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We study the SUð∞Þ lattice Yang-Mills theory at the dimensionsD ¼ 2, 3, 4 via the numerical bootstrap
method. It combines the loop equations, with a cutoff Lmax on the maximal length of loops, and positivity
conditions on certain matrices of Wilson loop averages. Our algorithm is inspired by the pioneering paper
of P. D. Anderson and M. Kruczenski [Nucl. Phys. B921, 702 (2017)] but it is significantly more efficient,
as it takes into account the symmetries of the lattice theory and uses the relaxation procedure in line with
our previous work on matrix bootstrap. We thus obtain rigorous upper and lower bounds on the plaquette
average at various couplings and dimensions. For D ¼ 4; Lmax ¼ 16 the lower bound data appear to be
close to the Monte Carlo data in the strong coupling phase and the upper bound data in the weak coupling
phase reproduce well the 3-loop perturbation theory. Our results suggest that this bootstrap approach can
provide a tangible alternative to the, so far uncontested, Monte Carlo approach.
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I. INTRODUCTION

The SUðNcÞ Yang-Mills (YM) lattice gauge theory
(LGT) is a fundamental ingredient of modern particle
physics. Its most illustrious applications are the Standard
Model and, in particular, the quantum chromodynamics.
Nowadays, most of the nonperturbative computations in
Yang-Mills theory are done by Monte Carlo (MC) simu-
lations for the lattice formulation of YM theory. Combined
with perturbation theory (PT) [1–5] and RG tools, MC
methods have had a huge success, especially in the
recent couple of decades, due to the development of
supercomputers. It allowed us to compute, with a reason-
able precision, certain masses of hadrons and the S-matrix
elements in QCD, reproducing the experimental data [6,7].
However, the absence of any systematic nonperturbative
“analytic” alternative to MC is, practically and intellec-
tually, somewhat uncomfortable. Moreover, the MC
method has its inherent limitations; statistical errors, finite
lattice size, high numerical cost of inclusion of dynamical
quarks, difficulties in treating finite baryon density, and the
real-time dynamics.

An interesting alternative for the study of the LGT is
provided by Makeenko-Migdal loop equations (LE) [8,9]
for Wilson loop averages (WA). An early attempt at
numerical study of LE in the large Nc, ’t Hooft limit
was proposed in [10–13], in the form of minimization of
effective action in the loop space. A more recent brave
attempt to bootstrap the LEs, combining them with certain
positivity conditions [14,15], revived hopes of a more
analytic approach. Slightly later, a similar bootstrap method
was proposed in [16] for the multimatrix models. In our
work [17] we significantly improved the matrix bootstrap
by introducing a “relaxation” procedure and applied it to an
“analytically unsolvable” large N 2-matrix model, with
remarkable efficiency and precision, noticeably exceeding
those of MC for the same model [18].
These developments have been considerably inspired by

the success of the bootstrap approach to conformal
field theories (CFTs) [19,20] and S-matrices in massive
QFTs [21–23].
Unlike MC where the result is given up to statistical error

bars, the bootstrap methods provides rigorous inequalities
giving upper and lower bounds on computed physical
quantities. These bounds can only improve when increasing
the number of bootstrapped variables and constraints
on them.
Here we develop a powerful numerical bootstrap algo-

rithm for solving the LEs [8,9] in the lattice YM theory at
Nc → ∞ and demonstrate it on the computation of
plaquette average uP ¼ 1

Nc
htrUPi. Its main ingredients

are (i) positivity of correlation matrix of WAs; (ii) our
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relaxation procedure of [17]; (iii) positivity of reflection
matrices due to lattice symmetries; and (iv) symmetry
reduction of the positivity conditions. In the Supplementary
Material [24], we worked out a simple example for our
general method together with some data points.
Our data (obtained on a single workstation), for the

modest length cutoff Lmax ¼ 16, looked quite encouraging;
as seen on Fig. 1, for D ¼ 4, our lower (upper) bounds are
quite close to the MC data [14,15,25,26] in the strong
(weak) coupling phase, at least far enough from the phase
transition. The upper bound is remarkably close to the
3-loop PT.
In Fig. 2 we plot the difference of the bootstrap upper

bound and the 3-loop PT, ΔuP ≡ ubootP − uPTP , as a function
of 1=λ. It might capture the nonperturbative effect for the
gluon condensate htrðFμνFμνÞi—in principal a measurable
observable [27–29]. The graph is very smooth and it is
positive even slightly beyond the phase transition point
λc ≃ 2.9 [30].

II. YANG-MILLS LOOP EQUATIONS AT LARGE N

We study the LGT with the Wilson action [31]

S ¼ −
Nc

λ

X
P

Re trUP; ð1Þ

where UP is the product of four unitary link variables
around the plaquette P and we sum over all plaquettes P,
including both orientations. The main quantities of interest
in ’t Hooft limit Nc → ∞ are the WAs:

W½C� ¼
�

tr
Nc

Y
l∈C

Ul

�
: ð2Þ

The matrix product goes over the link variables belonging
to the lattice loop C. W½C� are subject to LEs, i.e.,
the Schwinger-Dyson equations expressing measure invari-
ance with respect to group shifts Ul → Ulð1þ iϵÞ.
Schematically the LE reads,

X
ν⊥μ

ðW½Clμ ·δC
ν
lμ

��!�−W½Clμ ·δC
ν
lμ

 ���Þ¼ λ
X
l0∈C
l0∼l

ϵll0W½Cll0 �W½Cl0l�;

ð3Þ

where the lhs represents the loop operator acting on the link

lμ by replacing it with the loop around plaquette δCν
lμ

��!
or

δCν
lμ

 ��
(depending on the orientation, as shown in the first line

of Fig. 3). The lhs sum goes around all 2ðD − 1Þ
μν-plaquettes orthogonal to the direction μ. The rhs sum
goes over all appearances of the same lattice link l in the
loop C. The rhs product corresponds to splitting of the
contour C → Cll0 · Cl0l, as explained in the second and third
lines of Fig. 3. Finally, ϵll0 ¼ �1 for links l and l0 with

FIG. 1. Our bootstrap results for upper and lower bounds on
plaquette average in 4D LGT (1): for Lmax ¼ 8 (yellow domain)
for Lmax ¼ 12 (orange curves) and Lmax ¼ 16 (blue curves). Red
circles represent the MC data for SUð10Þ LGT [with five purple
squares for SUð12Þ]. Dashed upper and lower lines represent the
3-loop PT (13) and strong coupling expansion (14), respectively.

FIG. 2. The plot ΔuP ≡ ubootP − uPTP which might capture the
nonperturbative values of the gluon condensate htrðFμνFμνÞi.

-

FIG. 3. Schematic representation of LEs. The first line shows
the variation of a link of Wilson loop in the LHS of Eq. (3). The
second and third lines show the splitting of the contour along the
varied line into two sub-contours, for two different orientations of
coinciding links in the rhs of Eq. (3).
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opposite or collinear orientation, respectively. For more
details on LEs, see [14,32,33].

A. Backtrack loop equations

To get the full list of the LEs, we also consider the
“backtrack” LEs. They correspond to doing variations on
the links at the end of “backtrack” paths originating from
the vertices of Wilson loop. These “backtracks” are
equivalent to inserting the identity, but their Schwinger-
Dyson variation, can give independent LEs. Figure 4 shows
an example of “backtrack” LE,

ð4Þ

The LEs close on single trace WAs (2) (due to the large
Nc factorization of color traces), which means that they
behave as classical quantities on the loop space. At
Lmax ¼ 16, we have about 40,000 LEs in 3D and about
100,000 LEs in 4D, and the backtrack LEs constitute more
than 80% of all these LEs. Around three-quarters of them
are linearly independent and only a small minority are
nonlinear. Finding the solution to these equations is our
primary task for any other progress in studying the physical
quantities of planar QCD or its 1=Nc corrections. The
problem is very complicated since it is formulated in
extremely complex loop space. We will try to solve it
using the bootstrap approach.

III. BOOTSTRAP ALGORITHM

A. Positivity constraints

In general, our positivity conditions come from the
positivity of possible inner products on the vector space
or a subspace of the operators, i.e.,

hOjOi ¼ hO†Oi ¼ α�TMα ≥ 0 ⇔ M≽ 0; ð5Þ

where O ¼P
αiOi is an operator with arbitrary coeffi-

cients αi, and Oi are basis vectors of the operators.
One of possible adjoint operators O† comes from taking

the Hermitian conjugation [14,16,17]. For a Wilson path,

the Hermitian conjugation corresponds to reversing the
path. By taking a linear combination of all Wilson paths
0 → x (between the points 0 and x), with arbitrary
coefficients, we can get nontrivial positivity conditions
from their inner product. For example, we have only two
paths 0 → ð1; 1Þ, at Lmax ¼ 2

ð6Þ

and the positivity condition reads,

Path†1
Path†2

Path1 Path2�
1 uP
uP 1

�
≽ 0: ð7Þ

This gives u2P ≤ 1, obvious from unitarity. We call the
positivity matrices arising from the Hermitian conjugation
the correlation matrices.
Apart from Hermitian conjugation, we have additional

reflection positivity conditions where adjoined operators
O† come from reflection symmetries [34]. For LGT, there
are three types of reflections with respect to different
planes; site, link, and diagonal reflections [35,36].
Figure 5 illustrates the corresponding adjoint paths for
these reflections. The importance of three new reflection
positivity conditions is illustrated in Fig. 6 where we
compare Lmax ¼ 12 bootstrap results with and without
reflection positivity.
For computations in this work, we consider the full

positivity constraint 0 → x for any possible x when
Lmax ≤ 12. But for Lmax ¼ 16, we consider only the paths
0 → 0 for various positivity matrices since:
(1) When constructing correlation matrices, all the

positivity conditions on the open Wilson paths
0 → x are already contained in 0 → 0 correlation
matrix for higher lengths (due to backtrackings).

(2) At Lmax ¼ 16, we observe empirically that the
0 → 0 constraints are computationally the most
efficient. One important reason for that is that the
positive matrices corresponding to 0 → 0 are

FIG. 4. An example of nonlinear “backtrack” LE.

FIG. 5. Examples of three reflection symmetries on the lattice
allowing new positivity conditions on WAs.
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numerically more tractable with respect to symmetry
reduction which we will discuss below.

B. Convex relaxation

In general, LEs are nonlinear. Here we use the relaxation
method to replace all the nonlinear LE with linear ones
where in the rhs we replace the products of WAs with new
variables Qij, subject to extra constraints [17],

Qij ¼ WiWj⇒
replace

�
1 WT

W Q

�
≽ 0: ð8Þ

Here W ¼ fW1;W2;W3;…g denotes the column vector of
all inequivalent WAs. Notice that the relaxation matrix has
rank ¼ 1 precisely when Qij ¼ WiWj.
The LEs combined with the convex relaxation and

positivity conditions constitute the constraints of semi-
definite programming (SDP). To get rigorous bounds on
WAs, we can maximize or minimize uP.

C. Reduction by symmetry group

In conformal and S-matrix bootstraps, the positivity
conditions are well-known to be organized in different
spin channels [19,38] and different irreducible representa-
tions of global symmetry [39–42]. In parallel to that
observation, we can greatly reduce the positivity matrices
via the global lattice symmetries.
Formally, if we have an invariant group G preserving the

inner product

hðg ∘O1Þjðg ∘O2Þi ¼ hO1jO2i; ∀ g ∈ G ð9Þ

then the positivity condition on the matrix M defined in
Eq. (5) can be rearranged into a block-diagonal form
corresponding to the irreps of G.
This well-studied procedure is known under the name

“invariant semidefinite programming.” Here we refer to a
statement [43] directly related to our current problem: If the
vector space of the paths can be decomposed as a direct
sum of irreducible representations Repk of the invariant
group with multiplicity mk,

V ¼⨁
D

k¼1
Rep⨁mk

k ; ð10Þ

then the positivity condition of the inner-product matrix is
equivalent to the collection of positivity conditions on the
matrices corresponding to each Repk, with matrix dimen-
sion mk ×mk.
For the correlation matrix 0 → 0, the invariant groupG is

Bd × Z2, where Bd is the hyperoctahedral group in d
spacetime dimensions. It acts on a Wilson path by corre-
sponding rotations and reflections on the spacetime lattice.
Z2 is the group action reversing the path.
For the reflection-positivity matrices 0 → 0 the invariant

groups are subgroups of Bd × Z2, leaving the reflection
plane invariant. These invariant subgroups are summarized
in Table I.
Implementing this symmetry reduction is similar to

projecting the physical state with respect to spin and parity
in conformal or S-matrix bootstrap. Practically, we do the
following steps:
(1) Find a specific realization of every irrep of the

invariant group using GAP software [44].

FIG. 6. uP for 2D (upper) and 3D (lower) LGT: the upper and
lower bounds from our bootstrap at Lmax ¼ 8 (yellow region),
Lmax ¼ 12 (orange curves) and Lmax ¼ 16 (blue curves). The 3D
and Lmax ¼ 12 result without reflection positivity (gray curve) is
much less constraining. The line of red circles represents the MC
data for SUð10Þ LGT. The dashed black curve in the 2D plot is
the exact solution (15). The dashed black curve in the 3D plot is
the 3-loop PT result [37].

TABLE I. Invariant groups of correlation and reflection ma-
trices.

Dimension
Hermitian
conjugation

Site and link
reflection

Diagonal
reflection

2 B2 × Z2 Z2 × Z2 Z2 × Z2

3 B3 × Z2 B2 × Z2 Z3
2

4 B4 × Z2 B3 × Z2 B2 × Z2
2

VLADIMIR KAZAKOV and ZECHUAN ZHENG PHYS. REV. D 107, L051501 (2023)

L051501-4



(2) Use the algorithm initiated in [45] to find an
equivalent real representation (if the irrep by GAP

is complex).
(3) To decompose into such irreps, we use the projector

to Repk [46],

pαα;k ¼
dimðRepkÞ
dimG

X
g∈G

rααðg−1Þg: ð11Þ

Here rαβ is a matrix element of a real representation
identified at step 2, and α; β ¼ 1; 2;…; dimðRepkÞ.
Taking α ¼ 1, Pk ¼ p11;k gives us a projector
to Repk.

D. Selection of multiplets of Wilson paths

The Wilson paths form different multiplets of the
invariant group. Within each multiplet, the symmetry group
permutes different Wilson paths. When constructing the
positivity matrices, some multiplets are more important
than others. We kept only the most important multiplets.
More precisely, several WAs are not related to other WAs
by the LEs, such as the 4 × 4 square Wilson loop at
Lmax ¼ 16. We believe that such WAs and the open Wilson
paths out of which they are constructed are relatively
unimportant.
As an example, take the correlation matrix for the

paths 0 → 0 at 3D and Lmax ¼ 16. It has a huge size
6505 × 6505. After the symmetry reduction and selection
of the multiplets, the positivity of the correlation matrix
reduces to positivity of 20 smaller matrices, each corre-
sponding to its irrep, with sizes:

38; 15; 25; 18; 62; 33; 68; 75; 56; 78;

22; 18; 34; 15; 56; 33; 57; 76; 69; 73: ð12Þ

So the SDP gets greatly simplified.

IV. DISCUSSION OF RESULTS

Here we present the results of computation of plaquette
average uPðλÞ for various bare couplings λ in LGT in 2D,
3D, and 4D. On Fig 1 we compare our bootstrap data in 4D
with MC for SUð10Þ [15] and SUð12Þ [25] LGT, assuming
that, with our accuracy, Nc ¼ 10, 12 are close enough
to Nc ¼ ∞. We also compare it with the known 3-loop
Nc ¼ ∞PT result [47]:

uP ¼ 1 −
λ

8
− 0.005107λ2 − 0.000794λ3 þOðλ4Þ ð13Þ

as well as with the SC expansion valid in the SC phase,
beyond the first-order phase transition point λc ≃ 2.9 [48],

uP ¼
1

λ
þ 4

λ5
þ 60

λ9
þ 136

λ11
þ 1092

λ13
þOðλ−15Þ: ð14Þ

The bootstrap bounds on uP given for Lmax ¼ 8, 12, 16
on Fig. 1 are quickly improving with the increase of cutoff.
The physically most interesting WC phase is much better
described by the upper bound. Moreover, we see that the
upper bound nicely reproduces the 3-loop PT (13) for a
large range of coupling, even beyond the phase transition
point where PT is, strictly speaking, not valid. However,
comparing these results to MC data, we see that it is not yet
so good at capturing the departure from the PT in the
interval (2.4, 2.8) where the MC data of [25] (given by
black squares on Fig. 1) were used to compute the masses
and the string tension. We expect a significant improvement
for this range in our data if we reach Lmax ¼ 20 or even 24.
However, this will certainly demand much bigger computa-
tional resources.
Finally, we briefly discuss 2D and 3D cases. For

2D LGT the plaquette average can be computed exactly
[49,50] (as well as any loop average, see [51]),

uP ¼
8<
:

1 − λ
4
; for λ ≤ 2

1
λ ; for λ ≥ 2:

ð15Þ

This example was important for both checking our algo-
rithm and for observing how fast our bootstrap data
approach the exact result when increasing Lmax. The results
are presented on Fig. 6. For physically interesting and
challenging case of 3D LGT, we compare on Fig. 6 our
bootstrap bounds at Lmax ¼ 8, 12, 16 with the MC data [15]
as well as with the known 3-loop PT [37] and SC [48]
results. We observe a reasonably fast approach of bootstrap
bounds to the MC data when increasing Lmax, but they are
not as close to PT as in 4D case.
We employ in LEs the WAs up to the maximal length

Lmax, so it can be considered as our infrared (IR) cutoff.
The physical scale lph (set by inverse mass or square root of

string tension) should, ideally, satisfy 1 ≪ lph
aL

≪ Lmax,
where aL is the lattice spacing. In this paper, we have,
for the best of our data, Lmax ¼ 16 which suggests that the
window for the scale of measurable physical quantities in

lattice units should be roughly 2≲ lph
aL

≲ 6 (compare it to
Table 8 of [25] where the IR cutoff is set by the size of
space-time torus, typically in the range 10to16, and the

typical physical length is set by string tension 3≲ lph
aL

≲ 6).
We conclude that, even though the currently achieved

values of Lmax in our bootstrap approach may be not
sufficient to match the precision and scope of the MC
experiments, especially for the confinement sensitive phys-
ics (glueball masses, string tension, etc.), our results give
hope for a considerable improvement when augmenting
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Lmax. Moreover, for sufficiently small couplings our upper
bound data are already at least as good as MC.

V. PROSPECTS

The bootstrap procedure proposed here has a clear
perspective for improving our results and advancing
towards the computation of interesting observables. In
particular, by choosing objective functions other than uP,
one can hope to get a better estimate for all involved
physical quantities. For our current implementation at
Lmax ¼ 16, every data point takes ∼20 hours of CPU time
for 4D, and only half an hour for 3D [52]. First, we want to
increase the cutoff to Lmax ¼ 20 and even to Lmax ¼ 24.
This will certainly need supercomputer power. From our
current results, we expect a quick narrowing of our bounds
to the accuracy comparable to, or even better than MC
(without its toll of statistical and systematic errors).
Furthermore, since in the ’t Hooft limit we don’t have
internal fermion loops, we can try to find the quark
condensate and hadron masses by simply summing up

the WAs with the spinorial factors for the relevant one- and
two-point functions. The 1=Nc corrections (which might be
small enough even for the physicalNc ¼ 3 case) seem to be
not insurmountable tasks since they are subject to linear
LEs [9], with coefficients given by the solution of LE (3).
One of such problems is the computation of glueball
masses from the connected correlator of two small
Wilson loops. One can also try to bootstrap directly the
Nc ¼ 3 YM theory, where the absence of large factoriza-
tion could be compensated by multiple functional relations
between WAs, absent for Nc ¼ ∞ case.
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