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The Migdal effect has received much attention from the dark matter direct detection community, in
particular due to its power in setting leading limits on sub-GeV particle dark matter. However, it is crucial to
obtain experimental confirmation of the Migdal effect through nuclear scattering using Standard Model
probes. In this work, we extend existing calculations of the Migdal effect to the case of neutron-nucleus
scattering, with a particular focus on neutron scattering angle distributions in silicon. We identify kinematic
regimes wherein the assumptions present in current calculations of the Migdal effect hold for neutron
scattering and demonstrate that these include viable neutron calibration schemes. We then apply this
framework to propose an experimental strategy to measure the Migdal effect in cryogenic silicon detectors

using an upgrade to the NEXUS facility at Fermilab.
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A proliferation of direct detection experiments search-
ing for sub-GeV dark matter (DM) has been matched by a
suite of theoretical work to better understand the kin-
ematics of low-energy scattering in the regime where
particle physics and condensed matter intersect [1]. This
kinematic regime primarily differs from traditional
weakly-interacting massive particle scattering in that
the energy and momentum transfers involved are compa-
rable to the fundamental scales of the target (set by the gap
energy and inverse atomic size, respectively), meaning
that standard elastic scattering approximations [2] no
longer hold. Indeed, the primary scattering channel of
interest for sub-GeV DM searches has long been
DM-electron scattering [3], which must account for both
the inherent binding energy of the scattered electron and
the band structure of the target. More recently, several
theoretical advancements have uncovered yet another
inelastic scattering channel of interest for sub-GeV
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DM, nuclear recoils that directly ionize the scattered
atom, a process denoted the “Migdal effect” (ME).

The theoretical underpinnings of the ME go back to the
early work of Migdal [4,5], who calculated the probability
that a radioactive decay would directly ionize the daughter
nucleus. Such ionization has been measured in radioactive
decay and is more commonly referred to as ‘“electron
shakeoff” [6-8]. Though a handful of papers [9-11]
pointed out the likely relevance of this effect for DM-
nucleus scattering, progress on the ME accelerated after Ibe
et al. [12] derived the necessary electronic excitation
probabilities relevant for DM experiments. A flurry of
theoretical activity [13-27] followed, expanding the theory
of the ME for galactic DM scattering in isolated atom [18],
molecular [27], and solid-state [20,21,26] targets, as well as
for solar coherent elastic neutrino-nucleus scattering [14].
The ME was also shown to dominate over another
important inelastic channel, namely, the bremsstrahlung
process [14,28]. Several experimental collaborations have
since used these theoretical results to set what are currently
the strongest limits on DM-nuclear scattering below
~1 GeV [29-35]. Out of all of this work from the DM
community, only Refs. [36—40] have so far explicitly
considered the ME for neutron scattering. A parallel effort
in chemistry focused on neutron scattering in isolated
atoms and molecules [41,42], in part to explain anoma-
lously large neutron cross sections on hydrides [43-45].
Our work differs from these proposals by focusing on the
angular distribution of neutrons scattered from solid-state
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targets.] While the existence of the ME is well founded, the
magnitude of the effect must be measured to understand the
expected DM signal in a direct detection experiment.

In this Letter, we highlight many of the subtle differences
in the ME between the cases of sub-GeV DM and tradi-
tional neutron probes. These differences arise because sub-
GeV DM is lighter than the neutron and thus carries less
momentum than a neutron of the same kinetic energy. We
carefully delineate the theoretical approximations made
when calculating ME rates to define the regime where they
continue to hold for neutron scattering, which differs
considerably from the regime of validity for DM scattering
depending on the neutron energy. We expand the frame-
work of Ref. [38] to include the angular dependence of
neutron scattering, as is used in standard neutron calibra-
tion experiments involving neutron detector backing arrays.
A key finding of this study is that, for an isotropic target in
the limit of small momentum transferred to the electronic
system (the “soft limit”), the angular distribution of the
scattered neutron factorizes from the electronic matrix
element, allowing for a direct calibration of this matrix
element for DM scattering. We demonstrate that the
electronic matrix element for the ME can be measured
with a greatly reduced or even completely absent elastic
scattering background by a judicious choice of the neutron
beam energy and the neutron scattering angle. However, the
expected rates we find for such a measurement are at the
boundary of what is currently feasible with existing setups
and techniques. We conclude that, in order to measure the
ME with neutrons in semiconductors, a dedicated low-
energy neutron calibration setup is required and propose
one such experiment using modifications to the existing
NEXUS facility [47] at Fermi National Accelerator
Laboratory (Fermilab).

The ME is defined as the ionization or excitation of an
atomic electron accompanying the recoil of the atom’s
nucleus [5]. For sub-GeV DM, the ME greatly enhances the
sensitivity of direct detection experiments to the DM-
nucleon cross section [15,16,48] because the electronic
excitations are observable even when the nuclear recoil is
below threshold. For both isolated atoms and semiconduc-
tors, under various sets of assumptions (which will be
discussed further below and delineated in detail in
Appendixes B and C), the ME rate spectrum R, factorizes
into a quasielastic nuclear recoil rate R,; and an electronic
excitation probability dP,/dw, such that

d’Ry, _dReIX ,dP,
dE.dw dE, do

(1)

'See, however, Ref. [46] which employed a similar setup to
perform the first inelastic scattering measurements of eV-energy
neutrons from liquid targets and which motivated the first
derivation of the ME in molecules [41], though the neutron
energies were too low to observe the Migdal signal.

Here, E, is the nuclear recoil energy, w is the total energy
deposited in the electronic system (excitation or ionization),
and § = gq is the momentum transfer from the neutron
probe to the target. For both classes of targets, the electronic
spectrum scales as g, and we have explicitly factored out
this scaling. The goal of this Letter is to devise a scheme to
measure dP,/dw in semiconductors.

For isolated atoms, the electronic ionization spectrum
is [12]

dpe m,\2 1 e -
<da)>at0m a (mN> ﬂ;'(w]c |q re|1//l.>

where m, and my are the electron and nucleus mass,
respectively, 7, is the electron position operator, the sum runs
over initial and final single-electron orbital quantum numbers,
and the final state is a spherical wave with wavenumber

g

k= +/2m,(w — |E,|), where E}, is the binding energy of the
initial state. Equation (2) was derived within the context
of the Born-Oppenheimer approximation [12], but in fact does
not require this assumption and is correct to O(m,/my)?
[1,41]. On the other hand, Eq. (2) does assume
g < my/(m,ay) ~200 MeV (55a5;), where aj is the Bohr
radius, since it was derived from the dipole approximation to
the exponential exp (i« G - 7, ). Note that the dependence on
g in Eq. (2) drops out when summing over spherically
symmetric filled electron shells, such that dP, / dw is isotropic.

In a solid-state system, the ME derivation must be modified
because the constituent atoms are no longer free, which gives
acharacteristic energy scale  ,, for optical phonon excitation
(=10-100 meV in typical solid-state systems [1]) and also
removes the constraint of exact momentum conservation for
the nucleus because the atoms are no longer in momentum
eigenstates. However, the form of Eq. (1) can be recovered
under the following three assumptions:

(i) Impulse approximation: g 2 \/2myw .
(i) Free-ion approximation: initial nucleus state is a
zero-momentum plane wave. .
(iii) Soft limit: k < ¢ and ¢ - k < myw, where k is the
momentum transferred to the electronic system.

The result for a solid-state system is [20]

dp da LR A .
e - —22 k A~ k 2 k
( dw ) sol (1)41’}1]2V / (27[)3 10n< )(q ) W( , a)), (3)

where Z;,, (k) is an effective momentum-dependent charge of
the nucleus plus inner-shell electrons, « ~ 1/137 is the fine

structure constant, and W(l?, w) is the energy loss function
(ELF) of the target, which measures its response to charge
perturbations. If the ELF is isotropic and only depends on the

magnitude of k, the dependence on g drops out, as in the
atomic case. We have verified that, for all of the kinematic
configurations we will consider, the impulse approximation
is valid.
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To demonstrate the main kinematic features of the ME,
we model the valence shell of silicon with Eq. (3), using the
isotropic GPAW ELF from DarkELF [49], which has a regime
of validity w <75 eV, k < 22 keV. For larger w, we model
the inner-shell electrons with Eq. (2) [12]. This division is
somewhat artificial, and we discuss its limitations in
Appendix C. As we show in Appendixes A and B, in
the soft limit, we can convert the nuclear recoil spectrum
into an angular spectrum,

d*Py, dP dP
- E 0,) e
dcosf,dw dcosb, (Ey, @, c050,) dw

where E,, is the kinetic energy of the incident neutron, 0, is
the lab-frame angle of the scattered neutron, P is a
kinematic prefactor containing all angular dependence,
and we have expressed the spectrum as a differential
probability P,, of Migdal scattering per incident neutron
(rather than a flux-dependent rate). Figure 1 illustrates these
kinematics and the experimental setup.

In Eq. (4), we have explicitly noted the separation of the
ionization (ME) probability and the kinematic prefactor
containing the angular dependence and absorbed the g¢>
scaling from Eq. (1) into P such that it now has units of
(events/neutron) x [eV]?. This unconventional choice of
normalization allows us to group all the terms depending on
the experimentally controllable variables E, and cos#,
together in the explicit expression

dP  NoprL E, 2
oprLog i mN2 —cosQ ny
dcosh, Ay pm my

n

2 2
u (m, ®
x{l—m—%<m—N00s6’”+ﬁ> —E—n}, (5)

where m,, is the neutron mass, y = m,my/(m, + my) is
the reduced mass, o,; is the elastic neutron cross section on
a target material with density p; and thickness L in the
beam direction, Ay is the target’s atomic mass number, N
is Avogadro’s number, and

m,w

p=4/1 m%(l cos?0,) (6)
=\ W TuE,

In Appendix C, we demonstrate that the factorization of
Eq. (4) that allows this separation does not hold outside of
the soft limit for a semiconductor. We therefore note that
calibrating the semiconductor ME outside of the soft limit,
for example, with high-energy (MeV-scale) neutrons, is
fundamentally no longer probing the same regime as
sub-GeV DM-nucleus scattering, where the soft-limit
approximations always hold. For the proposed calibrations
discussed in the rest of this Letter, we will fall safely within
the soft limit (see Appendix B), and thus the results of any
such calibration are effectively a measurement of dP,/dw
that can be directly translated to DM-nucleus scattering.

Since we do not measure  directly, we change variables
again to the observable E;,,, the total amount of energy
available as ionization, defined as

Eion =w-+ fn(Er)Er’ (7)

where f,(E,) denotes the ionization efficiency for elastic
nuclear recoils as a function of the nuclear recoil energy
E.(®,0,). For the purposes of this work, we consider the
Sarkis model [50] as a best theoretical approximation for
the ionization efficiency in the mostly uncalibrated regime
of small E, [51]. In general, calibrations of the ME will be
dependent on this ionization efficiency (quenching) model;

Backing Detectors

Beamstop

E

/
o

Detector 5

Eion((‘)? Er

FIG. 1.

A diagram of an ideal neutron scattering experiment with a backing array, which consists of a series of active (red) and passive

(gray scale) elements. Neutrons are generated isotropically from a source placed inside of a shield with a small opening to collimate the
beam. These neutrons then enter the vacuum chamber (often a dilution refrigerator) with energy E, and scatter with lab-frame angle 6,
into a circular backing array element after transferring E, of energy to the nuclear recoil and energy @ to electrons, which together are
detected as ionization energy E;,,. Unscattered neutrons, meanwhile, pass through a capture detector (e.g., He counter) to help

normalize the simulated beam flux before arresting in a beamstop.
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however, we propose two specific calibration schemes in
this Letter designed to minimize this dependence. A more
complete treatment would also consider the systematic or
theoretical fluctuations in f,(E,), but this is outside the
scope of this work.

To predict the number of electron-hole pairs n, as a
function of E,,,, we use the charge production model
presented in Ref. [52]. This is a data-driven model of
impact ionization in silicon that more accurately models the
response for low n, than a model of Fano statistics alone
(i.e., Ref. [53]). Reference [52] provides a set of functions
Pn,(Eion) for the probability of producing n, pairs for
energy deposit E;,,. Thus, to compute measured ionization
rates as a function of angle, we integrate Eq. (4) against p,,
to find the differential angular probability of Migdal events
binned in n,,

dP, 2Py,
—_— = dE. E )— 8
s / b, (Bn) ooy o= ()

The inherent widths of the p, leads to a smearing effect
that can affect our signal (even before considering exper-
imental factors, such as nonmonochromaticity of the
beam). We show two examples of observable spectra in
Fig. 2 for different choices of E, and 6,, where we
decompose the spectral contributions to the rate from
elastic, valence band ME, and inner-shell ME scatters.
Figure 2 illustrates two possible strategies for calibrating
the ME in the correct kinematic regime. The ¢> scaling of
the Migdal probabilities translates to an enhancement
approximately proportional to FE,(1 —cos#@,). Larger
momentum transfers (which lead to larger nuclear recoil
energies), achieved either by raising the neutron beam

By =24keV; 0, =72% By =1.1keV
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energy or by looking at a larger scattering angle, will
therefore give a higher rate of Migdal events. However, to
avoid the aforementioned difficulties of the inherent smear-
ing due to the Fano statistics, it is important to keep the
nuclear recoil energy scale small enough that the elastic
spectrum does not smear too much into the Migdal tail.
Thus, the first experimental strategy is to target setups that
balance the ¢ rate enhancement with low recoil energy, in
order to clearly isolate the high-side Migdal rate tail. As can
be seen in the left plot of Fig. 2, this strategy is particularly
useful for calibrating Eq. (2), the ME contribution for inner-
shell electrons, but care must be taken not to increase the
neutron energy and scattering angle outside of the kin-
ematic regime of interest (see Appendix B).

The second strategy is to employ low-energy neutrons
scattering at low angles such that the quenched nuclear
recoils are too small to produce any secondary ionization,
effectively eliminating the observable elastic contribution
[the second term of Eq. (7)]. This strategy is challenging in
that it involves novel neutron source development, but is
able to calibrate Eq. (3), the ME contribution from valence
electrons independent of other contributions, as shown in
the right plot of Fig. 2. Since sub-GeV DM will typically
only produce single- to few-electron events, this setup more
closely mimics what a sub-GeV DM signal would look like
in a single-electron threshold charge detector.

In a real experiment, no neutron beam will be perfectly
monochromatic, such that contamination from higher-
energy neutrons and gamma backgrounds must be taken
carefully into account through validated simulations. There
are a number of common neutron sources and methods that
are implemented in the lab, each of which can be turned
into a fairly monochromatic beam with careful application.

E, =2keV; 0, = 10% Eyr o = 2.2V

1073
I Quenched Elastic
10~4 7] Valence Band ME
Inner Shells ME
— Total Rate

H
S
it

1078 J

dP/db,, [events/neutron/Ab,)
S

1 2 3 4 5 6 7 8 9
Electron-Hole Pairs

107°
0

FIG. 2. Differential probability spectra dP, /d6, (in units of events/neutron/degree of angular coverage) are shown per detectable
charge quanta n, in the left (right) plot for an ideal 1 cm thick silicon detector in a E,, = 24(2) keV monoenergetic neutron beam at a
fixed scattering angle of 6, = 72° (10°), assuming the Sarkis ionization efficiency (quenching) model [50] and Ramanathan charge
production model [52]. In both cases, we assume perfect backing detector with full azimuthal coverage. Left: for higher neutron energies
and wide angles, the contribution from the inner shell [12] is distinct above the elastic peak. Right: for low neutron energies and shallow
angles, the contribution from the valence band [49] separates from the elastic peak.
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These include deuterium-deuterium (D-D) and deuterium-
tritium (D-T) generators [54], proton accelerators incident
on a 'Li [55] or 3!V [56] target, and photoneutron sources
that exploit the °Be disintegration threshold of 1.67 MeV
[57,58]. Each of these options comes with its own advan-
tages and disadvantages, so we will emphasize that the
fairly rare probability of a Migdal scatter, even in an ideal
setup, necessitates (a) a low-background environment, as is
typically achieved with significant overburden, thus com-
plicating the use of proton accelerators, and (b) a high flux
of low-energy neutrons, which can be achieved with either
photoneutron sources or moderated D-D (or D-T) gener-
ators. Collimation in both of these cases is achieved
through robust 4z shielding minus a small beam hole,
typically around 1 cm in diameter (dependent on detec-
tor size).

Because of logistical challenges associated with having a
sufficiently high-activity gamma source to produce a high
flux of neutrons from a photoneutron source, we will focus
the rest of the Letter on using a D-D neutron generator, as is
employed by NEXUS. A D-D generator leverages fusion
reactions to generate isotropic 2.5 MeV neutrons without
any primary gamma backgrounds [54] (although secondary
gammas will be produced by neutrons interacting in
surrounding shielding materials). Using clever application
of “filters,” it is possible to prune, or even adjust, the beam
energy spectrum by exploiting antiresonances in the neu-
tron scattering cross section [59]. Filters have the added
advantage of removing unwanted secondary gamma back-
grounds from neutron interactions in the shield materials
and any primary x rays produced by the generator, which
can be shielded by even a small amount of material. Of
note, prominent antiresonances in iron and scandium can be
used to select 24 [60] and 2 keV [61] neutrons, respectively.
A downside of using filters to select an optimal beam
energy is a substantial reduction in neutron flux, thus
requiring longer exposures, hotter sources, and lower
ambient backgrounds. Another option for reducing the
neutron energy is to employ neutron reflectors [62], but this
would require more substantial modification to the NEXUS
setup and so is not the focus of this study. Lower-energy
neutron beams also mandate progress in low-energy neu-
tron backing detectors, which is an active area of study [63]
but outside the scope of this Letter.

As a schematic setup, the NEXUS facility at Fermilab is
designed to provide a D-D generator neutron beam incident
on a 10 mK, single-electron resolution detector (e.g.,
SuperCDMS high-voltage eV-resolution (HVeV) detector
[64-67]) in a ~100 cts/kg/day/keV radiation environ-
ment. Crucially, the chosen detector should be thin com-
pared to the mean free path in silicon of ~10 cm for a
<50 keV neutron (for which the cross section is constant
[68]), to ensure that neutrons scatter only once on average
and thus that angular smearing from multiple scattering is
not a concern. The NEXUS D-D generator (Adelphi model

DD108) produces up to ~10° neutrons/s isotropically, with
a collimated ~10° neutrons/s rate incident on a ~1 cm?
detector area. Filters should be able to modulate a higher-
energy neutron source (such as the D-D generator) down to
the respective antiresonance with roughly 10% energy
width, minimal higher-energy contamination, and a ~10°
reduction in overall flux. This means that, with minimal
modification, NEXUS could produce a filtered keV-scale
neutron beam with ~1 neutron/s incident on a single-
electron threshold semiconductor detector with a custom
backing array in a low-background environment; to the best
of our knowledge, no other such facility currently exists.

In such a setup with a series of Ad, ~ 10° wide backing
arrays at different angles (including at 6, + 5° around the
central angles shown in Fig. 2), one would expect to see
only a handful of neutron-induced Migdal events with
roughly one month of exposure in the case of the 24 keV
beam. This should be sufficient to calibrate the normali-
zation of the electronic matrix element in Eq. (2), but
upgrades to increase the rate would be required to fully
reconstruct it. Meanwhile, the 2 keV beam setup requires
more exposure than is practical without a more substantial
upgrade to NEXUS in order to calibrate even the normali-
zation of the matrix element in Eq. (3). To accomplish this,
the rate could be increased with a hotter D-D (or D-T)
neutron source or by deploying multiple silicon detectors in
the beam, but each of these improvements comes with
trade-offs and complications. One of the biggest challenges
in any of these setups would be to sufficiently eliminate
higher-energy neutron contamination in the beam from the
energy region of interest, which can hopefully be achieved
through careful angular tagging.

In this work, we have extended previous calculations of
the ME to study the angular distributions of the neutron-
induced ME in silicon. These results can also be applied to
an atomic target calibration by using Eq. (2) for the valence
shell as well as the inner shells. We have demonstrated that
Migdal scatters leave a distinct pattern in ionization
measurements at fixed angles, providing a clear experi-
mental target for calibration studies. We further emphasize
that inherent spreading in the energy resolution in silicon
strongly motivates the use of lower-energy neutrons and
angular selection for a clean measurement. Lower-energy
neutrons are also better kinematically tuned to mimic sub-
GeV DM scattering, allowing direct calibration of ME
probabilities in the kinematic regime of interest. Practical
applications of this work will need to account for detector-
specific backgrounds and nonideal beam effects in their
design, as well as the backgrounds from inelastic nuclear
scattering. This work lays out necessary steps toward the
calibration of the ME with neutrons in silicon (and
germanium), which will be crucial to validate both existing
(e.g., EDELWEISS [30] CDEX [31], SuperCDMS [34],
DAMIC at SNOLAB [69], and SENSEI [70]) and next-
generation (e.g., SENSEI at SNOLAB, DAMIC-M [71,72],
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Oscura [73], and SuperCDMS SNOLAB [74]) limits on
sub-GeV DM-nuclear scattering.
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APPENDIX A: INELASTIC SCATTERING
KINEMATICS IN THE SOFT LIMIT

In this appendix, we derive the kinematics for inelastic

derivation in the lab frame is necessary to keep track of
the scattered neutron angle; previous derivations from, e.g.,
Ref. [12] are in the center-of-mass frame, with all angular
dependence integrated out, whereas we want to preserve the
angular dependence in the lab frame.

In the lab frame, and under the assumptions of the soft
and free-ion limits, energy conservation gives

1
2m,,

(15il* = 1BsI*) = E; + o, (A1)

where p; and p, are the initial and final momentum of the
neutron, respectively, while momentum conservation gives

141 = 1Bi = Bsl* = |Bil* + [ByI* = 21Bil| Pyl cos b,

= |gn|* = 2myE,, (A2)

since the momentum ¢ transferred to the target goes
entirely to the recoiling nucleus, which gets momentum
gy = G- We can thus rewrite the energy conservation
equation as

2’nn(En - Er - 0)) = |[_5f|2
=2myE, —2m,E,

two-body scattering in the soft and free-ion limits, where +2|pillpslcos@,. (A3)
the initial-state nucleus is at rest and the electron system
takes energy ® but no momentum. In particular, the  Rearranging terms and plugging in for |p|, we find
|
v2m,E, \/2m,(E, — E, —®)cos 0
En—Er—(U:@Er—En‘f' my n\/mn( n r CO) n
n mn
E E
:En(l—ﬂ>:@Er—En+2EnHl— r+wcost9,,. (A4)
El’l mn E}’l
Finally, we can simplify to
E,2-Ettoy _mvp
cosf, = ol L i (AS)
2E, /1 -t
Inverting this to solve for E, yields a quadratic equation with solution
2E
E, = ,;an m,, sin® 0,, + my — cos 0,4 | m% — m>2 sin’> 6, — my (£ my)o | mo
(mn + mN) En m, + my
2E 2 2
el ﬂsinzé’,ﬁ—l—cos&,q\/m—;(coszé’n—l)—f—l—M _He (A6)
m,mpy mpy mN MEn my
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In principle, there are two roots, but for m,, < my (as is always the case in our setup) the second root is spurious. The choice
of root is consistent with the limit @ — 0, where our expression reduces to standard textbook results for 2 — 2 elastic
scattering of unequal masses (e.g., [75]),

2
2 2
m m .
———" | cosO, + /=5 —sin0,
(mn + mN) my

We note that many of these formulas simplify somewhat in the center-of-mass frame, where the neutron scattering angle
0, =0, + O(m,/my) is almost identical to the lab frame for m, < my. However, for small angles, the corrections are
significant, so we work in the lab frame for consistency. We note that, in this limit, these results are analogous to the more
simplified center-of-mass Eq. (94) from Ref. [12].

(A7)

Finally, in order to translate the standard result into angular coordinates, we must take the derivative of Eq. (A6) with
respect to cos @, which yields

2
: my(m,+my)w
2E,m, (m,, cosd, + \/m12v — m2sin?g, — Mréi”/v))

dE,
dcos@,

(m,, + mN)z\/m,ZV — m2sin®0, — 7"’“"”5"”)“’

2

267 (Bc0n0, + 2 (o0, —1) 1 =32
N z : (AS)
mnmN\/% (cos?0, — 1) +1— e

2
N

APPENDIX B: ANGULAR DEPENDENCE OF THE MIGDAL EFFECT FOR SEMICONDUCTORS
IN THE SOFT LIMIT

In this appendix, we adapt the formalism of Ref. [20] to derive the angular spectrum of the scattered neutron in the soft

limit, restoring the dependence on the momentum k transferred to the electronic system and keeping careful track of any
assumptions or approximations made along the way. We begin with the general expression for the electronic energy
spectrum in the soft limit [Eq. (A33) in Ref. [20]],

do %) (27)3

a’k o Il = exk |- (k+ K)P
Gl R LR O
= |k + K| w'my

do &g [Py ¢
F(p;—pr—q)| 0| E;—Ef—w———
/(2”)3| (pz pf CI)| ( i f @ 2mN)

(B1)

where K is a reciprocal lattice vector, F is a form factor C = 8ra (27b,\? _ 8ma (27b,\? B2
Pa.rgmetrizing the zero-po%nt momentulp sprez}d of the x v, \ Hn == v, \m, )’ (B2)
initial-state nucleus, and ¢ is the dielectric function of the

target. As in Appendix A above, the momentum transferred
to the target ¢ is equal to the momentum of the recoiling
nucleus g, in the soft limit, so we use g instead of gy to
maintain the distinction with the full calculation outside the
soft limit in Appendix C below. In the case of DM scattering,
we typically integrate over the unobserved DM momentum
Py» but for neutron scattering we want to keep p, and
integrate over the unobserved nuclear recoil momentum 4.
The prefactor also changes, with

where v,, is the initial neutron velocity and b,, is the neutron
scattering length in silicon. Note that the convention in the
neutron scattering literature is typically to define b,, such that
the neutron mass rather than the reduced mass appears in
Eq. (B2); for 8Si the corresponding value of b, is 4.1 fm
[68]. For simplicity of notation, we will often abbreviate
k+K=FKand [k Yz — [d*K,since the lattice struc-
ture will not be essential to our arguments. We will also write
WK, ®) = Im(—e~" (K, )) for the ELE.
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Following Ref. [20], we make the free-ion approxima-
tion where F' can be replaced by a momentum-conserving
delta function,

|F(p; — ﬁf - ‘?>|2 - (2”)35(131' - ﬁf -q). (B3)

The form factor F? is a Gaussian with width g, =
\/2myw,;, ~56 keV in Si, where w,, ~60 meV is a
typical optical phonon energy. Note that the impulse
approximation already requires g > ¢q,, so the spread in
F? will typically not induce a large deviation from exact

|

momentum conservation when the impulse approximation
is satisfied. The impulse approximation will be valid for the
kinematic regime we consider (p; > ¢, 6, not too small),
but may fail for small neutron energies and/or very forward
scattering. However, see Refs. [26,76], which demonstrate
that the impulse approximation may be extended below its
nominal regime of validity and coincides almost exactly
with a full treatment using the phonon density of states.

Performing the g integral in Eq. (B1) using the delta
function amounts to the replacement g = p; — py. This
leaves

dw (2r)3

2mN

6113_> 5. —5.)2 37/ 7! = 7 ']_C'/z
@—cn/ pf(s(Ei_Ef_w_(p, Pf))/dk . (k,)W(k,a))Kp, pr) - KP

(B4)

(27)3 ~ion K |2 *m3,

The radial part of the ﬁf integral can be performed using the energy-conserving delta function, for which the algebra is
equivalent to the derivation in Appendix A. The azimuthal integral is trivial and gives a factor of 2z, leaving

do B, WK, @) | ()P = B) - K+ (p7) (i = Bf) - K2
- vn 35 Zion(k ) 2 ’ (BS)
d cos O dw (27) K 4.2 [Pl 2 ? mytm
w*my [+ (cos 9,,—1)+m—’2—2wr;”—mN’V
where
. 0 . O\2 2 2 -
Pt = m,p; cosb, \/(m,,p, cos ,,) _ 2m,myw + pi(m, mN)' (B6)
my + my mpy + my mpy + my

The square root in the definition of Py can, in principle,
restrict the range of scattering angles,

2myw
=+ 1.
pPi

: (B7)

2
cos’ 6, > My <2m”w — 1) +

m
The kinematic threshold where scattering is forbidden
occurs when the right-hand side is greater than 1. For o <
E, and m, < my, which will always be the case for the
kinematics we consider, the right-hand side is negative and
there is no angular restriction, but the py solution is
negative and therefore spurious. We will thus relabel
p}f — py. There is a very narrow range of energies close

En (mi/_mrzz)

to threshold, w € [

2
E,my

Tz mrimz] = Ey, where both roots

are allowed. This is an extremely fine-tuned kinematical
region, with the difference between the lower and upper

M~ 103 for Si, and thus

m2+mi

boundaries being Aw/E, =

it is outside the regime of relevance for these studies (both
because our proposed neutron source does not have this
precision on the initial energy and because we are never
considering order-1 fractions of the initial energy taken by

|
the electrons). However, it may be relevant for neutron
scattering on very light targets such as helium.

As a check on these results, consider the elastic limit
@ — 0. The angular restriction from the square root is

2

m
cos’0, > 1-—%
mn

(0 - 0), (B3)

which is always satisfied for any @ as long as my > m,,. The
solution for p, becomes

pf:ﬁ<mncosé+\/mfv—m%sin@) (0 —0),

(B9)
which recovers the classical elastic scattering results.

To simplify the dot products in Eq. (B5), note from the
original form of the energy delta function that

S o 2
(Pi—l’f)zzp_%_ﬁ_

20, (B10)
my mpy my

SO
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|(Bi = By) - K = (1B: = BylIK | cos 6,)?

mN

(pl — p7 = 2m,w)k” cos? 0y,

(B11)
where 0, is the angle between the momentum transfer

pi— Py and the momentum in the electron system K.
Combining everything, we now have

do ey ,
W_C”/(z )5 1on(k )W(k a))

p(pi—p7—2m,w)cos’0;

m,my

@ mnmN\/— 00326’ —1)—{—1]1 Zwm”+"lN
(B12)

At this point, we are able to perform the remaining angular

. . . N
integrals if we assume isotropy of the target, such that Z;

and YV depend only on |k’|. This assumption does not hold
exactly for any lattice structure, but is likely a reasonable
approximation for the highly symmetric diamond cubic
crystal structure of silicon (or germanium). Assuming
isotropy, the azimuthal integral trivially gives a factor of

27, and treating cos @, as the polar angle of the K integral,
we pick up a factor of f dcos @, cos ), = 2 . Thus, we are

left with
dcosO,dw  "3w*m,my
x pi - P; - 2m,w
2 2
N

dr k/2 . .

« [ Ga B0 (B1Y

Equation (B13) shows that, under the assumptions of
isotropy and the soft limit, the only kinematic dependence
of the integrand is carried by , and thus the Migdal rate
factorizes as claimed in the main text. Indeed, the integral in
Eq. (B13) is proportional to the electronic spectrum, Eq. (3)
(repeated here for convenience),

dpe 4o d3k/ o
dw :W/ @) Zn K@ KWK, )
N

17,12
S(Z/dkk 1on(k/) W(k 760)’

Ry (2r)?

where in the second equality we have used the assumed
isotropy of the ELF to integrate over the angles. Restoring
the prefactor C,, this gives the desired factorization,

(B14)

do B 2zb2my
dcosO,dw  miv,
« pj%(plZ - p% - Zmnw) di)e
do’
\/p—g(coszen—l) — Qg N
WLN Wl,, mymy
(B15)

where dP,/dw depends only on w and may be calculated
using the DarkELF code package [49] independent of the
neutron scattering experimental parameters.

To convert the cross section to a probability per neutron
P,;, we use the relation

dPM - NOPTL do
dcosO,do Ay dcosf,dw’

(B16)

where py7 is the mass density of the target, L is the thickness
of the target, N, is Avogadro’s number, and Ay ~ my/m,,
is the atomic mass number of the target. This expression is
valid when L is much less than the neutron mean free path,
which (as discussed in the main text) is necessary to
prevent angular smearing from multiple scattering.
Using the definition of the elastic cross section in terms
of the scattering length, ¢, = 4xb2, and substituting
p} =2m,E, and Eq. (B6) for p;, gives Eq. (5) in the
main text, which is an explicit expression for the angular
spectrum in terms of the experimental variables E,, m,
and cos@,,.

As a final check on our results, we recover the original
form of the Migdal rate as an energy spectrum Eq. (1) as
follows. First, use Eq. (B10) to replace p? — pf —2m,® in
the numerator with ¢*(m,,/my). Converting the scattering
probability to a rate R,; by multiplying by ®A, where @ is
neutron flux in neutrons/cm?/s and A is target area, gives

2
dRy  NoprL®Ac, u? (”’_; cos O + ﬂ) ,dP,
dcosO,dw Ay 2 m2 p do’
(B17)

where f is defined in Eq. (6). We can rewrite this using the
Jacobian computed in Eq. (AS8),

dRM N NopTVcI) (UGN dEr ) di)e
dcosO,do Ay 4mE,|dcosd,|! do
dR,| dE, | ,dP,
S 1} Ll - Sl B18
dE, |dcos0, q dw (BI3)

where in the first equality we have replaced AL with V, the
volume of the target. The second equality follows from the
standard formulas for elastic nuclear recoil because we
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3. Each panel shows the differential probability spectra dP, /d6, (in units of events/neutron/degree of angular coverage) per
detectable charge quanta n, for elastic (solid) and Migdal (dashed) scattering expected for the Lindhard [78] (blue), Sarkis [77] (red),
and Sarkis 2022 [50] (orange) ionization efficiency models and Ramanathan charge production model [52] in a setup with an ideal
neutron beam of energy E, incident on a 1 cm thick silicon detector with perfect detection efficiency. The left (right) column shows
measured spectra for wide-(low-)angle neutron scattering at 6, = 72° (10°) and the rows show, from top to bottom, the spectra for
incident monoenergetic neutrons of 2.5 MeV (as from an unmoderated D-D generator), 24 keV (as from an iron filter), and 2 keV (as
from a Sc filter). In all cases, we assume a perfect backing detector with full azimuthal coverage. Note that the high-energy, wide-angle
case (top left) is outside of the soft-limit regime where our derivations are valid, giving the nonphysical amplification shown. On the
other hand, the low-energy, low-angle case (bottom right) clearly demonstrates the scenario wherein the ME can be probed and
measured independent of charge yield model using a single-electron sensitive detector.
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have defined o,; using the neutron scattering convention
where the target is treated as infinitely heavy, y — m,,.

Figure 3 shows the spectrum resulting from Eq. (4) for a
broader range of kinematics than shown in the main text.
For nuclear quenching, we consider the Sarkis model [77]
and the Lindhard model [78] as lower and upper bounds
on the quenching factor, respectively. At the highest
neutron energies and wide scattering angles, the soft-limit
approximation clearly fails because ¢ is too large, such that
the scaling with ¢> is unphysical and the Migdal rate
appears enhanced compared to the elastic scattering rate.
We will discuss other failures of the soft limit in
Appendix C below.

APPENDIX C: MIGDAL EFFECT FOR
SEMICONDUCTORS OUTSIDE THE SOFT LIMIT

In this appendix, we investigate how the kinematics of
the Migdal effect change outside the soft limit. We start
now with (A32) from Ref. [20], suitably modified for
neutron scattering,

d Biv [ Ep, [ PR
_”:cn/ ‘“g/ Pg/ < (27)38°
dw (27) (27) (27)

2
o L N > an
—Dr—qgy—Kk)8( E;—E - N
X (pi=Df—dn ) < i F—@ 2mN>
Im(—e' (X, 1 1\2
xzz, @ el (1
|K'? w—k o
my
ds C, /k’zdk’dcosﬁk -
dwodcos8, m,myw* (2m)* fon
va|f’i

— Ps|*cos?6y

Asin Eq. (B2), we change the prefactor to C,, appropriate for

neutron scattering, abbreviate k = k + K and assume the
free-ion approximation. Here, we write gy instead of g
for the momentum transferred to the nucleus, because the

electron system momentum K appears in the momentum
delta function. To facilitate comparison to the soft-limit
derivation, we can first rewrite the expression in
parentheses as

2 - g 2
L1y U (avk (C2)
w—k w*my \ | @k |

1. Soft and low-momentum limits

The two components of the soft limit correspond to
dropping K from two different parts of the integrand in
Eq. (C1). Specifically,

- - "l

K< qy = 8(p;— Pr—dan—k)— 8(pi — Pr—aqn);

(SA)
qN ]_(’/ 2 R , 5
gy -k <myo = |0k (Gn - k) (SB)

Assuming only condition (SA) and isotropy of the target,
we can perform identical manipulations to those in
Appendix B, and Eq. (C1) reduces to

(KYW(K', w)

(C3)

X
V/m2picos’0, + (m3, — m2)p?

where |p; — ﬁf| \/pl +pf 2p;pycos@, and p; is
given by pt ) in Eq. (B6). We refer to the result obtained
using only (SA) as the “low-momentum limit.” At this
point, it is clear that, unlike in the case of the soft limit, the
angular dependence of the scattered neutron does not
factorize from the electronic spectrum, even in the limit
of an isotropic material, because of the presence of the term
coupling cos @, and w, which cannot be ignored without
assumptlon (SB).

Since K is not observable and i is, in fact, integrated over
in the rate, a strict application of the soft limit effectively

restricts the range of integration of k' for fixed momentum
O(qk)
unless ¢ and K are very nearly orthogonal [which, for an
isotropic material, would suffer a 1/(4x) suppression in the

transfer ¢ and electronic energy . Since | - l_c'/| =

=2m,(m, + my)myw <1

2
1
K|pi=pylcosty | °
myw

angular part of the K integral], the soft limit is roughly
equivalent to

| 2
@*m
k' < min 2E N /2myE,

where we have replaced ¢ with /2myE,. To make contact
with the kinematics discussed in the main text, we can
write E, as a function of E,,, 8,,, and w using Eq. (A6). In
Fig. 4, we explicitly plot the soft-limit condition (C4) for
the kinematics considered in Fig. 3. The two branches of
kmax correspond to condition (SA) at small angles and
(SB) at large angles, and the red and green horizontal lines
correspond to the regimes of validity of two models for the

(C4)
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FIG. 4. Regime of validity of the soft limit for the momentum transferred to the electronic system k as a function neutron
scattering angle 6, for various incoming neutron energies E, and electronic energies . The left (right) column shows momenta for
low-(high-)energy transferred to the electronic system of @ = 10 (100) eV and the rows show, from top to bottom, the momenta for
incident monoenergetic neutrons of 2.5 MeV (as from an unmoderated D-D generator), 24 keV (as from an iron filter), and 2 keV (as
from a Sc filter). The red and green lines indicate the upper limit of the domain of validity for two models of the silicon ELF (see text for
details). The blue line indicates the upper bound k,,, on for the soft-limit approximation from Eq. (C4). The soft-limit calculations are
expected to be valid so long as k., is larger than the domain of validity of the ELF; in particular, for high-energy neutrons (top row) and

wide scattering angles at small @ (middle left), the soft limit is a poor approximation.
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ELF in silicon, an isotropic free-electron gas (see, e.g.,
Ref. [79]) and the GPAW model implemented in DarkELF,
respectively. As noted in Ref. [80], the free-electron gas
model with Fermi velocity v = 8.6 x 1073¢ and plasmon
frequency @, = 18.5 eV is a reasonable approximation
for the measured ELF in silicon for £ <10 keV and
5 < w £ 30 eV, capturing, in particular, the Fermi-broad-
ened free-electron peak at k ~ /2m,w. Deviations from
the soft limit are expected when the blue curve drops
below the red and green lines, which occurs either for
very small scattering angles or for wider angles with
sufficiently large E, and small @ (top row and middle
left).

We now argue that the low-momentum limit matches the
full result without (SA) very closely for our entire para-
meter space, which is convenient since Eq. (C3) is easily
amenable to numerical integration given a loss function
W(k', w). The relevance of (SB) but not (SA) for the soft
limit can already be seen from Fig. 4, where (SA) is only
violated for 6, <« 1° for all choices of E, and w. To be
somewhat more quantitative, we adopt the simple free-
electron gas model of the ELF described above, which has a
closed-form analytic expression [79]. However, it features
an unphysical vanishing of the ELF at large k, where core
electron wave functions should have nonvanishing support.
A proper treatment of the ELF in silicon would include the
effects of core electrons through, for example, “all-electron
reconstruction” [81], which would eliminate the need to use
the isolated atom formalism to compute the Migdal
spectrum at large w. We leave this for future work. For
the k’-dependent ion charge, we use an atomic form factor
model,

E, =24 keV; w = 10 eV

/ Zo(Aek')?
Zlon(k) - 1 + (lTFk/)Z ’ (CS)
where Atp = vp/ (\/§wp) is the Thomas-Fermi screening
length and Z, = 4 is the charge of the silicon ion excluding
the valence shell.

Figure 5 shows the effect on the angular spectrum
do/dcos 0, of the extra term that would vanish in the full
soft limit (SB). We have deliberately chosen kinematics that
maximize the effect of (SB). The soft limit is expected to fail
when the largest value of k allowed by (SB) drops below the
region where the ELF has large support. In the case of both
the free-electron gas and GPAwW ELFs, the ELF vanishes
identically outside the regime of validity shown in Fig. 4
above, and thus deviations from the soft limit are largest
when the bound from (SB) is close to the limit of validity of
the model. A more detailed calculation that accounts for
inner electron shells in the ELF would not feature a hard
cutoff in k but rather something closer to a power-law falloff
from momentum-space atomic orbitals, but the general
phenomenon we illustrate here will still hold.

The blue curve in Fig. 5 shows the soft limit from
Appendix B, the green curve shows the low-momentum
limit from Eq. (C3), and the orange curve shows the full
calculation of Eq. (Cl), the details of which are given in
Sec. C 2 below. The kinematics are chosen to match Fig. 4,
middle left and top right. There are order-1 deviations from
the soft limit at wide scattering angles, but the low-
momentum limit only differs from the full calculation at
the percent level for any scattering angle. Furthermore, the
soft limit underestimates the full result, because when (SB)
does not hold, the nucleus propagator is closer to on shell.

B, = 2.5 MeV; w = 100 eV

L0~ Full
---- Soft-Limit
- 0.89 ~~o 0 e, e Low-Momentum
= Sl
7 0.61 Thol
= N
B \\\ '._‘.
=< 0.4 RN
%é \‘%'\‘;,
0.2 ‘n.\
\\
\\\
0.0 N
~1.0 —0.5 0.0 0.5 1.0
cos 0,
FIG. 5.

101 ™ Full
A -=--=-Soft-Limit
= 084 00 0~ Low-Momentum
2 R
S el
& e
Z 06 .
j—_; \\\
2 \‘\\ \
= \\ '...
=041 DN
Sk RN
= 0.2 N
Q~&~\
0.0 -
~1.0 —0.5 0.0 0.5 1.0

cos 6,

Comparison of the differential Migdal angular cross section in silicon for valence electrons in the soft limit and without
assumptions (SA) and/or (SB) of the soft limit. The blue line is the full soft limit, the green line assumes only (SA) (low-momentum
limit), and the orange line is the full result. The deviations from the soft limit are largest at wide scattering angles, and the low-
momentum limit is nearly indistinguishable from the full calculation. The left (right) plot demonstrates this behavior for the case of
medium-(high-)energy neutrons of £, = 24 keV (2.5 MeV) as from the case of a iron filter (unmoderated D-D generator) for electronic
energy transfers @ = 10 (100) eV. The comparison for cases in this Letter with large @ and small E, are not shown, as there is no
significant deviation between the different calculations.
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2. Full calculation outside the low-momentum limit

For completeness, we now evaluate the full expression
for the Migdal angular spectrum without assumption (SA).
Starting from Eq. (C1), we can immediately perform the g,
integral with the momentum delta function by making the

replacement Gy = p; — py — k. This leaves

do &£p; [ PR (Bi—pr—K)?
—=C S|E—E,—@p——1 2 77
dw "/(27r)3/(27r)3 ( e A )

2mN

WK, w) ( 1 1)2
x 72 (K ——— .
10n( ) k/2 w_(ﬁi_ﬁ”c;k),/? )

(Co)

To evaluate the remaining delta function, we use the
nonrelativistic dispersion relation for the neutron, so that

or equivalently,

1 1 , . PicosB,—k'cosOy
<2mn * 2mN> pf * my pf

N 11 p%+pik’cost9,»k1_ k"
2mn ZmN mpy

where 0, is the angle between p; and 1?, and Oy is the

—w=0, (C8)

2mN

angle between p ¢ and K. Rearranging, we have

pfc picosf, — k' cosOpp

2 n

mpy =+ my my + my

the delta function enforces ng+ my m, +my 2
m, K
- = — pikcosOy | =0, (C9
pzz_p]% (ﬁ,‘—ﬁf)z-f-k/z—Z(ﬁi—ﬁf).k/_0 m+mN<2 + myw — p;K cos zk) ( )
2m, @ 2my o
(€7) which has the solution
|
p=m, picosB, —k'cosOpy N \/(mnpicosﬁn —k’costk/> > (m, —my)p3 +m, (k> +2mNco—pik’cos€,-k/). (C10)

The solution p; becomes negative—and thus spurious—
when

(my— mn)l’z2 +m, (pik' cosOy — k*— 2myw)>0, (Cl1)
which is always the case except very close to threshold,
w = E;. To proceed in full generality, though, we will keep p7.

As in the soft-limit derivation, the square root gives us
the constraint

coszéfk/> K?+2p; (

l—0——
< m,+my m, +my

The solution to this inequality gives lower and upper bounds
onk’. Aslongas p? > wand my > m, (which is always true
for the scenarios we consider), the lower bound on k' is
negative and therefore spurious, and the upper bound is much
larger than the domain of validity of the valence-shell ELF
model, k., =~ 30 keV. So in practice, the energy-conserving
delta function does not restrict the three-body kinematics.

Using the delta function to perform the p integral, we
identify the Jacobian via

Lcosﬁn cosOpy —cos@ik«> K+ (1 -

my + my

[
2

% (picosB, — k' cos Oy )?

my, my

> (my, — my)p7 + my, (K* + 2mya = 2p;k' cos 0),

(C12)

which now implies a restriction on the integration range
of K,

m my
—"—c0s?0, —— | p? + 2myw < 0.
mn+mN my

(C13)

o(a) = 05 (1)

where the x; are the roots of g(x) and the derivative is with
respect to the argument x;. For the delta function in
question, g(x) is given by the left-hand side of Eq. (C8)
and the x; are p; and p7, so we get
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m, +m
"(p ) =—|p.cos®. —k cos@,y ——""""N
19 (ps)l oy 'P, cos G, COs Uy m Dy
1
= \/m%(pi cos B, — k' cos Opp)* + (m3, —m
m,mpy ’

Combining everything together and simplifying, we get

2 ion

do Comy [ &K _, . WK, o
B ( on(K) = —

sZ

decosO,dv o 2m)

where the sum is over the two terms containing pjf and Py
To perform the remaining angular integrals, we note
that the remaining symmetry axis is along p; — py, which
varies with p, through its dependence on k and ;. The
length d of p; — p can be determined using the law of
cosines,

(d*)* = p} + (p7)* = 2pipf cosb,,  (C17)

92— (s + ) (K2 + 2mge— piK cosOy).  (C15)
1o Ppicos@y—pycosf—k 2
) (pf) m]’:fw—pi (:056".,(/+pfi cos 6+
Z| 0 —K 0, — myt+my + ’ (C16)
“—~|p;cos®, cos O — Y po
0 =0y +7-0,— H;Ed(eik’)‘ (C19)

This is an implicit equation for 8; which must be solved to
make the variable substitution necessary to integrate over
0*. Then the remaining ¢ integral is trivially integrated
about the symmetry axis and results in a factor of 2z, and
we can define the remaining € integration variable to be
& =01 = 0~. Finally, noting that

as can the angle 6, between p, and the symmetry axis, 7 P _ . g
picosBp —pjf cost :%: |p: _ﬁji.|cosgi’
pi = (p7)* +d* = pydcos ;. (C18)

(C20)
Using these relations, we can define the polar angle with
respect to the symmetry axis, Eq. (C16) reduces to

d . k/2 + 2 _’i_ e CcoS _k/ 2
(<) —Cn/dk/df S1n§4zi20n(k/)W(k/,a)) . (pf (5)) (|p_7 ﬁp{ (§)| _ 6 )
dwdcos;; (27) mmyw (1 _ K= (©)—k )) 2
1
(C21)

X
/2 (pic0s, —K cos0 ()2 + (m} —

)pi = my (my +my) (k% +2myw = p;k' cosO (£))

From this expression, we confirm that the angular spectrum does not factorize outside the soft limit.
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