravitons’
wave functional. Such a condition fixes the graviton dynamics and is equivalent to the purely gravitational
Wheeler-DeWitt constraint imposed in previous approaches. The main accomplishment of the present work
is to clarify that QFT in curved spacetime can be recovered in the low-energy limit of quantum gravity only
after averaging over the graviton degrees of freedom, in the spirit of effective field theory. Furthermore, it
justifies a posteriori the implementation of the gravitational Wheeler-DeWitt equation on the “slow”
gravitons’ wave functional rather than assuming its validity a priori.
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I. INTRODUCTION

One of the most striking differences between the gravi-
tational field and other fundamental forces is that, as a
consequence of its geometrical nature, the former is an
“environment” interaction [1–3]. This peculiarity of the
gravitational field is particularly evident when we attempt a
canonical quantization of geometrodynamics [4–7]. In fact,
the Hamiltonian vanishes and the quantum evolution appears
to be frozen, leading to the so-called “problem of time” in
quantum gravity [7,8]. This feature is not altered by the
introduction of matter fields, in the presence of which the
full gravity-matter Hamiltonian is vanishing. The simple
observation that the pure gravity Hamiltonian is no longer
zero suggests the possible role of matter as a clock for the
gravitational field evolution [9–15]. However, quantum field
theory on curved spacetime (QFT-CS) is an established
theory [16–18] which led to a number of intriguing and
robust predictions, such as the Unruh effect [19] and the
Hawking effect [20]. It is then natural to ask how QFT-CS,
which relies on a notion of time, can be recovered from a full

timeless quantum gravity theory including matter in the
appropriate low-energy limit.
This question was first approached in Ref. [21], where the

notion of Tomonaga “bubble time” was introduced. A more
robust and physically well-grounded proposal was discussed
in Ref. [22] using a WKB expansion [23,24] in ℏ at zeroth
and first order (see also Ref. [25]). In Ref. [22] the notion of
time arose from the matter wave functional’s dependence on
the quasiclassical gravitational field,which in turn depends at
zeroth order on the time coordinate labeling the spacetime
foliation (towhichwewill refer fromnowonas “label time”).
The same notion of time was adopted in Ref. [26] (see also
Refs. [27,28]), where the expansion in a Planckian parameter
was considered up to the order where quantum gravity
corrections to QFT naturally emerge. The main merit of
Ref. [26] was to stress how, at such order, a Born-
Oppenheimer (BO) [29,30] separation between the behavior
of the “slow” gravitational variables and the “fast” matter is
affected by the serious problem of nonunitarity (see
Refs. [28,31–35] for possible solutions to this puzzle).
In this paper, we reevaluate the validity of some of the

assumptions made in Refs. [22,26]; our analysis reformu-
lates on more solid physical grounds the problem of
recovering QFT-CS at low energies using a WKB approach.
We consider a minisuperspace model—a Bianchi I vacuum
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cosmology—with a quantum free scalar field. One major
difference (with the analyses in Refs. [22,26]) is that we
identify a “slow” quantum component in the gravitational
sector, represented by independent graviton degrees of
freedom. Different from Ref. [22], we do not impose a priori
a separate Wheeler-DeWitt (WDW) equation for the gravi-
tational component only, but rather justify it by using the
typical gauge invariance of the BO formulation [26] to
have QFT-CS hold in the appropriate limit. The result of our
analysis is that the matter dynamics is obtained after
averaging over the graviton degrees of freedom, as one
would expect in the context of an effective field theory on a
quasiclassical background.
This paper is structured as follows. In Sec. II we motivate

the need for a reformulation of the semiclassical approach to
quantum-gravitational corrections by outlining four basic
conceptual points. In Sec. III we introduce the model of our
interest, whose dynamics is studied in the perturbativeWKB
scheme in Sec. IV, and also compared with the gravitational
WDW equation. Concluding remarks follow in Sec. V.

II. MOTIVATIONS FOR A NEW SCHEME

We now motivate our analysis by reevaluating some
aspects of the proposal developed in Ref. [22] (see also
Refs. [26,36,37]).
First, we observe that in Ref. [22] the separation between

a quasiclassical background system and a “small” quantum
one was pursued without taking into account the physical
nature of the variables. Here, in analogy with Refs. [21,26],
we consider a quasiclassical spacetime described by vari-
ables hA (with A ¼ 1;…; n) and a matter sector described
by variables qr (with r ¼ 1;…; m). In both the present
discussion and the concrete application below, we focus on
a minisuperspace model. The gravitational component of
the super-Hamiltonian in the Arnowitt-Deser-Misner
(ADM) formalism [38] takes the form [22]

Hg ≡GABpApB þ VðhAÞ ¼ 0; ð1Þ

where pA are the momenta conjugate to hA. Both the
minisupermetric GAB and the potential term V are functions
of hA, the latter due to the nonvanishing spatial curvature.
The quantum matter component of the super-Hamiltonian
HQ depends on the matter degrees of freedom qr as well as
the gravitational variables hA.
In Ref. [22] a BO separation of the quasiclassical and

quantum wave functionals was implemented, in which the
former is the “slow” and the latter the “fast” component of
the coupled system, based on the scale separation
hHQi=hHgi ∼ ℏ, where h·i denotes the expectation value
on the respective wave functionals. The total wave func-
tional of the gravityþmatter system is decomposed as

ΨðhA; qrÞ ¼ AðhAÞeiSðhAÞ=ℏχðhA; qrÞ; ð2Þ

where the amplitude A and the function S are real, and χ is
associated to quantum matter.
Promoting the two super-Hamiltonian terms to canonical

operators Ĥg and ĤQ, the system is quantized à la Dirac by
imposing the following constraints:

ðĤg þ ĤQÞΨ ¼ 0; ð3Þ

ĤgAeiS=ℏ ¼ 0; ð4Þ

where Eq. (4) states that the gravitational component
independently satisfies its own WDW equation.
Combining via a WKB expansion in ℏ, Eqs. (3)–(4) take
the form

GAB
∂S
∂hA

∂S
∂hB

þ VðhAÞ ¼ 0; ð5Þ

GAB
∂

∂hA

�
A2

∂S
∂hB

�
¼ 0; ð6Þ

iℏ∂tχ ¼ NĤQχ; ð7Þ

whereN is the lapse function, i.e., dts ¼ NðtÞdt, where ts is
the synchronous time. The time derivative in Eq. (7) is
defined as

∂tχ ≡ 2NGAB
∂S
∂hA

∂χ

∂hB
¼ _hA

∂

∂hA
χ; ð8Þ

where in the second equality we made use of the Hamilton
equation obtained by varying with respect to pA (here a
dot denotes differentiation with respect to label time).
Equation (5) is of order ℏ0 and corresponds to the
Hamilton-Jacobi equation for the classical limit of gravity.
Both Eqs. (6) and (7) are obtained1 at order ℏ; the former
arises from the gravitational WDW equation, while the
latter yields the desired QFT dynamics for quantum matter,
recovered by simply combining an expansion in ℏ with the
BO separation.
Now we are ready to outline four ambiguous points of

the approach [22] which are the main motivations for the
present study.

(i) The variables hA do not represent a set of classical
gravitational degrees of freedom, because a quantum
amplitude AðhAÞ is retained at order ℏ. Qualitatively,
we could write hA ¼ h0AðtÞ þ δhA, where h0AðtÞ
account for the classical gravitational degrees of
freedom (with the dependence on the label time t
determined by the Hamilton equations), while δhA

1Unlike Ref. [22], here we adopt the “natural” operator
ordering (functions of hA are always on the left of the corre-
sponding derivatives). This choice, also discussed in Ref. [26],
has no deep physical implications for the conceptual paradigm.

MANICCIA, MONTANI, and ANTONINI PHYS. REV. D 107, L061901 (2023)

L061901-2



represent quantum corrections of order ℏ to some
suitable power. Thus, the time differentiation (8)
should be defined by employing derivatives with
respect to h0A only, rather than the full quantum
variable hA.

(ii) This also implies that δhA are independent degrees
of freedom with respect to h0AðtÞ. Therefore, a
description of their dynamics is necessary. This is
readily understood if we remember that the small
metric perturbations of an isotropic universe (whose
only degree of freedom is given by the cosmic scale
factor a) have two scalar, two vector, and two tensor
components, at both a classical and a quantum level.
These degrees of freedom are independent from a
and are different in number and morphology from
the small quantum fluctuations δa.

(iii) Equations (6) and (7) both live at the same order in
ℏ and their separation relies on the assumption that
it is a priori possible to impose the gravitational
WDW constraint independently. However, this
assumption does not have a physical motivation
in the analysis of Ref. [22], and is inconsistent with
a pure BO approximation, because it violates its
typical gauge invariance. In fact, the BO method
separates the whole system into a slow and a fast
component, with the wave functional (2). Thus, if
we multiply the quantum matter wave functional χ
by a phase depending on hA, the state is invariant
provided that we multiply the gravitational compo-
nent by an inverse phase. This gauge symmetry is
broken if we separately impose the gravitational
constraint, so that such a procedure appears rather
ambiguous.

(iv) The functional Schrödinger equation (7) is not the
right one for quantum matter on a classical curved
spacetime, since the matter wave functional χ
depends on the quantum fluctuations of the back-
ground δhA. This dependence, which was implicitly
neglected in Ref. [22], is problematic for the purpose
of recovering QFT-CS.

We would like to remark that the difficulties i), ii), and iv)
were also present in Ref. [26], while iii) was not, because
the equation for the quantum-gravitational amplitude AðhAÞ
was obtained via a gauge condition (see Ref. [34] for a
comparison of the two approaches in Refs. [22] and [26]).
With these motivations, we now reformulate the problem

in a Bianchi I cosmological background, obtaining the
correct QFT-CS limit without imposing the gravitational
constraint and after averaging over quantum-gravitational
effects.

III. MINISUPERSPACE MODEL

Starting from point i) of the previous section, we take the
classical cosmological background to be a vacuum diago-
nal Bianchi I model, which is a homogeneous and spatially

flat geometry (the simplest case of the Bianchi classifica-
tion [2,39]). The advantage of this choice over a
Friedmann-Lemaître-Robertson-Walker model (e.g., in
Refs. [27,40–43]) is that, being a vacuum geometry, no
scalar or vector perturbations are present [1,3].
In the Misner variables α, βþ and β− [1,44], the line

element reads

ds2 ¼ −N2ðtÞdt2 þ eαðeβÞijdxidxj; ð9Þ

where β≡ diagfβþ þ ffiffiffi
3

p
β−; βþ −

ffiffiffi
3

p
β−;−2β−g is a

diagonal traceless matrix. The Misner variables depend
on the label time t only; α corresponds to the logarithmic
volume of the universe, while βþ and β− represent the spatial
anisotropies. The supermomentum constraint is identically
satisfied and the super-Hamiltonian is

HIðαðtÞ; β�ðtÞÞ ¼
4

3M
e−

3
2
αð−p2

α þ p2þ þ p2
−Þ; ð10Þ

where M ¼ c=32πG ¼ cm2
pl=4ℏ is a Planckian-order

parameter with dimensions of mass over length (with G
being the Newton constant and mPl being the reduced
Planck mass).
According to point ii), we describe the gravitational

fluctuations via tensor perturbations only, as guaranteed by
the choice of the vacuum Bianchi I model. Thus, the “slow”
quantum degrees of freedom δhA correspond to gravitons
and are independent from the classical background. In the
Mukhanov-Sasaki (MS) formalism [45–47], the tensor
perturbations can be described via the gauge-invariant
variables vλk in Fourier space (λ identifies the two polari-
zation states). For the Bianchi I model [48], the corre-
sponding Hamiltonian (where N ¼ eα in the conformal
time η gauge) is

NHðvλÞ ¼
X
k;λ

1

2

h
−∂2

vλk
þ ω2

kðηÞðvλkÞ2 þ Vλ;λ̄

i
: ð11Þ

Here each mode k, λ behaves as a time-dependent harmonic
oscillator with ω2

kðηÞ ¼ k2 − z00λ=zλ, where zλðη; kiÞ is a
function of the background metric and 0 ≡ ∂η. The inter-
action potential Vλ;λ̄ depends on the shear tensor σij ¼
1
2
ðeβÞ0ij of the background metric and expresses the mixing

of the two polarization modes (λ; λ̄) which takes place due
to the anisotropies [48] even at the classical level [49],
differently from isotropic settings. There is no mixing
between scalar and tensor perturbations because we are
neglecting the backreaction of the scalar field on the metric
(see Refs. [50–53] for perturbations in a Bianchi I universe
coupled to matter).
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We consider a free test scalar field as the “fast” quantum
matter sector (e.g., the inflaton field), whose Hamiltonian
in the MS formalism takes the form

NHðϕÞ ¼
X
k

1

2
½−∂2ϕk

þ ν2kðηÞðϕkÞ2�: ð12Þ

Here, each Fourier mode corresponds to a time-dependent
harmonic oscillator with ν2kðηÞ ¼ k2 − ðeαÞ00=eα.
The WDW equation for the full model is

ĤΨ ¼ ðĤI þ ĤðvλÞ þ ĤðϕÞÞΨ ¼ 0; ð13Þ

and the wave functional Ψ is assumed to be separable in a
BO scheme as

Ψ ¼ ψgðα; β�; vλkÞχmðϕk; α; β�; vλkÞ: ð14Þ

This factorization follows from the assumed difference in
energy scale between the matter and gravitational sectors;
furthermore, ψg is independent of the matter variables ϕk

because we assume that the fast quantum sector has a
negligible backreaction on the gravitational one. Given the
separation (14), the WDW equation (13) is invariant under
the transformation

ψg → ψge−
i
ℏθ; χm → e

i
ℏθχm; ð15Þ

where the phase θ ¼ θðα; β�; vλkÞ depends on the gravita-
tional variables only.
As in point iii), we will not require the gravitational sector

to satisfy the gravitational constraint a priori. The gravitons’
evolution will instead be derived on physical grounds by
requiring the correct QFT dynamics to arise in the appro-
priate limit and exploiting the gauge invariance (15).

IV. WKB ANALYSIS OF THE DYNAMICS

We can now apply the WKB perturbative scheme to our
model. We use 1=M as the expansion parameter, where M
is the (large) Planckian parameter in Eq. (10). This allows
us to consistently separate the gravity and matter sectors, in
analogy with Refs. [26–28,31,34,35,41]. We emphasize
that the (semiclassical) WKB expansion in the Planck
constant ℏ used in Ref. [22] is equivalent to the one used
here (see Ref. [34] for a detailed discussion on this point).
Expanding up to order M0, the wave function (14) takes

the form

Ψ ¼ e
i
ℏMS0e

i
ℏðS1þOðM−1ÞÞei

ℏðQ1þOðM−1ÞÞ; ð16Þ

where at leading order S0 ¼ S0ðα; β�Þ. The complex
functions Sn ¼ Snðvλk; α; β�Þ and Qn ¼ Qnðϕk; α; β�; vλkÞ
are associated to the tensor and scalar quantum components
of the system, respectively, which must also depend on

α; β�.
2 The WDW equation (13) applied to Eq. (16) can

then be perturbatively examined at each order in 1=M. At
OðMÞ we obtain

4

3
e−

3
2
αMð−ð∂αS0Þ2 þ ð∂þS0Þ2 þ ð∂−S0Þ2Þ ¼ 0; ð17Þ

which is consistent with the classical Bianchi I solution

S0 ¼ kþβþ þ k−β− þ kαα; ð18Þ

with kα < 0 corresponding to an expanding universe.
Let us now introduce the time differentiation operator as

in Eq. (8) for N ¼ eα, but now constructed using only
derivatives with respect to the classical variables α; β� [this
way the issue i) introduced in Sec. II does not arise]:

−iℏ∂T ¼ 8

3
e−

1
2
αð∂αS0∂α þ ∂þS0∂þ þ ∂−S0∂−Þ: ð19Þ

Using Eqs. (19) and (18), at OðM0Þ we find

− iℏð∂Tei
ℏS1Þei

ℏQ1 − iℏð∂Tei
ℏQ1Þei

ℏS1

þ 1

2

X
k;λ

½ω2
kðvλkÞ2 þ Vλ;λ̄ − ∂

2
vλk
�ei

ℏðS1þQ1Þ

þ 1

2

X
k

½ν2kðϕkÞ2 − ∂
2
ϕk
�ei

ℏðS1þQ1Þ ¼ 0: ð20Þ

To address the problem of the dependence of the quantum
matter wave functional on the graviton variables [see point
iv) in Sec. II] and in the spirit of effective field theory, we
average over quantum-gravitational effects to recover QFT-
CS, i.e., a functional Schrödinger equation for the quantum
matter sector. To this end, we label Γg ¼ expðiS1=ℏÞ (which
is ψg at order M0 only) and multiply Eq. (20) by the
conjugate Γ�

g ¼ expð−iS�1=ℏÞ, obtaining

− iℏ∂TðΓ�
gΓgχÞ þ iℏð∂TΓ�

gÞΓgχ

þ 1

2

X
k;λ

½ðω2
kðvλkÞ2Γ�

g þ Vλ;λ̄Γ�
g − ∂

2
vλk
Γ�
gÞΓgχ

þ∂vλk
ð2ð∂vλkΓ�

gÞΓgχ − ∂vλk
ðΓ�

gΓgχÞÞ�

þ 1

2

X
k

½ν2kðϕkÞ2 − ∂
2
ϕk
�Γ�

gΓgχ ¼ 0; ð21Þ

where χ ¼ expðiQ1=ℏÞ also depends on the vλk. We can
eliminate such a dependence by integrating over the vλk, thus
considering an “average effect” of the gravitons. In doing

2Here Sn and Qn are in general complex functions, whereas in
Eq. (2) the exponent S is real-valued and an amplitude A is
explicitly extracted.
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so, we assume that the wave functionals satisfy appropriate
boundary conditions such that

Z Y
k;λ

dvλk
X
k;λ

∂vλk
ð2ð∂vλkΓ�

gÞΓgχ − ∂vλk
ðΓ�

gΓgχÞÞ ð22Þ

vanishes. In order to recover the desired Schrödinger
dynamics, we now use the gauge freedom (15) to impose
the following condition on Γg:

Γg

�
iℏ∂TΓ�

g þ
1

2

X
k;λ

ðω2
kðvλkÞ2 þ Vλ;λ̄ − ∂

2
vλk
ÞΓ�

g

�
¼ 0: ð23Þ

This is possible, provided that the equation

1

2ℏ

X
k;λ

h
−i∂2

vλk
θ þ ℏ−1ð∂vλkθÞ2 − ið∂vλkθÞ∂vλkðlnΓ�

gÞ
i

− ∂Tθ ¼ 1

2

X
k;λ

h
ω2
kðvλkÞ2 þ Vλ;λ̄ − ∂

2
vλk

i
Γ�
g

− iℏ∂TðlnΓ�
gÞ ð24Þ

has a solution.3 Equations (21) and (23) then guarantee that
the “averaged” quantum matter wave functional

Θ̃ðϕk; α; βþ; β−Þ ¼
Z Y

k;λ

dvλkΓ�
gΓge

i
ℏQ1 ð25Þ

satisfies the functional Schrödinger equation

iℏ∂TΘ̃ ¼ 1

2

X
k

½ν2kðϕkÞ2 − ∂
2
ϕk
�Θ̃ ¼ NĤðϕÞΘ̃; ð26Þ

therefore recovering QFT-CS on average. We remark that
Eq. (23) fixes the independent dynamics of gravitons, so the
issue (ii) is also resolved.
At this point, it is worth briefly discussing the relation-

ship between our analysis and standard QFT on curved
spacetime [16,17]. In that approach, at the one-loop order
of approximation, the semiclassical background metric is
sourced by the expectation values associated with the
quantum components:

Gð0Þ
μν ¼ 8πG

c4
ðhTðmÞ

μν i þ htðgÞμν iÞ; ð27Þ

whereGð0Þ
μν is the Einstein tensor, while TðmÞ

μν and tðgÞμν denote
the energy-momentum tensors of the (renormalized) quan-
tum matter and graviton contributions, respectively. The
last two are in principle of the same order, although the
graviton term is often neglected in QFT applications [16].

In our WKB approach, both backreaction terms are 1=M
suppressed at leading order [54] and the background is
therefore a purely classical vacuum solution described by
Eq. (17), i.e., the Bianchi I spacetime.
The backreaction of the fast (matter) component on the

slow one does arise at the next order in the general BO
scheme, in the form of an expectation value of the matter
Hamiltonian,4 and it was considered in Ref. [31]. For
another formulation of the quantum matter backreaction
on the Bianchi I cosmology, see Ref. [55]. This contribution
can be removed from the equation governing the matter
dynamics and included instead in the gauge condition (23)
specifying the gravitons’ dynamics by a phase rescaling of
both the matter and gravitational wave functions [34]. In our
analysis we neglected such an expectation value in the
gauge condition based on the assumed separation of energy
scales between gravitons and matter, but its inclusion does
not alter the final result, which is the recovery of QFT-CS in
the appropriate low-energy limit.

A. Comparison with gravitational WDW equation

Let us now analyze the WKB dynamics arising
when separately imposing the gravitational WDW con-
straint (as in Ref. [22]). In the conformal time gauge, this
equation reads

ðĤI þ ĤðvλÞÞ†ψ�
g ¼

�
4

3M
e−

3
2
αð−p2

α þ p2þ þ p2
−Þ†

þ 1

2
e−α

X
k;λ

ð−∂2
vλk

þ ω2
kðvλkÞ2 þ Vλ;λ̄Þ†

�

× ψ�
g ¼ 0; ð28Þ

where ψ�
g ¼ exp ð−iðMS�0 þ S�1Þ=ℏÞ. At OðM0Þ and using

the Hamilton-Jacobi solution (18) for S0, which is real-
valued, we obtain

−
8

3
e−

3
2
αð∂αS0∂α þ ∂þS0∂þ þ ∂−S0∂−ÞS�1e−

i
ℏS

�
1

þ 1

2
e−α

X
k;λ

½−iℏ−1
∂
2
vλk
S�1 þ ℏ−2ð−∂vλkS�1Þ2

þðω2
kðvλkÞ2Þ† þ V†

λ;λ̄
�e− i

ℏS
�
1 ¼ 0: ð29Þ

From Eq. (19), this reduces to

−iℏ∂TΓ�
g ¼

1

2

X
k;λ

ð−∂2
vλk

þ ω2
kðvλkÞ2 þ Vλ;λ̄Þ†Γ�

g: ð30Þ

3It is understood that the boundary condition (22) is imposed in
the specific gauge set by Eq. (23).

4Note that, since we work under the assumption that gravitons
are part of the “slow” component in the BO approximation, they
do not give any contribution to the average over the fast sector.
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The terms on the right-hand side are Hermitian for each
mode k, λ separately, so Eq. (30) multiplied by Γg

coincides with the condition (23). Thus, the gravitons’
dynamics imposed by selecting the gauge (23) is equiv-
alent to the one following from the gravitational constraint.
In other words, requiring on phenomenological grounds
that the quantum matter sector follows the Schrödinger
dynamics implies that the gravitons’ wave functional must
satisfy Eq. (30).

V. DISCUSSION AND CONCLUSIONS

Our analysis was motivated by some misleading points
(presented in Sec. II) of the WKB formulation developed in
Refs. [22,26]. These works investigated how to obtain the
standard quantum dynamics of a “small” (or matter)
subsystem from the full WDW equation of such degrees
of freedom coupled to quasiclassical (or gravitational) ones,
in the limit ℏ → 0 (or 1=M → 0). The basic ambiguity of
Refs. [22,26] is related to the presence of a quantum
correction δhA to the classical background degrees of
freedom h0AðtÞ (here we considered a homogeneous diago-
nal Bianchi I cosmology). In the original analysis of
Ref. [22], the existence of this quantum correction was
implicitly assumed, as is clear from the presence of a
quantum amplitude AðhAÞ computed at first order in ℏ; a
similar feature was found in the analysis of Ref. [26] where
the expansion parameter was taken to be 1=M.
In order to address the observations and consequential

difficulties listed in points i)–iv) of Sec. II, we separated
ab initio the Bianchi I classical background from its first-
order quantum perturbations. Since our background is a
vacuum geometry, we restricted our analysis to tensorial
perturbations, described by graviton variables. We demon-
strated that the functional Schrödinger equation for the
matter sector is correctly recovered after averaging over
quantum-gravitational effects. To obtain this result, pre-
dicted by low-energy phenomenology, we had to fix a gauge
from Eq. (15) on the gravitons’ sector, whose dynamics
corresponds to the one dictated by the gravitational WDW
equation only. The possibility to independently impose such
a constraint was one of the starting assumptions in Ref. [22],
although not sufficiently motivated. Since the graviton
dynamics cannot be regarded as a gauge-dependent feature,
the present study justifies a posteriori and on physical
grounds the assumption that the gravitational constraint
simultaneously holds. In Ref. [22], however, such a con-
dition would no longer correspond to a gauge choice,
simply because the gauge symmetry was broken from the
very beginning.

Apart from Refs. [22,26], other related analyses recon-
structed a Schrödinger dynamics of a subsystem starting
from a quantum gravity framework à la BO. For instance, in
Ref. [21] a Tomonaga-Schwinger equation for quantum
matter was constructed; that approach is similar to the one
discussed here, but the gravitational field was treated as
purely classical. Our separation of the gravitational degrees
of freedom into classical and quantum ones could be
implemented in the same scheme, with the expected
resulting picture being equivalent to our final outcome.
In Ref. [33], the nonunitarity issue of the original
study [27,41] on quantum cosmological perturbations
was addressed. The authors constructed a suitable inner
product, in the spirit of a gauge-fixing approach to the
definition of the time variable, and recovered a Schrödinger
dynamics for the scalar and tensor perturbations including
quantum gravity corrections. Since we limited our attention
to the first two expansion orders (where the nonunitarity
issue does not arise), there is no direct overlap between this
work and the achievements of Ref. [33]. However, it would
be interesting to combine the ideas of the present paper, in
particular the average on the quantum-gravitational degrees
of freedom, with the approach used in Ref. [33] to calculate
higher-order quantum gravity corrections. In this respect, it
is worthwhile to clarify that the tensor fluctuations in
Refs. [27,33,41] were treated on the same level as the
matter degrees of freedom (i.e., as a fast contribution in the
BO scheme), whereas in our approach the gravitons are
separated in energy scale from matter (i.e., they belong to
the slow component).
The present study should be regarded as a starting point

for future developments of the present approach, where the
expansion is performed up to the next orders in the WKB
parameter. Constructing the time variable as discussed
above, it is natural to expect the nonunitarity problems
analyzed in Refs. [26,28,34] to still arise at OðM−1Þ.
However, the situation can be different for distinct choices
of the time coordinates; see, e.g., Refs. [21,35,56,57]. In
fact, our study clarifies how the BO approximation for the
low-energy dynamics of quantum matter is recovered only
after adequate separation of the gravitational degrees of
freedom into a main classical background plus small
quantum fluctuations.
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