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We propose a unifying approach that starts from the perturbative construction of trivializing maps by
Lüscher and then improves on it by learning. The resulting continuous normalizing flow model can be
implemented using common tools of lattice field theory and requires several orders of magnitude fewer
parameters than any existing machine learning approach. Specifically, our model can achieve competitive
performance with as few as 14 parameters while existing deep-learning models have around 1 million
parameters for SUð3Þ Yang-Mills theory on a 162 lattice. This has obvious consequences for training speed
and interpretability. It also provides a plausible path for scaling machine-learning approaches toward
realistic theories.
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I. INTRODUCTION

Critical slowing down constitutes one of the fundamental
challenges of modern computational sciences. A particular
situation in which critical slowing down is observed is the
continuum limit of lattice field theories. An important
theme of research of the last few decades is to construct
algorithms, such as cluster methods [1,2], that are (rela-
tively) insensitive to critical slowing down. Despite sig-
nificant effort, a cluster algorithm for lattice quantum
chromodynamics has unfortunately not been found.
An interesting alternative approach to circumvent critical

slowing down was proposed in a seminal paper [3] by
Lüscher more than ten years ago: building on previous
work in supersymmetric field theories [4], Lüscher pro-
posed to use a field redefinition that maps pure SUð3Þ
Yang-Mills theory to its strong coupling limit and therefore
trivializes it. In the redefined field variables, the theory is
not (severely) affected by critical slowing down even if
standard HMC algorithms are applied. Despite the consid-
erable conceptual appeal, the main practical challenge of
this approach is to construct such trivializing maps. Lüscher
proposed a perturbative construction of a gradient flow that
realizes the trivializing map to linear order in the flow time.
Unfortunately, the expansion is around the strong coupling
limit, and therefore, the approximation deteriorates as the

continuum is approached. Indeed, in HMC simulations of
the CPN−1 model, the autocorrelations were reduced, but
the scaling was not substantially changed [5].
Recently, trivializing maps have gained renewed atten-

tion since they can be combined with deep learning [6–23].
In this new line of work, the trivializing map is modeled by
a deep neural network. The parameters of the neural
network are then trained to trivialize the redefined theory.
This approach is interesting for at least three reasons: (i) it
circumvents any expansion in flow time, (ii) it is (at least in
principle) completely general as neural networks are
universal approximators, and (iii) it establishes a connec-
tion to the rapidly progressing field of machine learning,
raising the exciting prospect of using specialized deep-
learning silicon, such as tensor processing units (TPUs), for
lattice simulations. Despite these advantages, state-of-the-
art methods for learning trivializing maps only work for
low-dimensional theories. This is partly because the train-
ing relies on self-sampling from the model. In order to
attain a useful gradient signal, the model has to probe
relevant regions of field space of the lattice field theory. As
the dimensionality of the theory increases, these regions are
very unlikely to be sampled, and training will fail. This is
one of the reasons for the poor volume scaling of current
deep-learning-based approaches [14,15,20,24].
In this work, we outline a strategy that unifies Lüscher’s

perturbative approach with the recent machine-learning
approach, in particular, continuous normalizing flows
[18,19,25,26]. More specifically, we propose using the
same gradient flow as Lüscher, but instead of fixing
its coefficients by perturbation theory, we use machine-
learning techniques, namely, the adjoint state method.
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This has the advantage thatwe can useLüscher’s perturbative
results to initialize the machine-learning model. The result-
ing model is not only manifestly equivariant under all global
as well as local symmetries of the theory, but it is also
constrained to a low number of required free parameters. We
demonstrate that we can obtain comparable performance to
the current state-of-the-art deep-learningmodels, which have
around 1 million parameters, with as few as Oð10Þ param-
eters, and significantly outperform them by using Oð100Þ
parameters. We demonstrate that the low number of param-
eters and the perturbative initialization are particularly
beneficial in the early stage of training. This is encouraging
as this phase is the main hurdle in scaling machine-learning
approaches. A further advantage of our method is that it can
be implemented using standard lattice tools and does not
require any specialized deep-learning libraries.
The main objective of this paper is to introduce our

approach and demonstrate its superior performance when
compared to previous methods. For this, we restrict
ourselves to two-dimensional Yang-Mills theory as this
is the benchmark on which we can compare to the existing
literature, leaving applications to higher-dimensional the-
ories for future work.

II. TRIVIALIZING MAPS

In lattice gauge theory, the expectation value of a
physical observable O is given by the Wick-rotated path
integral

hOi ¼ 1

Z

Z
D½U�OðUÞ expð−SðUÞÞ ð1Þ

discretized on a lattice Λ. Using a (diffeomorphic) field
redefinition U ¼ F ðVÞ, this expectation value can be
rewritten as

hOi ¼ 1

Z

Z
D½V�OðF ðVÞÞ expð−SF ðVÞÞ; ð2Þ

where we have defined

SF ðVÞ ¼ SðF ðVÞÞ − In detF �ðVÞ: ð3Þ

The last term involving the Jacobian F � is due to the
change of measure D½U� ¼ D½V� detF �ðVÞ.
For a trivializing map F , this measure contribution

cancels the action up to a possible constant, i.e.,

SF ðVÞ ¼ const: ð4Þ

The expectation value (2) can thus be calculated using the
uniformdensity. Such trivializingmapsF can be constructed
analytically for certain supersymmetric field theories [4]. For
the case of SUðNÞ Yang-Mills theory, a perturbative con-
struction was put forward by Lüscher in [3].

Recently, it has been proposed to use machine learning
to obtain trivializing maps nonperturbatively. In this
approach, the redefinition F θ is given by a bijective
machine-learning model with parameters θ [6–20]. The
model is then trained by minimizing the objective function

CðθÞ ¼ hSF θ
ðVÞi; ð5Þ

using stochastic gradient descent. The parameters θ̂ are a
global minimum of the objective CðθÞ if and only if the
corresponding map F θ̂ is trivializing, i.e., fulfills the
trivializing condition (4). We refer to the Supplemental
Material [27] for a proof.
In practice, we cannot expect the model to be perfectly

trained; i.e., F θ does not fulfill the trivializing condition (4)
and thus does not completely reduce the target density
pðVÞ ¼ 1

Z expð−SF θ
ðVÞÞ to the uniform density. One can,

however, use the uniform density, qðVÞ ¼ const, as a
proposal for a Markov chain to sample from pðVÞ.
Specifically, one advances theMarkov chain from a previous
configurationV to some current configuration by accepting a
candidate V 0 ∼ q with probability

pA ¼ min

�
1;
wðV 0Þ
wðVÞ

�
; ð6Þ

with the importance weight wðVÞ ¼ pðVÞ
qðVÞ. For a sufficiently

trainedmodel, the proposalV 0 for the updatewill be accepted
with high probability. As a result, autocorrelation will be low
as it can only arise due to repeated rejection of proposals
(since the proposals are sampled independently from q).

III. LÜSCHER’S PERTURBATIVE APPROACH

Lüscher proposed a flow equation given by

_Ut ¼ ZtðUtÞUt ð7Þ

which is generated by an algebra-valued link field
½ZtðUÞ�ðx; μÞ ∈ suðNÞ.1 If Zt is a smooth function, the
solutionUt is unique for a given initial conditionU0 ¼ V at
any t ∈ R. Therefore, the flow equation implicitly defines a
bijective field redefinition F ðVÞ ¼ Ut, where we suppress
the dependency of the map F on the chosen time t for
notational simplicity.
It is natural to parametrize Zt as the negative force of a

certain flow action S̃, i.e.,

½ZaðUtÞ�ðx; μÞ ¼ −∂ax;μS̃ðUtÞ; ð8Þ

where we define

1½ _UtU
†
t �ðx; μÞ is obviously anti-Hermitian and can easily be

shown to be traceless by using Jacobi’s formula. This in turn
implies that Zt is Lie-algebra valued.
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∂
a
x;μfðUÞ ¼ d

dτ
fðUτÞ

���
τ¼0

ð9Þ

with

Uτðy; νÞ ¼
�
eτT

a
Uðx; μÞ for ðx; μÞ ¼ ðy; νÞ

Uðy; νÞ else:
ð10Þ

It can be shown [3] that the determinant of the Jacobian of
the redefinition F ðVÞ ¼ Ut is given by

ln detF �ðVÞ ¼
Z

t

0

dsL0S̃ðUsÞ; ð11Þ

with the Laplacian

L0 ¼ −
X
x;μ

∂
a
x;μ∂

a
x;μ: ð12Þ

In Lüscher’s approach, the flow action S̃ is given by a linear
combination of a certain set of Wilson loops Wi,

S̃ðUt; tÞ ¼
X
i

ciðtÞWiðUtÞ; ð13Þ

where ci are coefficient functions that need to be deter-
mined. Lüscher then proposed expanding this action in
flow time perturbatively,

S̃ðUt; tÞ ¼
X∞
k¼0

tkS̃ðkÞ ð14Þ

with t ∈ ½0; 1�. Lüscher explicitly determined the leading
order S̃ð0Þ and next-to-leading order S̃ð1Þ of the expansion.

IV. MACHINE-LEARNING APPROACH

We closely follow Lüscher’s construction but circumvent
the perturbative approximation of the coefficients by using
machine-learning techniques. More specifically, we para-
metrize the coefficient functions by a simple ansatz, such as
affine linear functions or cubic splines, and then learn their
parameters θ by stochastic gradient descent. An advantage of
this approach is that the free parameters of the coefficient
functions can be initialized such that the coefficient functions
match the perturbative results obtained by Lüscher. In stark
contrast to standard deep-learning approaches, this provides
a rigorous initialization scheme based on perturbation theory
that can systematically be improved by incorporating per-
turbative corrections of higher order. In addition, the result-
ing approach only requires common tools in lattice gauge
theories, such as the ability to compute a generic action S̃
made of Wilson loops (13) and its force (8). Furthermore,
only a very limited number of free parameters are required
for the coefficient functions, resulting in a drastic overall
reduction of the necessary number of parameters for an

expressive model. This is beneficial both for training speed
and interpretability, e.g., identifying Wilson loops that are
most important for the trivialization.
The main technical challenge of such an approach is to

calculate the gradients of the objective ∂C
∂θ. This is nontrivial,

as one has to take the parameter dependence of the flow
equation (7) into account. We overcome this challenge by
using the adjoint state method; see [28] for a review. To this
end, we derive a specific version of the adjoint state method
for the Lie group SUðNÞ. Unlike previous work on the
adjoint state method on manifolds [29–32], our method is
particularly suited to the SUðNÞ case and can be efficiently
implemented using existing libraries for lattice field theory.
We refer to the Supplemental Material [27] for a detailed
derivation but summarize the main results in the following.
The adjoint state method starts from the observation that

the optimization criterion (5) is to be minimized on the
solution space of the differential equation (7). We, there-
fore, introduce an suðNÞ-valued Lagrange multiplier λ,
which in this context is also called the adjoint state, and
define the Lagrangian

LðθÞ ¼ CðθÞ −
�Z

t

0

dsðλs; _UsU
†
s − ZsÞ

�
q
; ð15Þ

with the standard inner product on the suðNÞ Lie algebra

ðA; BÞ≡ −2
X
x;μ

trðAðx; μÞBðx; μÞÞ: ð16Þ

On the solution space, the objective C and the Lagrangian L
agree. By differentiating the Lagrangian, it can be shown
that its gradient is given by

∂C
∂θ

¼ ∂L
∂θ

¼
�Z

t

0

dsfðλs; ∂θZsÞ − ∂θL0S̃sg
�

q
ð17Þ

when the adjoint state fulfills the terminal value problem,

_λs ¼ ∂L0S̃s þ ½Zs; λs� −
X
y;ν

λas ðy; νÞ∂Za
sðy; νÞ;

λt ¼ ∂SðUtÞ; ð18Þ

where we have used the notation ½∂fðUÞ�ðx; μÞ ¼
Ta

∂
a
x;μfðUÞ, L0 is the Laplacian defined in (12), and t

denotes the terminal flow time.
Therefore, we can calculate the gradient ∂θC by evolving

the flow equation (18) for the adjoint state λs backwards in
flow time. This has a comparable numerical cost to solving
the flow equation (7) for the gauge configuration Ut. As a
result, the cost of the adjoint state method does not scale
with the number of parameters, in stark contrast to finite
differences.
Furthermore, it can be shown that the adjoint state λ0

corresponds to the force of the action (3) at zero flow time,
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λa0ðμ; xÞ ¼ ∂̂
a
μ;xSF ðVÞ: ð19Þ

We note that this force can be used for a hybrid
Monte Carlo algorithm in the trivialized field V. We plan
to explore this possibility as part of future work.

V. NUMERICAL RESULTS

We compare our method to the state-of-the-art deep-
learning approach of [8], which we estimate uses Oð106Þ
parameters. In order to compare, we closely follow their
reported experiments. To this end, we consider the two-
dimensional SUð3Þ Yang-Mills theory with the standard
Wilson action

SWðUÞ ¼ −
β

6
W0ðUÞ; ð20Þ

where W0 denotes the sum of plaquettes. We train on a
16 × 16 lattice size with β ¼ 4.0, 5.0, and 6.0 using two
architectures: models A and B. Model A has 14 free
parameters and uses affine linear coefficient functions
for the seven Wilson loops of Lüscher’s perturbative
construction. Model B has 420 free parameters and uses
cubic splines with ten knots as coefficient functions for 42
Wilson loops. Namely, all loops up to length 8, in
combination with their moments and correlation functions
of plaquettes, are included in its flow action (13). We refer
to the Supplemental Material [27] for a detailed description.
The training of model A is initialized using Lüscher’s

perturbative solution. Since the flow action is a simple
linear combination of Wilson loops, we initialize the
training of model B from the trained model A.
Specifically, we initialize the more expressive cubic spline
coefficient functions such that they reproduce the affine
linear coefficient functions learnt by the smaller model A
and initialize the coefficients of the additional Wilson loops
by small random numbers. This possibility for progressive
training is a notable advantage of our approach.
For time integration, we use 20 steps of a third-order

Crouch-Grossmann integrator [33], which is a suitable
Runge-Kutta quadrature scheme for a Lie group. The Adam
optimizer [34], with a minibatch of size 1024 and a learning
rate of 0.0005, is chosen. Due to the low memory footprint
of the model, each integration step can be checkpointed to

reduce the error in the backward integration. The variance
of the gradients is reduced by using the path-gradient
VarGrad estimator [35–37]. The quality of the model is
quantified using the effective sampling size (ESS),

ESS ¼ 1

hwðVÞ2iq
∈ ½0; 1�; ð21Þ

with the values reported in [8] for comparison.
The results in Table I show that our model B can

significantly outperform the deep-learning-based approach
by [8]. This is despite the fact that it has several orders of
magnitude less parameters. This point is further illustrated
by the fact that the smaller model A achieves comparable
performance with only 14 parameters. Table I also shows
that our models lead to a significantly larger effective
sampling size than the perturbative construction by
Lüscher, establishing the idea that machine learning can
substantially improve upon the perturbative scheme. At the
same time, our approach can benefit from this perturbative
scheme as the Lüscher initialization provides a good
starting point for training; see Fig. 1.

FIG. 1. ESS measured during training of model A starting from
Lüscher’s initialization. The faint line is the ESS over a single
minibatch. The thick line is a moving average over six steps. The
empty circle at zero indicates the initial ESS. The horizontal
dashed line is the ESS measured at high accuracy after training.

TABLE I. For Lüscher, the coefficients of the next-to-leading order calculations of [3] are used; the ESS for Boyda
et al. is as reported in [8]. The total number of parameters Nparams ¼ Nt × NW of our approach is divided due to the
number of Wilson loops NW and parameters per coefficient function Nt.

ESS at β

Reference Nparams 4.0 5.0 6.0

Lüscher, NL [3] 8 nonzero values 42% 4% <1%

This work A 14≡ 2t × 7W 91% 65% 26%
B 420≡ 10t × 42W 98% 88% 70%

Boyda et al. [8] Oð106Þ estimated 88% 75% 48%
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As a final consistency check, Fig. 2 demonstrates the
compatibility of estimates obtained by our method with
ones from the HMC algorithm using the same observables
as in [8].

VI. CONCLUSION

In this work, we have proposed a new method to learn
trivializing maps, which is natural for Lie groups and has
several specific strengths: (i) considerable parameter effi-
ciency, (ii) a high level of interpretability, (iii) initialization
based on perturbation theory, (iv) equivariance with respect
to all symmetries of the theory, (v) progressive training, as
well as (vi) the possibility of implementation and paralle-
lization with standard lattice QCD libraries.
To the best of our knowledge, the present work is the first

to apply the adjoint state method in the context of lattice
gauge theory. This has the beneficial feature of providing
the force of the flow action and thus allows for HMC in the
trivialized field variables V, as originally proposed in [3]

and recently applied to normalizing flows in [39]. This
constitutes a promising route for future research, in
particular, as such a HMC could also be used during
training. Our approach could also be applied to correct
mistuned simulation parameters as an alternative to
reweighting. Furthermore, it can be naturally combined
with domain decomposition algorithms; see [20,40].
As the purpose of this paper was to benchmark our

approach with respect to existing methods, we leave the
application to the four-dimensional case, which manifestly
suffers from critical slowing down [41], for upcoming
work. The beneficial properties of our method, as demon-
strated by this work, make successful applications in this
higher dimensional case significantly more plausible. If
successful, applications of machine-learning-based trivial-
izing maps to full QCD would be within reach.
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