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The understanding of the physical laws determining the infrared behavior of amplitudes is a
longstanding and topical problem. In this paper, we show that energy conservation alone implies strong
constraints on the threshold singularity structure of Feynman diagrams. In particular, we show that it
implies a representation of loop integrals in terms of Fourier transforms of nonsimplicial convex cones. We
then engineer a triangulation that has a direct diagrammatic interpretation in terms of a straightforward
edge-contraction operation. We use it to develop an algorithmic procedure that performs the Fourier
integrations in closed form, yielding the novel cross-free family three-dimensional representation of loop
integrals. Its singularity structure is entirely and elegantly expressed in terms of the graph-theoretic notions
of connectedness and crossing. These results can be used to study the Kinoshita-Lee-Nauenberg
cancellation mechanism, numerically evaluate loop integrals and to simplify threshold regularization
procedures.

DOI: 10.1103/PhysRevD.107.L051902

I. INTRODUCTION

The study of the threshold singularity structure of
Feynman diagrams and scattering amplitudes is an
enduring effort that has, throughout the years, lead to
incredible developments that have shed light on the infrared
physics of quantum scattering phenomena (see [1] for a
review and [1–49] for a historical selection of works on
the topic).
Three-dimensional representations of Feynman diagrams,

obtained via time-ordered perturbation theory (TOPT)
(see [50,51] for a review), via flow-oriented perturbation
theory (FOPT) [52], or through the loop-tree duality (LTD)
formalism [53–59], are notoriously apt to performing a
systematic singularity analysis of Feynman integrals.
Indeed, the interplay of energy conservation and
residue theorem involved in their derivation makes their
singularities directly interpretable in terms of cuts [2]. This in
turn allows to leverage a host of graph-theoretical knowledge
to perform a diagrammatic study of the structure of
physical thresholds. Even then, these three-dimensional
representations are plagued by spurious divergences, corre-
sponding to cuts that divide the graph in more than two
connected components (TOPT) or cuts containing particles
that have both positive and negative on-shell energy (LTD).

Even improved LTD formalisms [60–69] that remove
spurious singularities by relying on algebraic mani-
pulations of the integrand or direct Ansätze are either
inadequate for wider generalizations or lack first-principle
justification.
In this paper, we derive precise constraints on

the singularity structure of a Feynman integral, form-
ulated in terms of the graph-theoretic concepts of crossing
and connectedness, by explicitly constructing a three-
dimensional representation of loop integrals that manifests
them. The analysis formalizes and expands on previous
interpretations of such concepts [11,62,64,70–79], such as
the exclusion of crossed unitarity cuts [70–72] in the
computation of iterated discontinuities.
We exploit methods that pertain to a recently growing

branch of literature that applies methods of convex geom-
etry, and more precisely the geometry of polytopes
[17,52,73–75,77,78,80–91], to problems in high-energy
physics. In particular, we relate Feynman diagrams to
Fourier transforms of (nonsimplicial) convex cones. We
then perform the Fourier integral analytically using an
identity with a digrammatic interpretation in terms of a
straightforward edge-contraction procedure.
We provide an algorithm based on the recursive

application of edge contraction, resulting in the compact
and elegant cross-free family (CFF) representation of
loop integrals. Singular denominators are identified with
collections of connected subgraphs such that any two
subgraphs in the family are either contained one in the
other, or do not intersect. Such representation can be
cast in factorized form and is especially suited for the
numerical evaluation of loop integrals. We provide in the
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Mathematica package cLTD.m1 a generic implementation
of the algorithm presented in this paper.
We finally describe the factorization properties of the

Fourier transform and the ensuing bound on the scaling of
the integrand at the intersection of threshold singularities.
The CFF representation and the factorization argument de
facto provide a classification of the threshold singularity
structure of Feynman diagrams in terms of crossing and
connectedness, a fundamental step in the long-standing
quest for the understanding of the infrared behavior of
Feynman diagrams and amplitudes.

II. ENERGY CONSERVATION

Consider a bridgeless digraph G ¼ ðV; EÞ with an
underlying undirected graph Gu given as a tuple of a set
of vertices V and a set of ordered pairs of vertices E. To
each edge e ∈ E of the graph is associated a weight xe ∈ R,
collected in a vector x ¼ ðxeÞe∈E ∈ RjEj. The standard
scalar product of two weight vectors x and y is x · y ¼P

e∈E xeye. The component-wise multiplication of two
vectors σ and x is denoted as x ⊙ σ ¼ ðσexeÞe∈E . Given
any subset of the edges E0 ⊆ E, its characteristic vector 1E

0

has components 1E
0

e ¼ 1 if e ∈ E0 and 1E
0

e ¼ 0 otherwise.
The positive (negative) boundary of a subset S ⊂ V (also
called a cut S) is defined as

δþðSÞ ¼ fe ¼ fv; v0gjv ∈ S; v0 ∉ Sg; ð1Þ
δ−ðSÞ ¼ fe ¼ fv0; vgjv ∈ S; v0 ∉ Sg; ð2Þ

and δðSÞ ¼ δþðSÞ ∪ δ−ðSÞ. Consider the space of weight
vectors satisfying energy-conservation constraints,
Q0

G ⊂ RjEj. An element q0
G ∈ Q0

G satisfies energy conser-
vation at each vertex:

q0
G · ð1δþðvÞ − 1δ

−ðvÞÞ ¼ p0
v; ∀ v ∈ V; ð3Þ

for fixed vertex weights fp0
vgv∈V with

P
v∈V p

0
v ¼ 0. In

Feynman diagrams, p0
v is the external momentum that

injects into the vertex v, which may be chosen to be
vanishing. Elements of Q0

G can be written in terms of
elements of a cycle basis C of the graph as

q0
Gðfk0cgc∈C; fp0

vgv∈VÞ ¼
X
c∈C

sGc k0c þ p0
Gðfp0

vgv∈VÞ; ð4Þ

with L ¼ jCj ¼ jEj − jVj þ 1 and

p0
G ¼

X
v∈V

rGv p0
v: ð5Þ

sGc is constructed in the following way: first, ðsGc Þe ¼ sGce ¼
0 if and only if e does not belong to c. Second, sGce ¼ 1 if e

belongs to the cycle c and the cycle c is oriented in G.
Finally, sG

0
ce ¼ −sGce, if the orientation for the arc e in G is

swapped, yielding a graph G0. The cycle vector so con-
structed is ambiguous up to a sign, which can be chosen
arbitrarily. Analogously, we have rG

0
ve ¼ −rGve (for the pur-

poses of this paper, this is all we need to know about rGv ).

III. FEYNMAN DIAGRAMS AS FOURIER
TRANSFORMS OF CONVEX CONES

A bridgeless Feynman diagram IGu
ðE; fp0

vgv∈VÞ,
stripped of its spatial loop integrations, reads

IGu
¼

Z �Y
c∈C

dk0c
2π

�
N Gðq0

GÞQ
e∈Eððq0eÞ2 − E2

e þ iεÞ ; ð6Þ

where q0e ¼ ðq0
GÞe is the linear function of the loop

momenta given in Eq. (4) for an arbitrarily chosen digraph
G with underlying graph Gu, and N G is a polynomial
numerator. IGu

is parametric in E, which for applications in
quantum field theory (QFT) is the vector of on-shell
energies assigned to the edges of the graph,
Ee ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq⃗ej2 þm2

e

p
. We introduce an auxiliary integration

1 ¼ R
dxeδðxe − q0eÞ for each edge and use the Fourier

representation of the Dirac delta function, which yields

IGu
¼

Z Y
c∈C

dk0c
2π

Z
dxdτ

N GðxÞeiτ·ðx−q0GÞQ
e∈E2πðx2e − E2

e þ iεÞ : ð7Þ

This step requires one auxiliary variable for each edge
(as in the FOPT derivation [52]) and not for each vertex
(as in TOPT).
Contour integration over the variables xe in Eq. (7) is

trivial, as they are not subject to energy conservation. Each
propagator contributes two residues, associated to the sign
of τe and corresponding to the poles xe ¼ �Ee, assuming
the residue at infinity vanishes. In order for this to be true,
N must be a polynomial in which the energy arguments
appear with power at most one, similarly to TOPT. Any
diagram can itself be algebraically decomposed into dia-
grams satisfying this numerator property. For such numer-
ators, IGu

is a sum over 2jEj contributions

IGu
¼

X
σ∈f�1gjEj

N Gðσ ⊙ EÞQ
e∈E2iEe

1̂σðE; fp0
vgv∈VÞ; ð8Þ

having introduced the function 1̂σðE; fp0
vgv∈VÞ, given by

1̂σ ¼
Z Y

c∈C

dk0c
2π

Z Y
e∈E

dτeeiτeðσeEe−q0eÞΘð−σeτeÞ: ð9Þ

We will show in Eq. (11) that 1̂σ denotes the Fourier
transform of a cone. We start by changing integration
variables from τe to −σeτe, giving1github.com/apelloni/cLTD.
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1̂σ ¼
Z Y

c∈C

dk0c
2π

Z
RjEj

þ
dτe−iτ·ðE−σ⊙q0GÞ: ð10Þ

Plugging Eq. (4) in τ · ðσ ⊙ q0
GÞwe factorize integration on

k0c, which is then performed by using the Fourier repre-
sentation of the Dirac delta function, but in reverse,

1̂σ ¼
Z
RjEj

þ
dτe−iτ·ðE−σ⊙p0

GÞ
Y
c∈C

δðτ · ðσ ⊙ sGc ÞÞ: ð11Þ

The Dirac delta functions enforce the integration domain to
be the intersection of jCj hyperplanes with the positive

orthant RjEj
þ . Observe that, by definition, σ ⊙ sGc ¼ sG

0
c ,

σ ⊙ p0
G ¼ p0

G0 , and N G0 ðEÞ ¼ N Gðσ ⊙ EÞ, where G0 is
the graph obtained from G by swapping the orientation of
the edge e if σe ¼ −1. We can thus substitute the sum over
σ with a sum over digraphs. Let us also observe that,
if the graph has an oriented cycle c, then we must have
τ · sG

0
c ¼ P

e∈c τe ¼ 0 in virtue of the Dirac deltas of
Eq. (11). Since τe > 0 for any e ∈ E, this implies that
the integration domain for the Fourier transform is empty.
Consequently, the orientations G that contribute with
nonvanishing Fourier transform correspond to directed
acyclic graphs. In summary, let dagðGuÞ be the set of all
acyclic digraphs with the underlying graph Gu, so that

IGu
¼

X
G∈dagðGuÞ

N GðEÞQ
e∈E2iEe

1̂KG
; ð12Þ

with

1̂KG
¼

Z
KG

dτe−iτ·ðE−p0
GÞ; ð13Þ

where 1̂KG
is the Fourier transform of the characteristic

function 1KG
of the cone KG, defined as

KG ¼ fτ ∈ RjEj
þ jτ · sGc ¼ 0; ∀ c ∈ Cg: ð14Þ

Only acyclic digraphs contribute to the sum. This is
analogous to TOPT, expressed as a sum over vertex
orderings, or topological orderings in technical jargon.
To each topological ordering corresponds a unique acyclic
orientation (in general, not injectively). The relevance of
acyclic graphs has also been recognized in the context of
causal representations [64]. In dual fashion, FOPT [52] is
expressed as a sum over strongly connected digraphs.

IV. TRIANGULATIONS AND THE EDGE-
CONTRACTION OPERATION

Before engineering a triangulation of the convex cone
KG, let us discuss the case in which G is a multigraph, i.e.,
it has multiple edges connecting the same two vertices.

Let e1;…; en be a set of edges that connect the same two
vertices, v and v0. Let G0 be the graph in which all such
edges have been substituted by a unique edge e. Then

1̂KG
ðfEege∈EÞ ¼ 1̂KG0 ðfEege∈E0 ÞjEe¼

P
n
j¼1

Ej
: ð15Þ

In plain words, parallel edges are substituted with a unique
edge whose energy equals the sum of their energies.
This replacement results in a significant simplification
of the combinatorial factors involved in the computation
of 1̂KG

. Equation (15) mirrors an analogous treatment of
multigraphs presented in [64,77,92].
We now present the fundamental relation required to

triangulate the cone KG. Let G be a simple digraph and let
us consider a cut S ⊂ V. Furthermore, let us impose that
δðSÞ ¼ δþðSÞ. The existence of such a cut is guaranteed by
the acyclic property. Then

1̂KG
¼ 1

iðE − p0
GÞ · 1δðSÞ

X
a∈δðSÞ

1̂KGa
; ð16Þ

where Ga ¼ ðVa; EaÞ is the graph obtained from G by
contracting the edge a. Note that p0

G · 1δðSÞ ¼ P
v∈S p

0
v if

δþðSÞ ¼ δðSÞ. Comparison with standard formulas [93]
establishes that 1δðSÞ is one of the edge vectors of the cone.
Equation (16) is readily derived given that

Y
e∈δðSÞ

ΘðτeÞ ¼
X
a∈δðSÞ

ΘðτaÞ
Y

e∈δðSÞnfag
Θðτe − τaÞ; ð17Þ

which expresses the triangulation of the positive orthant

RjδðSÞj
þ in jδðSÞj cones, each corresponding to the region in

which the τa is the smallest of all times fτege∈δðSÞ.
Substituting Eq. (17) in 1̂KG

in Eq. (13), we obtain a sum
of jδðSÞj integrals, labeled by an index a ∈ δðSÞ. For each
integral, we perform the change of variables τ0e ¼ τe − τa,
e ∈ δðSÞnfag, which maps the hyperplane τ · sGc ¼ 0 to τ ·
sGa
c ¼ 0 and the cone τe > τa > 0, e ∈ δðSÞnfag back to

the positive orthant RjδðSÞj
þ , factorizing the integration over

τa of eiτa1
δðSÞ·ðE−p0

GÞ and yielding Eq. (16).

V. APPLICATIONS

A. Singularities, connectedness, and crossing

In this section we develop an algorithm that uses the
contraction operation recursively to perform the Fourier
integrations in 1̂KG

, a procedure equivalent to finding a
special triangulation ofKG. Such a triangulation is different
than that yielding the TOPT representation. The specific
triangulation we choose makes the relationship between
crossing, connectedness and the threshold singularity
structure of Feynman diagrams manifest. A large body
of recent works [11,62,64,70–75,77–79] refers to this
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correspondence with varying degree of rigour and in
separate contexts, which motivates looking for an effective
and concise description of it. In particular, we will provide a
combinatorial and generic construction procedure for the
cross-free family representation of Feynman integrals that
was conjectured in Eq. (3.44) of [62].
First, given a simple digraph G with vertices labeled

as V ¼ fvI1 ;…; vIng for given subsets I1;…; In ⊆ X
of a ground set X of discrete elements, and given an edge
a ¼ fvIi ; vIjg to be contracted, we denote with

Ga ¼ ðVnfvIi ; vIjg ∪ fvIi∪Ijg; EnfagÞ ð18Þ

the contracted graph. This notation maps quantities in the
contracted graph to quantities in the original graph. Then
given, as an input, the simple, acyclic graph Gi and the
family Fi ⊂ PðXÞ [PðXÞ being the powerset of X ]:

(i) Find a source or a sink vI of the graph Gi such
that ðVinfvIg; EinδðvIÞÞ is a connected graph. The
existence of such vertex is guaranteed by the
acyclicity of the digraph Gi. Let Fiþ1 ¼ Fi ∪ fIg.

(ii) Let fðGiÞaga∈δðvIÞ be the collection of graphs con-
tracted according to the rule of Eq. (18).

(iii) For each of the graphs ðGiÞa, if the graph is not
acyclic, terminate and output nothing. If the graph
ðGiÞa consists of a single vertex, then terminate and
output Fiþ1. If none of the two applies, then fuse all
parallel edges, as described in Eq. (15), so that the
resulting graph is also simple and iterate.

This algorithmic procedure is guaranteed to end with a
graph consisting of a single vertex. The starting graph Ginit
has vertices V init ¼ fvf1g;…; vfngg, and Finit ¼ ∅. It fol-
lows that, at each iteration, the set I, as well as any set in Fi,
can be mapped to a subset of V init. The output of the
algorithm is a collection of families FG, dependent on the
choice of source or sink at each iteration. Each family

Fout ∈ FG is a collection of cuts S ∈ Fout, themselves
collections of vertices S ⊂ V init. We provide in Fig. 1 an
example of the application of the algorithm.
The families of cuts Fout ∈ F satisfy that
(i) S and VnS are connected for any S ∈ Fout.
(ii) Fout is a laminar family, that is, for any two sets

S; S0 ∈ Fout, either S and S0 are contained one in the
other, or S ∩ S0 ¼ ∅.

(iii) Fout is obstruction-free, that is, it is not possible to
write any set of the family as the union of other sets
contained in the family.

We refer to the set Fout as a cross-free family. Since at
each iteration of the algorithm edge contraction merges
two vertices, the cross-free families in FG satisfy that
jFoutj ¼ jVj − 1. The algorithm effectively performs dia-
grammatically the triangulation of the cone KG in jFGj
simplicial cones, with each cross-free family F ∈ FG
representing a simplicial cone. Using it, one can evaluate
1KG

for any G and obtain the CFF representation

IGu
¼

X
G∈dagðGuÞ

X
F∈FG

iLðQe∈E2EeÞ−1N GðEÞQ
S∈Fðp0

G − EÞ · 1δðSÞ ; ð19Þ

which provides a proof by construction of the representa-
tion conjectured in [62]. We provide in the Mathematica
package cLTD.m1 a generic implementation of this algo-
rithmic procedure, resulting in a ready-to-evaluate inte-
grand.

B. Diagram-level factorization and iterated
connectedness

Factorization formulas for Fourier transforms of cones
and polytopes can be used to study the leading behavior of
the integrand in singular limits [52]. 1̂KG

itself satisfies a
factorization formula. Consider a connected cut S with
connected complement and such that δðSÞ ¼ δþðSÞ and let

FIG. 1. Graphical depiction of the recursion. The cross-free families generated for this acyclic graph are FG ¼ fF1; F2g with
F1 ¼ ffv1g; fv3g; fv1; v5g; fv1; v5; v4gg and F2 ¼ ffv1g; fv3g; fv1; v5g; fv1; v2; v5gg. At each iteration of the algorithm, we choose
one vertex (highlighted in red) for each of the graphs obtained from the previous iteration, and contract all the edges adjacent to it. All the
contracted graphs with directed cycles (highlighted in blue) are excluded.
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ðE − p0
GÞ · 1δðSÞ ¼ Δ. The leading contribution to 1̂KG

ðfp0
vgv∈VÞ in the expansion in Δ is

1̂KG
¼

1̂KG1
ðfpG1

v gv∈V1
Þ1̂KG2

ðfpG2
v gv∈V2

Þ
Δ

þ oð1Þ: ð20Þ

pGi
v , v ∈ Vi, i ¼ 1, 2, are the capacities for the graphsG1 ¼

ðV1 ¼ S; E1Þ and G2 ¼ ðV2 ¼ VnS; E2Þ, obtained from G
by deleting the edges in δðSÞ. The external energies for the
two graphs are defined as follows: if, for a given edge e, we

let vð1Þe be its departing vertex and vð2Þe its arriving one, then

pGi
v ¼

�
p0
v þ ð−1ÞiðEe − p0

eÞ if v ¼ vðiÞe ; e ∈ δðSÞ
p0
v otherwise

:

ð21Þ

Equation (20) is readily obtained by direct evaluation of the
integrals in the variables τe, e ∈ δðSÞ at leading order in Δ.
Importantly, if the cut S is disconnected or has disconnected
complement, then 1KG

¼ oð1Þ.
Given Eq. (20), we now iterate the argument. The

singularities of the two graphs G1 and G2 correspond
to connected cuts such that the complement is also
connected. Furthermore, these singularities must corre-
spond to singularities of the original graph G, evaluated
at ðE − p0

GÞ · 1δðSÞ ¼ 0. Thus, let us consider a cross-free
family F of cuts (with size jFj ≤ jVj − 1), and let
ðE − p0

GÞ · 1δðSÞ ¼ Δ, for all S ∈ F, and ðE − p0
GÞ · 1δðSÞ ¼

oð1Þ for S ∉ F. By iterating the factorization argument, we
obtain that a necessary and sufficient condition for

1̂KG
ðE; fp0

vgv∈VÞ ¼
wðE; fp0

vgv∈VÞ
ΔjFj þ oðΔ−jFjþ1Þ ð22Þ

to hold with a nonvanishing function w is that the cuts in F
divide the graph in jFj þ 1 connected components, which is
the lowest possible value. We then say that F satisfies the
iterated connectedness property.
The orientation of Fig. 2 results, upon the application of

the edge-contraction algorithm, in three cross-free families
F1, F2, F3. Consider F ¼ ffv2g; fv5gg, a cross-free
subfamily of F1, F2, F3. Thus, in the expansion in

Δ ¼ ðE − p0
GÞ · 1δðSÞ, S ∈ F, each term on the right-hand

side of the equation in Fig. 2 scales likeΔ−2. However, their
sum has tamer scaling, Δ−1, since the cuts in F divide the
graph in 4 instead of jFj þ 1 ¼ 3 connected components, in
accordance with the bound of Eq. (22).

VI. OUTLOOK

In Sec. VA we found a new three-dimensional repre-
sentation of Feynman diagrams, the cross-free family
representation, that is free of spurious singularities and
that manifests the relation between thresholds and con-
nected subgraphs as well as the relation between
intersections of thresholds and crossing of subgraphs. In
Sec. V B, we derived an upper bound on the scaling of
three-dimensional representations at the intersection of
thresholds. Combined with a simple scaling argument,
the bound determines that singularities determined by the
intersection of n thresholds of a QCD diagrams are non-
integrable only if the corresponding cuts divide the graph in
nþ 1 connected components. This principle may be used
to drastically simplify regularization procedures of pinched
and nonpinched thresholds [14,94–103].
We conclude by discussing how the analysis of this paper

constrains the Kinoshita-Lee-Naunberg (KLN) cancellation
[6,7,10–12,62,104–119] of infrared singularities. Consider
the quantity P that generalizes the notion of a scattering
observable,

P ¼
X∞
n;m¼0

anmPnm; Pnm ¼ Tr

�
ρ̂Ŝn

c P̂ðŜ†
cÞm

�
; ð23Þ

where ρ̂ and P̂ are diagonal sums of on-shell free n-particle
states, jα1ðq1Þ;…;αnðqnÞihα1ðq1Þ;…;αnðqnÞj, with weights
fρ̂nðfqigni¼1Þ and fðP̂Þn ðfqigni¼1Þ. Ŝc is the connected S matrix
that schematically takes the form

ð24Þ

where Γc is a sum over connected graphs.

Then, Pnm is IR-finite provided fρ̂=P̂n satisfy the usual IR-
safety constraints. Pnm corresponds to sums of interference
diagrams that, after deletion of cut edges, necessarily have
nþm distinct connected components. This implies that the
KLN cancellation mechanism not only holds at the physical
observable level (that is, for P), but also for the sum of all
interference diagrams that identify a fixed number of
connected components. In particular P11, the square sum
of connected amplitudes, is IR finite, a staple assumption of
all the current methods aimed at the computation of collider
observables.

FIG. 2. A diagrammatic way to represent 1KG
is to draw the

cross-free families resulting from the application of the contrac-
tion operation, F1 ¼ ffv5g; fv1; v5g; fv1; v4; v5g; fv2gg, F2 ¼
ffv5g; fv4; v5g; fv1; v2g; fv2gg, F3 ¼ ffv5g; fv2g; fv2; v3g,
fv1; v2; v3gg.
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