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In order for string theory to be made compatible with the low-energy observations of a positive
cosmological constant, there have been attempts to construct de Sitter (dS) vacua in string theory which are
particularly difficult to realize. Instead of attempting to find dS vacuum solutions, we point to a new way to
make string theory consistent with low-energy dS cosmology. In this way, string theory lives in an anti–de
Sitter (AdS) vacuum (which is simple to construct) that exists only in the high-energy regime; however, as
going to the low-energy scales where the heavy string excitations and Kaluza-Klein modes are integrated
out, we show that the effective picture of string theory in lower dimensions would exhibit a 4D dS vacuum
without needing to add additional structures such as anti-D3 branes. Additionally, we point to evidence
from bottom-up physics for the strong version of the AdS distance conjecture realized from AdS vacua in
string theory. This evidence, hence, supports the sharpening of the AdS distance conjecture as one of the
universal features of quantum gravity.
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I. MOTIVATIONS

String theory has been considered as one of the
candidates for a correct theory of quantum gravity.
However, it has been faced with the challenges of matching
with the experimental observations at low-energy scales.
One of them is to construct de Sitter (dS) vacua motivated
by the observation of positive cosmological constant [1].
However, it has been known that dS vacua in string theory
are particularly difficult to realize. No-go theorems imply
that there are no dS vacua in supergravity and string theory
if the internal space is static, is compact, and has no
singularities [2,3]. The difficulties of the dS vacuum
construction come also from explicitly computing string
loop, higher-derivative, and nonperturbative corrections.
The Kachru-Kallosh-Linde-Trivedi construction allows
anti–de Sitter (AdS) vacua uplifted to metastable dS vacua
by adding anti-D3 branes [4–7]. But, there have been
recent results in the literature which point to the problems
with this dS vacuum construction regarding the back-
reaction of anti-D3 branes on the internal geometry [8–13]
and on the 4D moduli [14] and nonsupersymmetric (non-
SUSY) Giddings-Kachru-Polchinski solutions (derived in
Ref. [15]) [16]. In addition, there have been some attempts

at embedding dS cosmology within string theory [17,18].
The technical difficulties have, hence, suggested the
possibility that string theory admits no dS vacua
which do not suffer from instabilities at all [19]. Hence,
the dS conjecture [20] was proposed as well as the dS
instability [21] was studied to realize no dS vacua in string
theory. For reviews about the status of the dS vacuum
construction in string theory, see [22,23].
On the contrary, AdS vacua in string theory are under-

stood very well and simple to construct. And, another fact is
that the dS vacuum that we observe has been realized in the
low-energy regime so far. This means that it is not known
whether the vacuum is still dS in the high-energy regime; in
other words, it is possible that the vacuum would be AdS at
the high-energy scales. These facts imply an ideal that makes
string theory compatible with the low-energy observations of
positive vacuum energy without needing to find its dS vacua
as follows. We start from the well-known AdS vacua of type
IIB string theory with the compactification geometry given
by M5 × X5, where solving the stringy 10D equations of
motion would lead toM5 being an AdS5 factor, which exists
only in the high-energy regime. In addition, we consider
the compactification ofM5 on a circle in order to obtain the
observed 4D world where the 4D tensor component of the
M5 metric is, in general, dependent on the fifth coordinate.
We point to that the nontrivial dynamics of the 4D tensor
component of theM5 metric along the fifth dimension leads
to a positive contribution to energy in the 4D effective
theory. As a result, a 4D dS vacuum can emerge in the
low-energy regime from an AdS vacuum of the higher-
dimensional theory existing at the high-energy scales.
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A feature of AdS vacua in string theory is that an infinite
tower of states becomes light in the limit of the AdS
curvature radius going to infinity due to no scale separation
between the AdS curvature radius and the radius of the
internal space. This implies the proposal of the AdS
distance conjecture [24] which is a generalization of the
swampland distance conjecture [25] to the metric con-
figuration space and is stated as follows: The near-flat limit
of any AdS vacuum is accompanied by an infinite tower of
states whose mass scale behaves asm ∼ jΛjα with Λ to be a
cosmological constant and α ≥ 1

2
required by the strong

version. This conjecture together with other swampland
conjectures have been used to place the constraints on the
effective theories which can be completed consistent with
quantum gravity in the ultraviolet [26–28], and interesting
implications for the neutrino masses, cosmological con-
stant, and electroweak vacuum have been found [29–36].
However, evidence coming from the bottom-up physics for
the strong version of the AdS distance conjecture, which is
necessary to test this conjecture and sharpens it (and, thus,
the swampland distance conjecture) as one of the universal
features of quantum gravity, is still missing. We will show
that the mass spectrum of the Kaluza-Klein (KK) tower for
the 5D bulk fields represents bottom-up evidence for the
strong version of the AdS distance conjecture. This result,
hence, supports that the AdS distance conjecture (and,
hence, the swampland distance conjecture) realized from
the AdS vacuum construction in string theory can be
applied, in general, for quantum gravity.

II. AdS VACUA IN TYPE IIB STRING THEORY

Our starting point is the 10D action for the massless string
excitations of type IIB string theory, which is given by

S ¼ 1

κ210

Z
d10X

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∇ΦÞ2 − g2s

2
eapΦF2

pþ2

�
; ð1Þ

where κ210 ≡ ð2πÞ7g2sl8s with gs and ls the string coupling
and the string length, respectively, the dilaton coupling
parameter ap for the Ramond-Ramond sector is
ap ¼ ð3 − pÞ=2, and F2

pþ2 ≡ FM1M2…Mpþ2
FM1M2…Mpþ2=

ðpþ 2Þ! with FM1M2…Mpþ2
being the field strength tensor

(pþ 1)-form gauge fields. We consider the solution of
Eq. (1) with the following geometry:

ds210 ¼ ds2M5
þ L2ds2X5

;

eΦ ¼ gs;

gsF5 ¼ αð1þ ⋆ÞvolX5
; ð2Þ

where X5 is a 5D Sasaki-Einstein manifold [37] which has
the curvature satisfying RX5

¼ 20 and is stabilized by N
units of flux, volX5

refers to the five-form volume of X5,
α ¼ 16πgsNl4sðπ3=VolM5

Þ which is determined by the flux

quantization constraint
R
X5
⋆F5 ¼ ð2πlsÞ−3Nκ210=ðgslsÞ

with VolX5
being the volume of X5, and other (pþ 1)-

form fields are trivial.
The equations of motion □Φ ¼ g2sapeapΦF2

pþ2=½2ðpþ
2Þ!� and ▿MðeapΦFMN1…Npþ1Þ ¼ 0 are satisfied for the
constant dilaton and self-dual five-form field [and other
(pþ 1)-form fields which vanish], respectively, whereas
Einstein field equationsRM

N ¼FMM1M2M3M4
FNM1M2M3M4=

96 lead to

L4 ¼ 4πgsNl4s
π3

VolX5

; ð3Þ

RM5
¼ −

20

L2
; ð4Þ

where RM5
denotes the scalar curvature of M5.

Equations (3) and (4) together with the geometry (2)
imply that an exact background of type IIB string theory
which is obtained from solving the stringy 10D equations
of motion is a factor AdS5 times a 5D internal manifold,
i.e., AdS5 × X5.

1

III. DIMENSIONALLY REDUCED ACTION
OF STRING THEORY

With the background geometry (2), reducing the 10D
action (1) of type IIB string theory on X5, we get the
following 5D effective action:

S5D ¼ M3
5

2

Z
d5X

ffiffiffiffiffiffiffiffi
−g5

p ½RM5
− 2Λ�; ð5Þ

where M3
5 ¼ 2VolM5

L5=κ210 and Λ ¼ −6=L2 with L as
given by Eq. (3). This action means that the 5D effective
theory of string theory would be in the AdS vacuum.
In addition, in order to obtain the 4D observed world, we

consider the compactification of M5 on a circle S1 where
the most general setting of this compactification is given by
a principal bundle with the typical fiber to beUð1Þ [39–41],
which adopts the local coordinates as ðxμ; θÞ with fxμg ∈
R4 and θ being an angle parametrizing the fifth dimension
of M5 corresponding to the coordinate transformation as
xμ → x0μ ¼ x0μðxÞ and θ → θ0 ¼ θ þ αðxÞ. Hence, the
metric equipped on M5 takes the following general form:

ds2M5
¼ gμνdxμdxν þ R2½dθ þ gAAμdxμ�2; ð6Þ

where gμν, Aμ, and R are the 4D tensor, 4D vector, and 4D
scalar component fields of the bulk metric on M5, respec-
tively, and gA is the corresponding gauge coupling. With
this ansatz, we can explicitly expand RM5

given in the

1The well-known case is that X5 is a five-sphere S5 related to
AdS=CFT correspondence [38].
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action (5) in terms of the 4D component fields (see
Appendix A in Supplemental Material [42] for the detailed
computation) as follows:

RM5
¼ R̂þ 1

4R2
ð∂θgμν∂θgμν þ gμνgρλ∂θgμν∂θgρλÞ

−
g2AR

2

4
FμνFμν; ð7Þ

where R̂≡ gμνð∂̂λΓλ
νμ − ∂̂νΓλ

λμ þ Γρ
νμΓλ

λρ − Γρ
λμΓλ

νρÞ with

Γρ
μν ≡ gρλ

2
ð∂̂μgλν þ ∂̂νgλμ − ∂̂λgμνÞ, ∂̂μ ≡ ∂μ − gAAμ∂θ, and

Fμν ¼ ∂μAν − ∂νAμ.

IV. THE EMERGENCE OF DS VACUUM
IN 4D WORLD

In the previous section, we have seen that type IIB string
theory exists at the AdS vacuum. However, in the following
we will show that this AdS vacuum exhibits only in the
high-energy regime. But, when approaching the low-
energy regime, the effective theory of type IIB string
theory in lower dimensions would exhibit a 4D dS vacuum
which is consistent with the low-energy observations. The
emergence of dS vacuum here is essentially due to the
presence of the second term in Eq. (7) which has been
ignored in the literature, because the θ dependence of the
4D tensor component of the bulk metric equipped onM5 is
usually not considered.
Let us first obtain the bulk profile of the 4D tensor

component which describes its dynamics along the fifth
dimension ofM5. By varying the action (5) in the 4D tensor
component of the bulk metric, we find the following
equation:

R̄μν −
1

2
gμνR̄þ Λgμν þ

1

4R2

�
gμρgνλ∂2θg

ρλ

−∂2θgμν þ gρλ∂θgρλ∂θgμν þ 2∂θðgμνgρλ∂θgρλÞ

−
1

2
gμνf∂θgρλ∂θgρλ − ðgρλ∂θgρλÞ2g

�
¼ 0; ð8Þ

where R̄μν ≡ ð∂λΓ̄λ
νμ − ∂νΓ̄λ

λμ þ Γ̄ρ
νμΓ̄λ

λρ − Γ̄ρ
λμΓ̄λ

νρÞ with

Γ̄ρ
μν ≡ gρλ

2
ð∂μgλν þ ∂νgλμ − ∂λgμνÞ and R̄≡ gμνR̄μν. We

have here obtained Eq. (8) in the vacuum R ¼ const
and Aμ ¼ 0, which are the solution of their equations of
motion as seen later. We separate the variables as

gμνðx; θÞ ¼ χðθÞgð4Þμν ðxÞ, where gð4Þμν ðxÞ is identified as the
usual metric in the 4D effective theory and χðθÞ is its
profile. Then, we find

Rð4Þ
μν −

1

2
gð4Þμν Rð4Þ þ Λ4g

ð4Þ
μν ¼ 0; ð9Þ

3χ00ðθÞ þ 8
χ0ðθÞ2
χðθÞ þ 2Λ

R−2 χðθÞ ¼
2Λ4

R−2 ; ð10Þ

where Rð4Þ
μν and Rð4Þ are the usual Ricci and scalar

curvatures of the 4D effective geometry of spacetime

written in terms of gð4Þμν ðxÞ, respectively, and Λ4 is a
constant. It is important to remark that Eq. (10) is a
nonlinear differential equation, and, hence, the solution
of gμνðx; θÞ should not be given as the linear combination of
partial solutions, whereas Eq. (9) determines the 4D
effective geometry of spacetime sourced by a cosmological
constant Λ4 which is originated from the dynamics of the
4D tensor component of the bulk metric along the fifth
dimension of M5.
To find an analytical solution for Eq. (10) with the

boundary condition χð−πÞ ¼ χðπÞ [43] for the general
value of Λ4 is a difficult task. However, with Λ4 ¼ 0
corresponding to the situation of small Λ4, it is easy to find
an analytical solution as follows:

χðθÞ ¼ cosh
3
11

� ffiffiffiffiffi
22

p

3
κθ

�
; ð11Þ

where κ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ=R−2

p
. For the Λ4 ≠ 0, a particularly

analytical solution is found as

χðθÞ ¼ 11Λ4

19jΛj
�
cosh

� ffiffiffiffiffi
2

11

r
κθ

�
− 1

�
: ð12Þ

Note that, due to the topology of S1, the 4D metric
component and, thus, its bulk profile χðθÞ must be periodic
with the period 2π, i.e., χðθÞ ¼ χðθ þ 2πÞ. One can make
the solution χðθÞ periodic with the period 2π by reflecting it
at the boundary as discussed in Appendix B [42].2

The fact that χðθÞ is non-negative implies Λ4 ≥ 0, which
means that the nontrivial profile given by Eqs. (11) and (12)
for the 4D tensor component of the bulk metric along the
fifth dimension of M5 should give a non-negative contri-
bution to the energy in the 4D effective theory as seen in
Eq. (9). In this sense, the 4D effective theory of type IIB
string theory would be at the dS vacuum.
A key question that here arises is, what would lead to the

nontrivial profile for the 4D tensor component? We can see
that the essential point which leads to this nontrivial profile
is due to the presence of the second term on the left-hand
side of Eq. (10). This term comes from the nonlinear
property of the gravitational field: Gravity is itself a source
that creates gravity. If this term is absent, then Eq. (9)
becomes linear, and, hence, the solution would be a sum of
all possible modes with the different values of Λ4. However,

2In the case of Λ > 0, the solution for χðθÞ is related to the
cosine function, which is periodic and, thus, itself is compatible
with the topology of S1 [36,44].
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the excitation modes with Λ4 > 0 would decay to the lower
modes with Λ4 < 0. As a result, the 4D effective theory
would exist at the negative energy state or the AdS vacuum.
Therefore, we can realize that the nontrivial profile for the
4D tensor component leading to the emergence of the dS
vacuum in the 4D effective theory is essentially due to its
nonlinear property.
In order to show the 4D dS vacuum actually emerged in

the effective picture of string theory in lower dimensions,
we need to demonstrate that the ansatz (6) with the vacuum
configuration gμν ¼ χðθÞgð4Þμν ðxÞ (with the 4D metric gð4Þμν

corresponding to the 4D dS geometry), R ¼ const, and
Aμ ¼ 0 which has just been found above satisfies the 4D
stringy equations of motion. The ansatz (6) and Eq. (9)
suggest that the dimensional reduction of the 5D action (5)
on S1 leads to the 4D effective action given in Einstein
frame as follows:

S4D ¼
Z

d4x
ffiffiffiffiffiffiffi
jg4j

p �
M2

Pl

2

�
Rð4Þ −

3

2

�
∂μR

R

�
2
�
− VðRÞ

−
g2AπM

3
5R

3

4
FμνFμν −

m2
A

2
AμAμ

�
; ð13Þ

where M2
Pl¼M3

5R0

R
π
−π dθχ, m2

A¼3M3
5R0g2A

R
π
−πdθ½χ00−

χ02=ð2χÞ�, and VðRÞ refers to the potential of the radion
field R. (In order to change to Einstein frame, we have

rescaled gð4Þμν → Ω−2gð4Þμν where Ω2 ¼ R=R0 with R0 being
an arbitrary scale.) The radion potential VðRÞ is given as
follows:

VðRÞ ¼ V trðRÞ þ V1LðRÞ; ð14Þ

where V trðRÞ is the tree-level term which is generated by
the dynamics of 4D tensor component along the fifth
dimension of M5 and is given by

V trðRÞ ¼ M2
Pl
R0

R
Λ4 ð15Þ

and V1LðRÞ is the quantum level term which is generated by
the (one-loop) Casimir energy contribution and reads

V1LðRÞ ¼
X
i

ð−1ÞsiniR
�
R0

R

�
2

ρiðRÞ
Z

π

−π
dθχ2ðθÞ; ð16Þ

where si ¼ 0 (1) for the fermions (bosons), ni refers to the
number of degrees of freedom with respect to the ith
particle, and the Casimir energy density is given by [45]

ρiðRÞ ¼
X∞
n¼1

2m5
i

ð2πÞ5=2
K5=2ð2πnmiRÞ
ð2πnmiRÞ5=2

; ð17Þ

with mi and K5=2ðzÞ being the mass of the ith particle and
the modified Bessel function, respectively.3 We can easily
see that the radion potential behaves as ðPf nf −P

b nbÞ=R6 and ðPf nf −
P

b nbÞjm¼0

R
π
−π dθχ

2ðθÞ=R6 in
the regions of R → 0 and R → ∞, respectively, whereP

f nf −
P

b nb [ð
P

f nf −
P

b nbÞjm¼0] is the net number
of (massless) fermionic and bosonic degrees of freedom.
This means that for

P
f nf −

P
b nb > 0 and ðPf nf −P

b nbÞjm¼0 > 0 the radion potential would approach
positive infinity for both R → 0 and R → ∞, and, hence,
there is always a stable minimum. Additionally, with the
proper parameters, this minimum has positive energy
corresponding to the dS vacuum, as depicted in Fig. 1.
The radion potential VðRÞ, thus, allows us to fix physically
the size of the fifth dimension of M5 or the vacuum
expectation value of the radion field R.
The 4D stringy equations of motion associated with the

4D effective action (13) are derived in Appendix C [42]. It
is easy to see that the equations of motion for the radion
field R and the graviphoton Aμ lead to the vacuum solution
R ¼ const and Aμ ¼ 0 where the constant corresponds
to the stable minimum of the radion potential VðRÞ,
whereas the equation of motion for the 4D metric gð4Þμν is

Rð4Þ
μν ¼ Λ0

4g
ð4Þ
μν , where Λ0

4 ≡M−2
Pl Vsm with Vsm referring to

the stable minimum of the radion potential VðRÞ. Because
Vsm is positive with the proper parameters of the radion
potential, the vacuum geometry of 4D effective theory is
dS, but the vacuum value is now shifted compared to
Eq. (9) due to the radion stabilization.
Because the present construction is done relying on the

5D effective action obtained from the dimensional

FIG. 1. The radion potential for two cases: The red and blue
curves correspond to the solutions (11) and (12), respectively.
Here, the radion potential corresponding to the red curve is
rescaled by jΛj3R2

0, k≡ jΛj1=2Λ4R0, and we have consideredP
f nf −

P
b nb ¼ 2 and mf;b ¼ 0 as a benchmark case.

3Here, the matter fields such as the Standard Model which are
not contained in the field content of AdS5 supergravity can be
embedded by adding probe D7-branes wrapping around an
internal cycle which is a submanifold of M5 [46,47].
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reduction of string theory on X5, it is necessary to have a
separation of the scales between the radius of S1 and the
scale L of X5. On the other hand, because of Eqs. (3)
and (4), the radius of S1 must be much larger than the
curvature radius of AdS5, i.e., RjΛj1=2 ≫ 1. We observe
that the solution (12) can lead to the minimum of the radion
potential fixing physically the radius of S1 to satisfy this
separation of the scales. Indeed, as seen in Fig. 1, the
minimum of the radion potential in the RjΛj1=2 direction
would get larger when k≡ jΛj1=2Λ4R0 decreases. This
means that at a sufficiently small value of k or Λ4 it would
yield the separation of the scales between the radius of S1

and the scale of X5.
Finally, let us emphasize that the transition from the AdS

vacuum in the high-energy regime to the dS vacuum in the
low-energy regime allows the effective theory to avoid
the constraint of non-SUSYAdS conjecture [48] because of
the fact that supersymmetry is broken at the low-energy
scales. If non-SUSYAdS vacuum is stable, then the effective
theory would be in the swampland. On the contrary,
non-SUSYAdS vacua would develop nonperturbative insta-
bilities and, thus, decay into SUSY vacua via bubble
nucleation [49,50].

V. AdS DISTANCE CONJECTURE

We point to the first evidence from the bottom-up physics
for the strong version of the AdS distance conjecture [24]. In
order to do this, we consider the 5D action (5) where the
AdS radius L is, in general, arbitrary instead of being given
by Eq. (3). This means that the 5D action (5) in this situation
is not originated from the string theory compactification.
Let us first obtain the profile YnðθÞ of the 5D bulk fields

along the fifth dimension of M5 corresponding to the
solution (11). The equations for the bulk profile of the 5D
bulk fields are given in Appendix D [42]. In general, it is
not easy to obtain the analytical solutions to these equa-
tions. However, for small κ, we can find the analytical
solutions to these equations by expanding χðθÞ in κ. Up to
the order κ2, the solution form of these equations satisfying
the boundary condition Yð−πÞ ¼ YðπÞ [43] is found as

YnðθÞ ¼
�
NnH2n

� ffiffiffiffiffi
bn
3

r
θ

�
þ 1F1

�
−n;

1

2
;
bn
3
θ2
��

× exp f−anθ2g; ð18Þ

where n ¼ 0, 1, 2,…, an and bn are parameters depending
on n, κ, R, and the bulk mass, H2nðzÞ and 1F1ða; b; zÞ
are the Hermite polynomial and the confluent hyper-
geometric function, respectively, and Nn are the normali-
zation constants.
The degree of Hermite polynomial in the expression of

YnðθÞ must be even as a result of the boundary condition
Ynð−πÞ ¼ YnðπÞ. From this, we can obtain the mass
spectrum of the KK tower as follows:

m2
n ¼

jΛj
3

×

8>><
>>:

½5
2
þ 4cn þ 1þ4n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 8cn

p �; scalar;

½1þ 4cn þ ð1þ 4nÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7þ 2cn

p �; fermion;

½3
2
þ 4cn þ 1þ4n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 8cn

p �; vector;

ð19Þ

which correspond to the scalar, fermion, and vector fields,
respectively, where cn ≡ nð1þ 2nÞ. It should be noted here
that, first, we have considered the scalar field with zero bulk
mass. Second, the mass of the bulk fermion must be zero
due to the boundary condition on the bulk profile, which
implies that the left- and right-handed components of the
bulk fermion decouple, and this is consistent with the fact
that the compactification of spacetime on the circle S1

breaks SOð1; 4Þ to SOð1; 3Þ ×Uð1Þ. Equation (19) sug-
gests that the mass of KK tower behaves in the power law in
the cosmological constant asmKK ∼ jΛjα with α ¼ 1

2
, which

becomes light in the limit Λ → 0. This is consistent with
the strong version of the AdS distance conjecture.
The above conclusion is still true in the general case. We

observe from Fig. 1 that the minimum of the radion potential
VðRÞ would fix RjΛj1=2. This implies R−1 ∝ jΛj1=2, which
means that the mass of the KK tower would be proportional
to jΛj1=2. Hence, taking the cosmological constant Λ to be
zero would encounter an infinite tower of light states.

VI. CONCLUSIONS

To achieve dS vacua in string theory motivated by the
low-energy observations of a positive cosmological con-
stant has proved to be a particularly difficult endeavor.
Contrary to this, AdS vacua in string theory are common
and simple to construct. Motivated by this fact and low-
energy dS cosmology, we have indicated a new approach
for the embedding of the observed dS vacuum into string
theory, which is one of the candidates for a unitary theory
of quantum gravity. We do not attempt to find a dS vacuum
solution in string theory, but we start from a well-known
AdS vacuum with the compactification geometry given by
M5 × X5. Then, we show that this AdS vacuum of string
theory exists only in the high-energy regime. In other
words, as approaching the low-energy scales where the
heavy string excitations and KK modes are integrated out,
the effective picture of string theory in lower dimensions
would exhibit a 4D dS vacuum (which has so far been
observed in the low-energy regime) due to the nontrivial
dynamics of the 4D tensor component of the M5 metric
along the fifth dimension which contributes positive energy
in the 4D effective theory. This result clearly provides a
new path in the construction of realistic models on AdS
vacua (rather than dS vacua) in type IIB string theory, but
it still leads to a dS vacuum in the 4D effective theory
consistent with the low-energy observation of positive
vacuum energy.
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In addition, due to the nontrivial bulk profile of the 4D
tensor component of the bulk metric, we revisited the mass
spectrum of the KK tower for the 5D bulk fields. We
showed that this mass spectrum satisfies the strong version
of the AdS distance conjecture, which is a generalization of
the swampland distance conjecture and whose proposal

was motivated by the realizations in the AdS vacuum
construction in string theory. This offers evidence that
comes from bottom-up physics and, hence, supports the
AdS distance conjecture (and, thus, the swampland
distance conjecture) as one of the universal features of
quantum gravity.
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