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We study the synchrotron radiation emitted by a charged fermion, rotating as a part of a larger system, in
a constant magnetic field B parallel to the axis of rotation. The rotation is classical and independent of the
magnetic field. The angular velocity of rotation Ω is assumed to be much smaller than the inverse magnetic
length

ffiffiffiffiffiffi
qB

p
, which allows us to ignore the boundary effects at r ¼ 1=Ω. We refer to such rotation as slow,

even though in absolute value it may be an extremely rapid rotation. Using the exact solution of the Dirac
equation, we derived the intensity of electromagnetic radiation, its spectrum, and its chirality. We
demonstrate by explicit numerical calculation that the effect of rotation on the radiation intensity increases
with the particle energy. Depending on the relative orientation of the vectors Ω and B and the sign of the
electric charge, the rotation can either strongly enhance or strongly suppress the radiation.
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Synchrotron radiation is emitted by charged particles
moving in magnetic fields. It has numerous applications
in many areas of physics. In some systems, the charged
particles are a part of a larger rotating system that is
subject to an external magnetic field. A computation of the
combined effect of rotation and the magnetic field on the
intensity of the electromagnetic radiation is the subject of
this paper. Our motivation derives from the recent discov-
ery that the quark-gluon plasma produced in relativistic
heavy ion collisions possesses high vorticity [1–6] and is
subject to an intense magnetic field [7–14]. However, our
results certainly apply to any rotating terrestrial or astro-
physical system.
Consider a medium rotating in the laboratory frame with

the constant angular velocity Ω ¼ Ωẑ. Let a fermion of
electric charge q and mass M be embedded into the
medium such that it is dragged by the medium to rotate
with the same angular velocity. In particular, the medium
exerts a radial force on the particle that balances the
centrifugal force and prevents it from moving to infinity
in the ðxyÞ plane. In the rotating frame, the only unbalanced
force exerted on the particle is the Lorentz force due to the
constant magnetic field B ¼ Bẑ. Thus, a classical particle
performs a rotating motion about the z axis with the
synchrotron frequency. The particle trajectory in the labo-
ratory frame can be obtained by rotating it through the
angle −Ωt.

The quantum state of the fermion is described by the
Dirac equation. In the frame rotating with the angular
velocity −Ω, we use the symmetric gauge
Aμ ¼ ð0;−By=2; Bx=2; 0Þ, to cast it in the Schrödinger
form i∂tψ ¼ Hψ with the Hamiltonian

H ¼ γ0γ · ðp − qAÞ þ γ0 þΩJz; ð1Þ

where p ¼ −i∇ and Jz ¼ −i∂ϕ þ i
2
γxγy are the operators of

momentum and longitudinal total angular momentum
correspondingly and we use the units ℏ ¼ c ¼ M ¼ 1.
The Ω-independent part H0 of the Hamiltonian (1)
describes a fermion in the magnetic field and its spectrum
E0, and the corresponding eigenfunctions ψ0 are well
known [15,16].
The leading-order formula for the synchrotron radiation

by a nonrotating1 fermion was obtained by Sokolov and
Ternov [17]. In view of the axial symmetry, it is convenient
to represent it in cylindrical coordinates ft;ϕ; r; zg. The
functions ψ0, corresponding to the nonrotating fermion, are
eigenstates ofH0, pz, and Jz, whose eigenvalues we denote
as E0, pz, and m correspondingly. While pz is continuous,
the magnetic quantum number m is a half-integer.
Additionally, each eigenfunction ψ0 is labeled by a non-
negative integer radial quantum number a. In a nonrotating
system, energy levels E0 depend only on pz and the
principal quantum number n ¼ mþ 1

2
þ a. The energy

eigenfunctions in the rotating frame can be obtained by
replacing E0 ¼ E −mΩ,Published by the American Physical Society under the terms of
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1Throughout this paper, by “nonrotating,” we mean that the
system containing the fermion performs no rotation, i.e., Ω ¼ 0.
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eipzzffiffiffiffi
L

p eimϕffiffiffiffiffiffi
2π
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jqBj
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ϕ
2

1
CCCCCCA
; ð2Þ

where C1;3 ¼ 1

2
ffiffi
2

p BþðAþ � ζA−Þ, C2;4 ¼ 1

2
ffiffi
2

p B−ðA− ∓
ζAþÞ with ζ ¼ �1 the fermion polarization, and

A� ¼
�
E −Ωm� pz

E −Ωm

�1
2

; ð3aÞ

B� ¼
�
1� ζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE −ΩmÞ2 − p2
z

p
�1

2

: ð3bÞ

We also defined ρ ¼ jqBj
2
r2 and

In;aðρÞ ¼
ffiffiffiffiffi
a!
n!

r
e−ρ=2ρ

n−a
2 Ln−a

a ðρÞ; ð4Þ

where Lα
nðzÞ are the generalized Laguerre polynomials. In

Refs. [18,19], the functions ψ were obtained in a different
form. The energy spectrum reads

ðE −ΩmÞ2 ¼ 2njqBj þ p2
z þ 1: ð5Þ

Note that the energy levels explicitly depend on the
magnetic quantum number m.
The support of the wave functions ψ0 is the entire

Minkowski space. As a function of the radial distance r
from the rotation axis, they increase as a power law
followed by exponential suppression. The typical size of
the orbit can be gleaned from the expectation value
hr2i ¼ ð2nþ 2aþ 1Þ=jqBj. Unlike ψ0, the wave functions
ψ belong to a rotating noninertial frame. Causality demands
these functions vanish at the radial distance r ¼ 1=Ω from
the origin.2 Nevertheless, if the magnetic field is strong and
the rotation is relatively slow, the wave function ψ is always
exponentially small in the causality violating region and
can be ignored there. More precisely, our derivation is valid
as long as

n; a ≪ Ncaus ≡ jqBj
2Ω2

: ð6Þ

Consider now the photon wave function with given
energy ω, transverse momentum k⊥, the longitudinal
momentum kz, and the magnetic quantum number l in
cylindrical coordinates:

A ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ωV

p Φe−iωt: ð7Þ

We assume that photons are not interacting with the
medium and, in particular, completely unaffected by the
medium rotation. It is convenient to choose Φ to be an
eigenstate of the curl operator. The corresponding eigen-
functions are states with definite chirality,

Φ ¼ ω

k⊥
1ffiffiffi
2

p ðhT þ PÞeiðkzzþlϕÞ; ð8Þ

where h ¼ �1 labels right- or left-handed photon states.
The toroidal and poloidal functions appearing in (8) read

T ¼ il
kr

Jlðk⊥rÞr̂ −
k⊥
k
J0lðk⊥rÞϕ̂ ð9Þ

P ¼ ikzk⊥
k2

J0lðk⊥rÞr̂ −
lkz
k2r

Jlðk⊥rÞϕ̂þ k2⊥
k2

Jlðk⊥rÞẑ: ð10Þ

For a photon emitted at the polar angle θ, kz ¼ ω cos θ
and k⊥ ¼ ω sin θ.
The photon emission amplitude by a fermion of charge q

transitioning between the two energy levels is given by the
S-matrix element

S ¼ ð2πÞδðE0 þ ω − EÞ ð−iqÞffiffiffiffiffiffiffiffiffiffi
2ωV

p

×
Z

ψ̄n0;a0;p0
z;ζ0 ðxÞΦ�

h;l;k⊥;kzðxÞ · γψn;a;pz;ζðxÞd3x; ð11Þ

where primed quantities refer to the final energy level.
Integrating and summing jSj2 over the phase space of the
final particles, dividing it by the observation time, and
multiplying by the photon energy yields the differential
radiation intensity for a photonwith the circular polarization h,

dWh
n;a;pz;ζ

dω
¼ q2

4π

X
n0;a0;ζ0

δm;m0þl

Z
ω2 sinθdθδðω−EþE0ÞI2a;a0 ðxÞ

× jsinθ½K4In−1;n0−1ðxÞ−K3In;n0 ðxÞ�
þK1ðh−cosθÞIn;n0−1ðxÞ
−K2ðhþcosθÞIn−1;n0 ðxÞj2; ð12Þ

where

K1 ¼ C0
1C4 þ C0

3C2; K2 ¼ C0
4C1 þ C0

2C3;

K3 ¼ C0
4C2 þ C0

2C4; K4 ¼ C0
1C3 þ C0

3C1; ð13Þ

and we introduced a dimensionless variable x ¼ k2⊥=2jqBj.
Conservation of the z component of the angular momentum
requires thatm ¼ m0 þ l. Energy conservation is expressed by
the delta function in (12), which can be written as

2The importance of the causal boundary is discussed in
Refs. [20–23].
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δðω − Eþ E0Þ ¼ δðω − ω0Þ
1þ ω cos2 θ

E0−m0Ω

: ð14Þ

The characteristic frequency ω0 takes the simplest form in the
framewherepz ¼ 0, whichwe can always choose by virtue of
the translation symmetry along the rotation axis,

ω0 ¼
E −m0Ω
sin2θ

�
1 −

�
1 −

Bsin2θ
ðE −m0ΩÞ2

�
1=2

�
; ð15Þ

with

B ¼ 2ðn − n0ÞjqBj − Ω2ðm −m0Þ2
þ 2ðE −m0ΩÞΩðm −m0Þ: ð16Þ

The radiation intensity for any initial and final fermion
polarization states is obtained by summing over ζ0 and
averaging over ζ:

K2
1 ≡ 1

2

X
ζ;ζ0

K2
1 ¼ K2

2 ¼ K2
3 ¼ K2

4

¼ ðE −mΩÞðE0 −m0ΩÞ − 1

4ðE −mΩÞðE0 −m0ΩÞ ; ð17aÞ

K1K2 ¼ K3K4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBjp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n0jqBjp
4ðE −mΩÞðE0 −m0ΩÞ ; ð17bÞ

K1K4 ¼ −K2K3 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBjp

ω cos θ
4ðE −mΩÞðE0 −m0ΩÞ ; ð17cÞ

K1K3 ¼ K2K4 ¼ 0: ð17dÞ

The total radiation intensity additionally requires
integration over ω, which is trivial thanks to the delta
function (14):

Wtot ≡ 1

2

X
ζ

Wh
n;a;pz¼0;ζ

¼ q2

4π

X
n0;a0

Z
π

0

dθ
ω2
0 sin θ

1þ ω0cos2θ
E0−m0Ω

1

2
ðΓð0Þ

n;a þ hΓð1Þ
n;aÞ; ð18Þ

where

Γð0Þ
n;a ¼ I2a;a0 ðxÞf2K2

1½I2n;n0−1ðxÞ þ I2n−1;n0 ðxÞ� þ K2
1sin

2θ½I2n;n0 ðxÞ þ I2n−1;n0−1ðxÞ − I2n;n0−1ðxÞ − I2n−1;n0 ðxÞ�
− 2K1K2sin2θ½In;n0 ðxÞIn−1;n0−1ðxÞ þ In−1;n0 ðxÞIn;n0−1ðxÞ�
− 2K1K4 sin θ cos θ½In−1;n0−1ðxÞIn;n0−1ðxÞ þ In−1;n0 ðxÞIn;n0 ðxÞ�g ð19Þ

Γð1Þ
n;a ¼ I2a;a0 ðxÞf2K2

1 cos θðI2n−1;n0 ðxÞ − I2n;n0−1ðxÞÞ
þ 2K1K4 sin θðIn−1;n0−1ðxÞIn;n0−1ðxÞ
− In−1;n0 ðxÞIn;n0 ðxÞÞg: ð20Þ

Integration over θ as well as summation over n0 and a0
can only be done numerically. The summations are
restricted by energy and longitudinal momentum conser-
vation and by the causality constraint (6) applied to the
quantum numbers n0 and a0. A similar inequality was found
in Ref. [18]. Without the causality constraint (6), which
itself follows from hr2iΩ2 < 1, the sum over the phase
space would be divergent. However, it can be shown that as
long as Ω ≪

ffiffiffiffiffiffiffiffiffijqBjp
the intensity is independent of the

cutoff Ncaus. In the no-rotation limit Ω → 0, one can show
that the sum

P
n0;a0 reduces to

P
n
n0¼0

P∞
a0¼0

. Moreover, in
this limit, the photon energy ω0 depends only on n and n0,
but not on a and a0. This allows explicit summation over a0
in (18), which can be performed using the identityP

a0 I
2
a;a0 ðxÞ ¼ 1 [17] and yields the well-known result

for the synchrotron radiation intensity by a nonrotating

fermion. We numerically verified that our results are not
sensitive to the cutoff Ncaus.
A typical synchrotron radiation spectrum is shown in

Fig. 1. For comparison, we also plotted the spectrum
emitted by the nonrotating fermion. It is seen that, while
the spectrum of the nonrotating fermion depends only on
the principal quantum number n0, the spectrum of the
rotating fermion is split in many lines having different a0,
as expected from the energy shift caused by rotation.
Moreover, the positions of the spectral lines are shifted
toward smaller values of ω, and their heights are dimin-
ished in comparison with the nonrotating spectrum. This
indicates that the radiation intensity is suppressed when B
is antiparallel to Ω and q < 0.
The total intensity is conventionally represented with

respect to the corresponding classical expression

Wcl ¼
q2

4π

2ðqBÞ2E2

3
: ð21Þ

The result is shown in Figs. 2 and 3. The main observation
is that the effect of rotation increases with energy. One can
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qualitatively understand this dependence by noting that the
classical trajectory of the fermion is a combination of two
circular motions: one with angular velocity Ω due to the
system rotation and another one with angular velocity
ωB ¼ qB=E due to the Lorentz force exerted by the
magnetic field. The former is independent of the fermion
energy E, whereas the latter decreases as E−1. One can also
notice that when the direction of rotation due to the
magnetic field coincides with the direction of the system
rotation of the fermion (e.g., qB > 0 and Ω < 0) the result

is enhancement of radiation. This happens because the
rotating fermion experiences larger effective ωB, hence a
larger effective magnetic field [24]. Conversely, when the
two rotations are in the opposite direction (e.g., qB > 0 and
Ω > 0), we observe suppression of the radiation.
At Ω ¼ 0, the quasiclassical formula (dashed line)

approaches our exact result (dot-dashed line) at high energy
E. This is because the quasiclassical approximation
neglects the discreteness of the fermion spectrum, which
is a good approximation only in the ultrarelativistic case. It
is remarkable that at high energy the intensity of radiation
by the rotating system deviates from that at Ω ¼ 0 even for
very small Ω’s.
It seems from our numerical results that the maximum

of the ratio W=Wcl for Ω < 0, or the inflection point
for Ω > 0, depends on angular velocity roughly as
Emax ∼ − log10 jΩj − 2. If this trend persists at even
lower jΩj’s, then the effect of rotation on the synchrotron
radiation may be essential even in nonextreme astrophysical
systems that rotate with typical angular velocities. This
observation is a strong motivation to investigate the syn-
chrotron radiation in a variety ofmagnetic fields and angular
velocities and will be a subject of a further study.
The effect of rotation on the synchrotron radiation that

we have reported in this paper is mostly classical, as it
stems from the peculiar form of the metric in the rotating
coordinates. We expect that the quantum effects induced
by rotation become prominent when the angular velocity
becomes comparable or larger than the inverse magnetic
length.

FIG. 2. The total intensity of the synchrotron radiation in units of
the classical intensity (21) as a function of the initial energy E at
qB ¼ −0.01. Solid lines correspond to various angular velocities
Ω, and the dashed line is the quasiclassical approximation at
Ω ¼ 0. The dependence of the intensity on the initial value of a is
weak and not noticeable in the figure. Our units: ℏ ¼ c ¼ M ¼ 1.

FIG. 3. The same as in Fig. 2 but with Ω ¼ 0;�10−6 and two
values of qB. Gray lines with circles are for qB ¼ −10−2. Black
lines with stars are for qB ¼ −10−3. Note the effect of rotation is
greater at lower energies for the smaller field. Our units:
ℏ ¼ c ¼ M ¼ 1.
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FIG. 1. The spectrum of synchrotron radiation (12) at qB ¼
−0.1 emitted by a fermion with initial quantum numbers n ¼ 5,
a ¼ 1, m ¼ 7=2, and pz ¼ 0, summed over a0 ∈ ½0; 16� and
averaged over photon helicity h. Solid lines: Ω ¼ −0.01 (corre-
sponding to E ¼ 1.379); dashed lines: Ω ¼ 0 (corresponding to
E ¼ 1.414). Our units: ℏ ¼ c ¼ M ¼ 1.
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In heavy-ion collisions, the direction of the magnetic
field and the direction of rotation coincide. This implies
that the synchrotron radiation by the negative charges must
be significantly stronger than by the positive charges.
As a result, we expect that rotation significantly enhances
the contribution of the synchrotron radiation to the total
photon spectrum, as compared to the nonrotating case [25].
The formalism developed in this paper lays the foundation

for the phenomenological applications that should be
addressed in a dedicated work.
In summary, we computed the effect of rotation on the

synchrotron radiation in the limit of relatively slow rotation.
We argued that the effect of rotation is surprisingly strong,
which makes it amenable to experimental study.

This work was supported in part by the U.S. Department
of Energy under Grant No. DE-FG02-87ER40371.
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qB values presented in the captions of Figs. 1–3 have been
set right. In the sixth, eighth, and ninth sentences of the
12th paragraph, the original wording “suppression” was
replaced by “enhancement,” “smaller” was replaced by
“larger,” and “enhancement” was replaced by “suppres-
sion,” respectively. In the second sentence of the 16th
paragraph, the original wording “positive” was replaced by
“negative” and “negative” was replaced by “positive.”

SYNCHROTRON RADIATION BY SLOWLY ROTATING FERMIONS PHYS. REV. D 107, L051901 (2023)

L051901-5

https://doi.org/10.1038/nature23004
https://doi.org/10.1103/PhysRevC.87.034906
https://doi.org/10.1103/PhysRevC.87.034906
https://doi.org/10.1103/PhysRevC.93.064907
https://doi.org/10.1103/PhysRevC.94.044910
https://doi.org/10.1103/PhysRevC.94.044910
https://doi.org/10.1103/PhysRevC.95.049904
https://doi.org/10.1103/PhysRevC.98.024905
https://doi.org/10.1140/epjc/s10052-015-3624-1
https://doi.org/10.1140/epjc/s10052-018-5810-4
https://doi.org/10.1140/epjc/s10052-018-5810-4
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1016/j.physletb.2012.02.065
https://doi.org/10.1016/j.physletb.2012.02.065
https://doi.org/10.1016/j.physletb.2012.12.030
https://doi.org/10.1016/j.physletb.2012.12.030
https://doi.org/10.1103/PhysRevC.85.044907
https://doi.org/10.1103/PhysRevC.85.044907
https://doi.org/10.1103/PhysRevC.88.024911
https://doi.org/10.1103/PhysRevC.88.024911
https://doi.org/10.1016/j.physletb.2014.08.068
https://doi.org/10.1016/j.physletb.2014.08.068
https://doi.org/10.1007/BF02816716
https://doi.org/10.1103/PhysRevD.42.2045
https://doi.org/10.1103/PhysRevD.93.104052
https://doi.org/10.1093/ptep/ptw128
https://doi.org/10.1093/ptep/ptw128
https://doi.org/10.1103/PhysRevD.67.044002
https://doi.org/10.1103/PhysRevD.93.104014
https://doi.org/10.1016/j.physletb.2016.11.010
https://doi.org/10.1103/PhysRevD.95.096006
https://doi.org/10.1016/j.physletb.2021.136582
https://doi.org/10.1016/j.physletb.2021.136582
https://doi.org/10.1103/PhysRevC.91.014902

