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We present three-loop helicity amplitudes for the production of a single photon in association with one
jet in quantum chromodynamics, a final state which provides a standard candle of the Standard Model at the
Large Hadron Collider. We employ a recently proposed variation of the so-called tensor projection method
in the ’t Hooft-Veltman scheme (tHV) which avoids the computation of contributions due to unphysical
(−2ϵ)-dimensional polarizations of the external states. We obtain compact analytic results expressed in
terms of harmonic polylogarithms.
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I. INTRODUCTION

Scattering amplitudes are one of the central quantities in
quantum field theory. In addition to the intrinsic beauty of
their mathematical structure, they provide a bridge between
theory and experiment. High-precision amplitudes in
quantum chromodynamics (QCD) are essential to compute
accurate theoretical predictions that, together with increas-
ingly precise measurements from colliders, allows for a
scrutiny of the structure of the Standard Model, and for
constraining new physics models.
It is well known that the number of external particles and

of internal loops greatly influences the complexity of
amplitude calculations. Up until a few years ago, the state
of the art for massless four-particle scattering was the three-
loop four-gluon amplitude in N ¼ 4 super-Yang-Mills [1],
where calculations are simplified by the high amount of
symmetry in the theory. The same amplitude was also
computed in the planar limit of pure Yang-Mills in Ref. [2].
In QCD similar three-loop calculations proved until
recently to be too computationally prohibitive to be
performed due to the lack of symmetry.
The first analytic results for a QCD three-loop four-point

amplitude were obtained for the color singlet process qq̄ →
γγ in Ref. [3]. Building on this, the more computationally
involved color singlet production gg → γγ was computed in

Ref. [4]. Finally, all amplitudes involving four colored
partons, i.e., gg → gg, qq̄ → qq̄, qq̄ → gg and all possible
crossings of external states, were obtained in Refs. [5–7]. In
these processes, starting a three loops, there start appearing
new contributions to the structure of infrared (IR) diver-
gences. These are associated with the exchange of color
charge between all four external legs through the emission
and absorption of soft gluons. This is referred to as
quadrupole radiation and it increases the complexity of
the corresponding amplitudes.
In this work we tackle the last three-loop four-point

massless amplitudes in QCD involving partonic initial
states: gg → gγ and qq̄ → gγ.
Phenomenologically, this amplitude is relevant for the

pp → γ þ j process, i.e., direct photon production
with a reconstructed jet. It is one of the standard candles
of the Standard Model at the Large Hadron Collider (LHC).
Theoretical QCD predictions for this process exist
at the next-to-next-to-leading order (NNLO) [8]. Providing
even higher order corrections would lead to a more precise
comparison with the LHC data, which is important for
current and especially future LHC runs [8]. The three-
loop amplitudes in quark-pair and quarkþgluon initiated
channels contribute to the N3LO cross section. The
three-loop gluon-pair initiated amplitude starts contributing
only at N4LO, however it is enhanced by the parton
distribution function (PDF) of the gluon, which may at
least partially compensate for the strong coupling
suppression.
For photonþjet production at hadron colliders, we

consider the two independent partonic channels

gðp1Þ þ gðp2Þ → gð−p3Þ þ γð−p4Þ;
qðp1Þ þ q̄ðp2Þ → gð−p3Þ þ γð−p4Þ: ð1Þ
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The remaining qg → qγ and q̄g → q̄γ channels can be
obtained via crossing of qq̄ → gγ. We treat all four-
momenta as incoming and massless

p1 þ p2 þ p3 þ p4 ¼ 0; p2
i ¼ 0: ð2Þ

The kinematic Mandelstam invariants of the process,

s¼ðp1þp2Þ2; t¼ðp1þp3Þ2; u¼ðp2þp3Þ2; ð3Þ

are related by momentum conservation sþ tþ u ¼ 0.
Since the overall mass dimension of the amplitude is fixed,
the non-trivial kinematic dependence can be expressed in
terms of a single dimensionless ratio

x ¼ −
t
s
: ð4Þ

On the physical Riemann sheet, we have1

s > 0; t < 0; u < 0; sij → sij þ iδ; ð5Þ

where sij ¼ 2pi · pj.
This paper is organized as follows: in Sec. II we describe

the color and Lorentz space decomposition of the ampli-
tudes. The definition of the helicity amplitudes is given in
Sec. III where we also fix our notation within the spinor
helicity formalism and describe the workflow used for this
computation. Section IV describes renormalization and IR
subtraction of the helicity amplitudes. Finally, we give
more details on the results in Sec. Vand provide concluding
remarks in Sec. VI.

II. COLOR AND TENSOR STRUCTURES

For both processes in Eq. (1) we can collect an overall
color factor C in front of the amplitude:

A ¼ CA; ð6Þ

where

C ¼
(
TrðTa1Ta2Ta3Þ − ð2 ↔ 3Þ; for gg → gγ;

Ta3
i1i2

; for qq̄ → gγ:
ð7Þ

Above inðanÞ refers to a SUðNcÞ index in the fundamental
(adjoint) representation and Ta are the fundamental gen-
erators of SUðNcÞ, normalized such that TrðTaTbÞ ¼ 1

2
δab.

The color stripped amplitude A depends on the number of
active quark flavors nf, the electric coupling of the different
quark flavors Qf and the fermionic loop factor

nðVÞf ¼
Xnf
f¼1

Qf: ð8Þ

After extracting all color structures, A can be further
decomposed onto a basis of nt independent Lorentz tensor
structures

A ¼
Xnt
i¼1

TiF i: ð9Þ

We work in the ’t Hooft-Veltman (tHV) regularization
scheme, where internal states are in d dimensions but the
external momenta and polarizations are kept in 4 dimen-
sions. In this scheme, we follow a recent proposal [9,10]
that allows us to remove the irrelevant ð−2ϵÞ-dimensional
external helicity states and to work with a set of tensors Ti
whose number coincides with that of the independent
helicity configurations. In the gg → gγ channel, nt ¼ 8
and with the cyclic gauge ϵi · piþ1 ¼ 0 and p5 ≡ p1 we
find

T1 ¼ p1 · ϵ2p1 · ϵ3p2 · ϵ4p3 · ϵ1;

T2 ¼ ϵ3 · ϵ4p1 · ϵ2p3 · ϵ1; T3 ¼ ϵ2 · ϵ4p1 · ϵ3p3 · ϵ1;

T4 ¼ ϵ2 · ϵ3p2 · ϵ4p3 · ϵ1; T5 ¼ ϵ1 · ϵ4p1 · ϵ2p1 · ϵ3;

T6 ¼ ϵ1 · ϵ3p1 · ϵ2p2 · ϵ4; T7 ¼ ϵ1 · ϵ2p1 · ϵ3p2 · ϵ4;

T8 ¼ ϵ1 · ϵ2ϵ3 · ϵ4 þ ϵ1 · ϵ4ϵ2 · ϵ3 þ ϵ1 · ϵ3ϵ2 · ϵ4: ð10Þ

In the qq̄ → gγ channel, nt ¼ 4 and with the gauge choice
ϵ3 · p2 ¼ ϵ4 · p1 ¼ 0 we get

T1 ¼ ūðp2Þ=ϵ3uðp1Þϵ4 · p2;

T2 ¼ ūðp2Þ=ϵ3uðp1Þϵ4 · p1;

T3 ¼ ūðp2Þ=p3uðp1Þϵ3 · p1ϵ4 · p2;

T4 ¼ ūðp2Þ=p3uðp1Þϵ3 · ϵ4: ð11Þ

The form factors F i can be extracted from A with app-
ropriate projectors Pj, defined such that

P
pol PjTi ¼ δji,

see e.g. Refs. [9,10] for the full discussion.

III. HELICITY AMPLITUDES

In order to obtain the helicity amplitudes Aλ⃗, it is enough
to evaluate the tensors Ti for fixed-helicity configurations
λ⃗. This is equivalent to a simple change of basis, and the
helicity amplitude for the helicity configuration λ⃗ ¼
fλ1; λ2; λ3; λ4g can be written as a linear combination of
form factors F i

Aλ⃗ ¼
Xnt
i¼1

Ti;λ⃗F i ¼ Sλ⃗Hλ⃗: ð12Þ
1Technically, Eq. (5) is imprecise since the condition sþ tþ

u ¼ 0 has to be always satisfied. This makes analytic continu-
ation for massless 2 → 2 scattering delicate, see e.g. Ref. [6] for a
discussion in the context of three-loop amplitudes.
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The overall spinor factors Sλ⃗ can be extracted from Aλ⃗
using the spinor-helicity formalism, see e.g. Ref. [11] for a
pedagogical introduction. In this notation, fixed-helicity
external quarks are defined as

jpi¼ ½pj¼1þγ5
2

uðpÞ; jp�¼ hpj¼1−γ5
2

uðpÞ; ð13Þ

with ½pj ¼ ūðpÞ 1−γ5
2

and hpj ¼ uðpÞ 1þγ5
2

treating particles
and antiparticles on the same footing, while polarization
vectors take the following form

ϵμj;þðpjÞ ¼
hpjjγμjqj�ffiffiffi
2

p ½pjqj�
; ϵμj;−ðpjÞ ¼

hqjjγμjpj�ffiffiffi
2

p hqjpji
; ð14Þ

where qi is the massless reference vector corresponding to
the ith external gluon and is chosen consistently with the
gauge conditions used to determine the tensor bases of
Eqs. (10) and (11). For the gg → gγ channel we have
qi ¼ piþ1, where we identify p5 ≡ p1 and we choose the
spinor factors to be

Sþþþþ ¼ h12ih34i
½12�½34� ; S−þþþ ¼ ½12�½14�h24i

½34�½23�½24� ;

Sþ−þþ ¼ ½21�½24�h14i
½34�½13�½14� ; Sþþ−þ ¼ ½32�½34�h24i

½14�½21�½24� ;

Sþþþ− ¼ ½42�½43�h23i
½13�½21�½23� ; S−−þþ ¼ ½12�h34i

h12i½34� ;

S−þ−þ ¼ ½13�h24i
h13i½24� ; Sþ−−þ ¼ ½23�h14i

h23i½14� ; ð15Þ

while for the qq̄ → gγ channel we have q3 ¼ p2, q4 ¼ p1

and define the spinor factors as

S−þ−− ¼ 2½34�2
h13i½23� ; S−þ−þ ¼ 2h24i½13�

h23i½24� ;

S−þþ− ¼ 2h23i½41�
h24i½32� ; S−þþþ ¼ 2h34i2

h31i½23� : ð16Þ

The spinor-free helicity amplitudeHλ⃗ can be expanded as a
QCD perturbative series

Hλ⃗ ¼
ffiffiffiffiffiffiffiffi
4πα

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
4παs;b

p X3
l¼0

�
αs;b
4π

�
l
HðlÞ

λ⃗
; ð17Þ

where we have factored out an overall electric coupling e ¼ffiffiffiffiffiffiffiffi
4πα

p
as well as a bare strong coupling gs;b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4παs;b

p
.

HðlÞ
λ⃗

corresponds to the bare l-loop amplitude. Note that

since the gg → gγ channel is loop-induced, the first term in
its perturbative expansion vanishes. Conversely, the
qq̄ → gγ channel contributes nontrivially at all four
orders. The main objective of this paper is to compute

the three-loop term Hð3Þ
λ⃗
. As a by-product of our work, we

have also recomputed all lower-loop amplitudes. We
checked all one-loop helicity amplitudes numerically
against OPENLOOPS [12,13]. At the two-loop level, to the
best of our knowledge, the only available analytic results
are for the process qq̄ → gγ and are given in Ref. [14] in the
form of a color- and polarization-summed interference with
the tree-level, with which we found perfect agreement.2 We
generate Feynman diagrams corresponding to each channel
with QGRAF [16] (see sample diagrams in Fig. 1). At three
loops, there are 7356 graphs in the gg → gγ channel, and
5534 graphs in the qq̄ → gγ channel. Then, we perform
color and Dirac algebra using FORM [17]. There areOð106Þ
scalar Feynman integrals contributing to the form factors of
each of the scattering process described in Eq. (1). Since the
integrals at hand are not all linearly independent, we can
find relations between them. Preliminarily, we exploited
loop-momentum shift-invariance to reduce the complexity
by a factor of about 20. This is then followed by the most
complicated step, which involves integration-by-parts
(IBP) identities [18] to relate the remaining integrals to a
minimal independent basis set of master integrals (MIs). In
order to perform the IBP reduction, we have used the
Laporta algorithm [19] implemented in REDUZE 2 [20,21],
as well as in FINRED [22], which exploits syzygy-based
techniques [23–28] and finite-field arithmetic [22,29–31].
In this manner, we are left with 486 independent MIs. They
have been computed analytically as a series in the

(a)

(b)

FIG. 1. Sample three-loop diagrams for (a) the process qq̄ → gγ
and (b) the process gg → gγ.

2The results presented in Ref. [14] are computed in the
conventional dimensional regularization (CDR) scheme and with
a IR subtraction scheme which differs from the one adopted in
this paper. While the difference in dimensional regularization
scheme is immaterial at the level of the Oðϵ0Þ part of the finite
remainder provided by the authors of Ref. [14], the difference in
IR subtraction scheme is not. In order to bridge the gap, we
performed a second subtraction of the IR poles of our two loop
renormalized amplitudes using the definition of the finite part in
Ref. [15], and combined all helicity amplitudes to obtain the same
quantity computed in Ref. [14].
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dimensional regulator ϵ ¼ ð4 − dÞ=2 in terms of harmonic
polylogarithms (HPLs) [32] in Ref. [33] and later in
Ref. [4]. The evaluation of MIs is based on the differential
equation approach applied to a canonical basis of master
integrals [34]. Substituting expressions for MIs leads to the
final formula for the bare three-loop amplitude, expanded
to Oðϵ0Þ with HPLs up to transcendental weight 6.

IV. UV RENORMALIZATION AND IR
REGULARIZATION

The divergences appearing in the amplitudes treated in
this paper are both of ultraviolet (UV) and infrared (IR)
origin. When working in dimensional regularization they
are represented by poles in the dimensional regulator ϵ.
By defining the MS renormalized strong coupling αsðμÞ
through the equation

ᾱs;bμ
2ϵ
0 Sϵ ¼ ᾱsðμÞμ2ϵZ½ᾱsðμÞ�; ð18Þ

one can obtain UV-finite amplitudes. Above, we have
defined for convenience ᾱs;b ¼ αs;b=ð4πÞ and
ᾱsðμÞ ¼ αsðμÞ=ð4πÞ. The quantity μ is the renormalization
scale introduced in dimensional regularization and Z½ᾱs�
reads

Z½ᾱs� ¼ 1 − ᾱs
β0
ϵ
þ ᾱ2s

�
β20
ϵ2

−
β1
2ϵ

�

− ᾱ3s

�
β30
ϵ3

−
7

6

β0β1
ϵ2

þ β2
3ϵ

�
þOðᾱ4sÞ: ð19Þ

The explicit form of the β-function coefficients βi can be
found in Supplemental Material [35]. The perturbative
contributions to the UV-renormalized helicity amplitudes
Hλ⃗; ren are obtained by expanding Eq. (17) in ᾱsðμÞ.
The poles in ϵ appearing in the renormalized amplitudes

are of IR nature and their structure was described at two
loops in [15] and generalized to different processes [36–38]
and to three loops in Refs. [39–44]. They assume a
universal form across all massless gauge theories. Up to
the three loop-order, one can write [39,40]

Hλ⃗; ren ¼ ZIRHλ⃗; fin; ð20Þ

where Hλ⃗; fin are finite remainders and ZIR is in general a
color operator that acts on the color structure of the
amplitudes. It can be written in terms of the so-called soft
anomalous dimension Γ as

ZIR ¼ P exp

�Z
∞

μ

dμ0

μ0
Γðfpg; μ0Þ

�
; ð21Þ

where the path ordering operator P reorganises color
operators in increasing values of μ0 from left to right and

is immaterial up to three loops since to this order
½ΓðμÞ;Γðμ0Þ� ¼ 0. The soft anomalous dimension can be
written as

Γ ¼ Γdip þ Δ4: ð22Þ

The dipole term Γdip is due to the pairwise exchange of
color charge between external legs and reads

Γdip ¼
X

1≤i<j≤4
Ta
iT

a
j γ

K ln

�
μ2

−sij − iδ

�
þ
X4
i¼1

γi; ð23Þ

where sij ¼ 2pi · pj, γK is the cusp anomalous dimension
[45–52] and γi¼q;g are the quark and gluon anomalous
dimensions [53–56]. In Eq. (23) we have also introduced
the standard color insertion operators Ta

i , which only act on
the ith external color index. Their action on the color
factors of our amplitudes is defined as follows:

ðTa
i Þbici ¼ −ifabici for a gluon;

ðTa
i Þiiji ¼ þTa

iiji
for a ðinitialÞfinal state ðantiÞquark;

ðTa
i Þiiji ¼ −Ta

jiii
for a ðfinalÞinitial state ðantiÞquark;

Ta
i ¼ 0 for a photon: ð24Þ

Performing the color algebra with the definitions in
Eq. (24) we find the explicit value of the dipole anomalous
dimensions in the two channels under consideration. Note
that, since the amplitudes considered here feature a single
color structure, Γ acts by simple scalar multiplication. For
qq̄ → gγ it reads

Γqq̄→gγ
dip ¼ 1

2

�
1

Nc
ln

�
μ2

−s − iδ

�

þ −Nc

�
ln

�
μ2

−t − iδ

�
þ ln

�
μ2

−u − iδ

���
γK

þ 2γq þ γg; ð25Þ

while for gg → gγ we get

Γgg→gγ
dip ¼−

Nc

2

�
ln

�
μ2

−s− iδ

�
þ ln

�
μ2

−t− iδ

�

þ ln

�
μ2

−u− iδ

��
γKþ3γg: ð26Þ

The quadrupole contribution Δ4 in Eq. (22) accounts
instead for the exchange of color charge among (up to) four
external legs and it appears for the first time at three loops,

Δ4 ¼
P∞

n¼3 ᾱ
n
sΔ

ðnÞ
4 . Because the amplitudes considered in

this paper feature only three colored external states, Δ4

assumes a simpler form compared to the full result given in
Ref. [44]. In addition to this, the perturbative series for
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gg → gγ starts at one loop and therefore it receives no
quadrupole correction at three loops.
For qq̄ → gγ, the relevant contribution reads

Δð3Þ;qq̄→gγ
4 ¼ −24Ncðζ5 þ 2ζ2ζ3Þ: ð27Þ

We verified that the IR singularities of our three-loop
amplitudes match perfectly those generated by Eqs. (20)–
(27), which provides a highly non-trivial check of our
results.

V. RESULTS

The expressions we obtained for the finite remainder
Hλ⃗; fin are relatively compact, but still too long to be
included in this manuscript. They are provided in com-
puter-readable format in the Supplemental Material [35].
We also provide the explicit results for the channel qg →

qγ which can be generated by crossing the qq̄ → gγ
amplitude. The only other relevant channel for pp → jγ
is q̄g → q̄γ and it can be obtained by charge conjugation of
qg → qγ, which leaves the helicity-stripped amplitudes
unchanged. When crossing the amplitudes, one has to
permute Mandelstam invariants. In doing so, it is important
not to cross more then one branch cut per transformation.
This can be guaranteed by an appropriate composition of
multiple transformations. All needed manipulations of
HPLs can be performed with POLYLOGTOOLS [57], and
the procedure is described in more detail in Ref. [6]. It is
also worth pointing out that when applying a crossing or a
charge/parity transformation to the amplitudes associated to
the processes in Eq. (1), one has to take care of applying the
corresponding transformations to the spinor weights in
Eqs. (15) and (16).
Finally, we point out that our amplitudes can be

evaluated numerically in an efficient way since they consist

of only rational, and well-studied HPL functions. In Fig. 2
we provide sample plots for the qq̄ → gγ and gg → gγ
channels, where we numerically evaluated the squared
amplitudes normalized to the leading order. To define
the quantities plotted in the figure more precisely, we first
introduce the notation

hAðlÞjAðl0Þi≡ X
f;λ⃗;col

C†Cjsλ⃗j2H
ðlÞ�
λ⃗; fin

Hðl0Þ
λ⃗; fin

ð28Þ

for the interference between two amplitudes summed over
all internal quark flavors, all helicity configurations
and all colors of the external states. With this, we can
write

VðNLOÞ
qq̄→gγ ¼

2RehAð0ÞjAð1Þi
hAð0ÞjAð0Þi ;

VðNNLOÞ
qq̄→gγ ¼ hAð1ÞjAð1Þi

hAð0ÞjAð0Þi þ
2RehAð0ÞjAð2Þi
hAð0ÞjAð0Þi ;

VðN3LOÞ
qq̄→gγ ¼ 2RehAð1ÞjAð2Þi

hAð0ÞjAð0Þi þ 2RehAð0ÞjAð3Þi
hAð0ÞjAð0Þi ; ð29Þ

and

VðN3LOÞ
gg→gγ ¼ 2RehAð1ÞjAð2Þi

hAð1ÞjAð1Þi ;

VðN4LOÞ
gg→gγ ¼ hAð2ÞjAð2Þi

hAð1ÞjAð1Þi þ
2RehAð1ÞjAð3Þi
hAð1ÞjAð1Þi ; ð30Þ

where the process dependence has been left implicit. We
point out that the quantities plotted in Fig. 2 nicely show
convergence of the loop corrections, however it should be
kept in mind that they depend on the choice of IR
subtraction scheme and only represent the virtual

(a) (b)

FIG. 2. Perturbative expansions of the color, helicity and flavor summed finite remainder of the amplitude squared for the process
(a) qq̄ → gγ and (b) gg → gγ as a function of x ¼ −t=s normalized to the corresponding leading order. For simplicity we set αs ¼ 0.118,

μ2 ¼ s, Nc ¼ 3, nf ¼ 5 and nðVÞf ¼ 1=3. The (NnLO) labels are assigned in terms of the contribution to the process pp → gγ.
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contributions to the partonic cross section. In addition, for
the qq̄ → gγ channel we observe the same alternating
behavior of the different perturbative orders when
approaching the limits x → 0 and x → 1 that is also present
in the qq̄ → gg and gg → gg channels [7].

VI. CONCLUSIONS

In this paper we have completed the computation of the
last three-loop four-point massless QCD scattering ampli-
tudes with partons in the initial state. To do so, we
employed a refined version of the tensor projection method
which considerably reduces the amount of calculations
required. At one and two loops, we have checked the
consistency of our result against the available literature and
found perfect agreement. At three loops, our amplitudes
have the correct UV and IR structure, including the
quadrupole contribution that appears at this perturbative
order for the first time. The corrections provided in this

paper start contributing to the differential cross section at
N3LO and in the future they will hopefully allow to achieve
better precision on the prediction of photonþjet observ-
ables at hadron colliders.
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