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A tantalizing hint of isotropic cosmic birefringence has been found in the EB cross-power spectrum of
the cosmic microwave background (CMB) polarization data with a statistical significance of 3σ.
A pseudoscalar field coupled to the CMB photons via the Chern-Simons term can explain this observation.
The same field may also be responsible for early dark energy (EDE), which alleviates the so-called Hubble
tension. Since the EDE field evolves significantly during the recombination epoch, the conventional
formula that relates EB to the difference between the E- and B-mode autopower spectra is no longer valid.
Solving the Boltzmann equation for polarized photons and the dynamics of the EDE field consistently, we
find that currently favored parameter space of the EDEmodel yields a variety of shapes of the EB spectrum,
which can be tested by CMB experiments.
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I. INTRODUCTION

Observations and interpretation of the cosmic microwave
background (CMB) temperature and polarization anisotro-
pies have established the standard cosmological model, the
Λ Cold Dark Matter (ΛCDM) model [1–7]. There are,
however, several observational hints for new physics
beyond the ΛCDM model and the standard model of
elementary particles and fields [8]. In this paper we connect
two such hints: the so-called “cosmic birefringence” [9]
and “Hubble tension” [10].
Cosmic birefringence is a rotation of the plane of linear

polarization of photons [11–13], which induces the cross-
correlation between parity-even E and parity-odd B modes
in the CMB polarization field [14]. A tantalizing hint of
cosmic birefringence has been found by the recent analyses
of the WMAP and Planck data [15–18]. The reported
signal is isotropic and consistent with a rotation angle of
β ¼ 0.342∘þ0.094°

−0.091° (68% C.L.), independent of the photon
frequency [18].

A pseudoscalar “axionlike” field can explain the
observed isotropic cosmic birefringence signal [19–33].
In general, a pseudoscalar field can couple to photons via
the Chern-Simons term. The known example in the
standard model of elementary particles and fields is a
neutral pion [34]. The temporal and spatial difference in the
pseudoscalar field values induces cosmic birefringence
independent of the photon frequency. The evolution of a
homogeneous pseudoscalar field induces the isotropic
signal.
The Hubble tension refers to the discrepancy between the

local and early-Universe measurements of the Hubble
constant, H0 [10,35]. Among the proposed models to
alleviate this tension (see Refs. [36,37] for reviews) are
early dark energy (EDE) models [38–43], which utilize an
additional energy component to modify the value of H0

inferred from CMB observations. The EDE field behaves
like dark energy in the early Universe and starts to oscillate
in the prerecombination epoch. In this paper we focus on an
EDE model with a potential of VðϕÞ ∝ ½1 − cosðϕ=fÞ�n
with n > 1 [40,44]. Such a potential may be generated
for an axionlike field by higher-order instanton correc-
tions [45–47] or a combination of separate nonperturbative
effects [48].
Several authors estimated the EDE parameters such as

the maximum energy-density fraction of EDE, fEDE, from
the current cosmological datasets and discussed the viabil-
ity of EDE [42,49–57]. The authors of Ref. [58] analyzed
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the EDE model with n ¼ 3 using a profile likelihood to
avoid the volume effect on marginalization with the
Markov Chain Monte Carlo (MCMC) method, and
obtained fEDE ¼ 0.072� 0.036 at 68% C.L.1

In this paper we consider the case where the EDE field
has a Chern-Simons coupling to photons. Whereas the
previous study [59] was focused on fluctuations in cosmic
birefringence from EDE, we focus on isotropic cosmic
birefringence. To this end we extend the linear Boltzmann
solver developed in Ref. [60] and evaluate the EB power
spectrum for fixed values of fEDE with the best-fitting
parameters of the EDE model given in Ref. [58].
The rest of this paper is organized as follows. We review

the physics of cosmic birefringence induced by an axion-
like field in Sec. II. We explain the EDE model in Sec. III.
We present the main results of this paper in Sec. IV. We
extend the implementation of cosmic birefringence in the
linear Boltzmann solver by including all the relevant effects
such as the energy density of ϕ in the Friedmann equation
and the gravitational lensing effect, which were ignored in
the previous work [60]. Thus, this is the first work to fully
and self-consistently calculate cosmic birefringence from
an axionlike field. We show the resulting EB power spectra,
which exhibit complex shapes unique to the EDE model
and can be distinguished from the simplest form of cosmic
birefringence with a constant rotation angle by future CMB
experiments. We summarize our findings and conclude
in Sec. V.

II. ISOTROPIC COSMIC BIREFRINGENCE

We consider an axionlike field, ϕ, coupled to photons
through the Chern-Simons term. The Lagrangian density is
written as

L ¼ −
1

2
ð∂μϕÞ2 − VðϕÞ − 1

4
FμνFμν −

1

4
gϕFμνF̃μν; ð1Þ

where VðϕÞ is the potential which is specified in Sec. III,
Fμν is the field strength tensor of the photon field, F̃μν is its
dual, and g is the Chern-Simons coupling constant of mass
dimension −1.
When ϕ varies slowly compared with the photon

frequency, the dispersion relations of photons are modified
as [11–13]

ω� ≃ k ∓ g
2

�
∂ϕ

∂t
þ k
k
· ∇ϕ

�
¼ k ∓ g

2

dϕ
dt

; ð2Þ

where d=dt denotes a total derivative along the photon
trajectory, and þ and − correspond to the right- and left-
handed circular polarization states of photons, respectively,
in right-handed coordinates with the z axis taken in the
direction of propagation of photons.
In this paper we focus on isotropic cosmic birefringence

and ignore its anisotropy, which is not found yet [61–65].
See Refs. [66–75] for study on anisotropic cosmic
birefringence.
The helicity-dependent dispersion relation given in

Eq. (2) induces a rotation of the plane of linear polarization.
The rotation angle from a given time t to the present time t0
is given by [11–13]

βðtÞ ¼ −
1

2

Z
t0

t
dt̃ðωþ − ω−Þ ¼

g
2
½ϕðt0Þ − ϕðtÞ�: ð3Þ

Here, we use the CMB convention for the position angle of
linear polarization, i.e., β > 0 represents a clockwise
rotation of linear polarization in the sky. The rotation angle
depends only on the difference in the axionlike field values
between the emission and observation and does not depend
on the evolution history [13].
Next, we discuss the effect of cosmic birefringence on

the CMB polarization field (see Ref. [9] for a review). In
this paper we focus on scalar-mode perturbations and
ignore tensor modes. The evolution of the CMB polariza-
tion field is described by the Boltzmann equation [76]. We
define the Fourier transform of the Stokes parameters of
linear polarization,Q� iU, by �2ΔPðη; q; μÞ. Here, η is the
conformal time, q is a wave vector in the Fourier space, and
μ≡ q · k=ðqkÞ parametrizes the angle between q and the
photon momentum k. The Boltzmann equation for

�2ΔPðη; q; μÞ is given by [20,77,78]

�2Δ0
P þ iqμ�2ΔP ¼ τ0

�
−�2ΔPþ

ffiffiffiffiffiffi
6π

5

r
�2Y

0
2ðμÞΠðη; qÞ

�
� 2iβ0�2ΔP; ð4Þ

where �2Y
m
l is the spin-2 spherical harmonics,Πðη; qÞ is the

polarization source term [79], and τ0 ≡ aðηÞneðηÞσT is the
differential optical depth with the Thomson scattering cross
section σT and the number density of electrons ne. Here, the
prime denotes the derivative with respect to η. It is
convenient to expand �2ΔP with the spin-2 spherical
harmonics as

�2ΔPðη; q; μÞ≡
X
l

i−l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
�2ΔP;lðη; qÞ�2Y

0
lðμÞ:

ð5Þ

1In MCMC, the posterior distribution of parameters is derived
from the number of Monte Carlo steps spent in the parameter
space. When some parameters are unconstrained, the MCMC
“wastes” many steps and enhances the posterior probability in
that parameter space. In the case of EDE, this occurs in a dramatic
way: when fEDE goes to zero, all other EDE parameters are
unconstrained. This enhances the parameter volume at fEDE ¼ 0,
yielding only an upper bound on fEDE as found by the previous
studies [49–51].
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Then, we obtain the formal solution to the Boltzmann
equation as

�2ΔP;lðη0; qÞ ¼ −
3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s Z
η0

0

dητ0e−τðηÞΠðη; qÞ

×
jlðxÞ
x2

e�2iβðηÞ; ð6Þ

where jlðxÞ is the spherical Bessel function with
x≡ qðη0 − ηÞ and τðηÞ≡ R

η0
η dη1τ0ðη1Þ.

To discuss the parity violation, we work with
parity eigenstates of the CMB polarization, E and B
modes [79,80]. In this basis, parity violation is imprinted
in the EB correlation [14]. We write the coefficients of E
and B modes as

ΔE;lðqÞ � iΔB;lðqÞ≡ −�2ΔP;lðη0; qÞ: ð7Þ

Cosmic birefringence, β ≠ 0, induces the imaginary part of

�2ΔP;l, or equivalently B modes. Using these coefficients,
we obtain the polarization power spectra as

CXY
l ¼ 4π

Z
dðln qÞPsðqÞΔX;lðqÞΔY;lðqÞ; ð8Þ

where PsðqÞ is the primordial scalar curvature power
spectrum, and X; Y ¼ E or B.
If β is independent of η, the coefficients of E and B

modes are given by

ΔE;l � iΔB;l ¼ e�2iβðΔ̃E;l � iΔ̃B;lÞ; ð9Þ

where the tildes denote quantities without cosmic birefrin-
gence. Thus, cosmic birefringence transforms the polari-
zation power spectra as [77,81]

CEE
l ¼ cos2ð2βÞC̃EE

l þ sin2ð2βÞC̃BB
l ; ð10Þ

CBB
l ¼ cos2ð2βÞC̃BB

l þ sin2ð2βÞC̃EE
l ; ð11Þ

CEB
l ¼ 1

2
sinð4βÞðC̃EE

l − C̃BB
l Þ; ð12Þ

which can be combined to give CEB
l ¼ 1

2
tanð4βÞðCEE

l −
CBB
l Þ [82]. When the primordial B modes are negligible

compared with the E modes, we obtain CEB
l ≃ tanð2βÞCEE

l .
In general, β depends on η through the evolution of ϕ.

Roughly speaking, there are two main contributions to the
CMB polarization power spectra. One is the reionization
epoch contributing to low multipoles, l≲ 10 [83],
and the other is the recombination epoch contributing to
higher l [84]. Thus, the EB power spectrum at low and
high l is largely determined by the evolution of ϕ after

the reionization and recombination epochs, respectively
[60,77,85,86].
If ϕ starts to oscillate after the reionization epoch, β is

approximately constant, and we obtain CEB
l ∝ CEE

l . If ϕ
starts to oscillate before the reionization epoch, the reio-
nization bump in the EB power spectrum at low l is
suppressed [60,86]. If ϕ oscillates during the recombination
epoch, the shape of the EB power spectrum can be different
from that of the EE power spectrum at high l [20,60],
which is relevant to our study. The information in the shape
of the EB power spectrum thus allows for a “tomographic
approach,” with which we can constrain the mechanism
inducing cosmic birefringence or axion parameters [60,86].

III. EARLY DARK ENERGY

EDE is an additional energy component that behaves like
dark energy at early times and contributes to the energy
density budget around the recombination epoch [38]. This
contribution increases the Hubble expansion rate around
the recombination epoch, which, in turn, reduces the size of
the sound horizon [10]. As a result, EDE increases the
inferred value of H0 from CMB observations and alleviates
the Hubble tension.
The EDE energy density should decay faster than the

matter density contribution after recombination, so as not to
affect the late-time cosmic expansion. The EDE models
that satisfy this property are based on a pseudoscalar field
potential given by [40]

VðϕÞ ¼ m2f2
�
1 − cos

�
ϕ

f

��
n
; ð13Þ

where f is the breaking scale of the symmetry related to ϕ
and m determines the potential scale. Around ϕ ¼ 0, this
potential is approximated by VðϕÞ ∝ ϕ2n. Thus, once ϕ
starts to oscillate, its energy density decreases as ρϕ ∝
a−6n=ðnþ1Þ [87], which means that ρϕ decreases faster than
the matter density for n > 1. In the following, we choose
n ¼ 3 as in the previous work [58].
EDE is usually characterized by three parameters,

ðfEDE; zc; θiÞ, where fEDE is the maximum energy density
fraction of EDE at the critical redshift zc, and θi is the initial
value of θ≡ ϕ=f. The previous work [58] has performed a
profile likelihood analysis to avoid volume effects in the
MCMC analysis and derived a robust constraint of
fEDE ¼ 0.072� 0.036 at 68% C.L. They have also
obtained the best-fitting values of the six parameters of
the base-ΛCDMmodel and ðzc; θiÞ for fixed values of fEDE
from the Planck CMB and the BOSS full-shape galaxy
clustering data. In this paper we adopt their best-fitting
values for fEDE ¼ 0.01, 0.07, and 0.14, which are sum-
marized in Table I.
We show the time evolution ofϕ in Fig. 1. The orange and

blue regions represent the recombination and reionization
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epochs, respectively. If the EDE has a Chern-Simons
coupling to photons, the time evolution of ϕ induces
isotropic cosmic birefringence. The difference in the EDE
parameters affects the amplitude and phase of oscillations.
While the amplitude is proportional to β (that is, the
amplitude of CEB

l ), the phase affects the shape of CEB
l .

IV. COSMIC BIREFRINGENCE FROM EDE

The authors of Ref. [60] included the dynamics of ϕ in
the Boltzmann equation, assuming that the energy density
of ϕ is negligible in the Friedmann equation and ignoring
the gravitational lensing effect of the CMB. In this paper we
account for both effects.
Specifically, we modify the publicly available

CLASS_EDE code [49], which is based on the linear
Boltzmann solver CLASS [88,89] and solves the equation
of motion for ϕ with the potential given in Eq. (13), to
include βðηÞ in the line-of-sight integral solution [Eq. (6)]
and output the EB power spectrum using Eq. (8). We
include the lensing effect as explained in Ref. [90].
In Fig. 2 we show the EB power spectrum induced by

the EDE field shown in Fig. 1. Here, we fix g ¼ M−1
Pl

by the reduced Planck constant MPl ≡ ð8πGÞ−1=2. One

can rescale our results for arbitrary values of g by
CEB
l ¼ gMPlCEB

l ðg ¼ M−1
Pl Þ. As the sign of CEB

l depends
on those of g and θi, we assume g > 0 and θi > 0 so that
CEB
l > 0 at l≳ 500. For comparison, the black line

represents CEE
l multiplied by a constant.

We find that CEB
l has a wide variety of shapes, which

are different from CEE
l commonly assumed in the data

analysis [15–18]. One can understand the shape of CEB
l

from the time evolution of ϕ. Since the CMB photons
contribute to the power spectrum in a different way
depending on the time of last scattering, the time-dependent
β leads to a modulation of the shape of CEB

l with respect to
that of CEE

l [60]. In our case, ϕ flips the sign during the
recombination epoch as seen in Fig. 1, and thus CEB

l can
also flip the sign at 10≲ l≲ 500. This effect also shifts the
peak positions of CEB

l at high l as seen in Fig. 3. Since the
positive contribution to CEB

l comes from the earlier stage of
the recombination epoch, the peak shifts to higher l. We can
also understand the diverse behaviors of CEB

l at l≲ 10 from
the variation of the oscillation phases during the reioniza-
tion epoch.

FIG. 1. Time evolution of ϕ for the best-fitting parameters with
fEDE ¼ 0.01, 0.07, and 0.14 given in Table I. The dashed lines
represent −ϕ. The orange and blue regions represent the
recombination and reionization epochs, respectively.

FIG. 2. EB power spectrum in the EDE model for the best-
fitting parameters given in Table I and g ¼ M−1

Pl . The colored
lines represent the EB power spectra for fEDE ¼ 0.01, 0.07, and
0.14, whereas the black line represents the EE power spectrum
multiplied by a constant factor for comparison. The solid and
dashed lines show positive and negative values, respectively.

TABLE I. Best-fitting values of the base-ΛCDM and EDE
model parameters for fEDE ¼ 0.01, 0.07, and 0.14.

fEDE 0.01 0.07 0.14

100 ωb 2.248 2.259 2.276
ωcdm 0.1200 0.1260 0.1341
100θs 1.042 1.042 1.041
lnð1010AsÞ 3.046 3.056 3.070
ns 0.9704 0.9794 0.9927
τreio 0.05492 0.05492 0.05534
log10 zc 3.551 3.548 3.560
jθij 2.752 2.758 2.769

FIG. 3. EB power spectrum in the EDE model at
800 ≤ l ≤ 1200. The lines are the same as in Fig. 2.
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Let us relate our CEB
l to the observed value of β. The

observational determination of β typically assumes a
constant rotation angle multiplying CEE

l − CBB
l [15–18].

Although our CEB
l is not proportional to CEE

l − CBB
l , one

may find an approximate proportionality factor at l≳ 500

and translate our CEB
l into β by comparing the maximum

values of CEE
l − CBB

l and CEB
l . Considering Eq. (12), we

define the effective value of β, βeff , by

max½CEB
l �≡ 1

2
tanð4βeffÞmax ½CEE

l − CBB
l �: ð14Þ

By requiring βeff ¼ 0.34°, we estimate g as

g
M−1

Pl

¼ ð1.2; 0.42; 0.47Þ; ð15Þ

for fEDE ¼ 0.01, 0.07, and 0.14, respectively. Since
the decay constant, f, is typically of Oð0.1MPlÞ for
the best-fitting parameters, this estimation implies
g ¼ Oð0.01 − 0.1Þf−1.
Finally, we forecast the testability of the EDE model by

measuring the EB power spectrum in future CMB experi-
ments. The overarching question is whether one can
distinguish between the EB power spectra from the EDE
model and the simplest form of birefringence by a constant
rotation angle β. To this end, we first compute the following
chi-squared [60]:

χ2ðpÞ ¼ fsky
Xlmax

l¼lmin

ð2lþ 1Þ ½Ĉ
EB
l − CEB;th

l ðpÞ�2
ĈEE
l ĈBB

l

; ð16Þ

where ĈXY
l is an observed power spectrum, fsky is a sky

fraction used for the analysis, p is the parameters to be
constrained, and lmin and lmax are the minimum and
maximum multipoles included in the analysis, respectively.
Here, CEB;th

l is a theoretical model for the EB power
spectrum given by

CEB;th
l ¼ g

M−1
Pl

CEB;0
l þ sinð4βÞ

2
ðC̃EE

l − C̃BB
l Þ; ð17Þ

where CEB;0
l is the EB power spectrum for the EDE model

with fEDE ¼ 0.07 and g ¼ M−1
Pl . For a given observed ĈEB

l

we compute χ2 for each parameter set, p ¼ ðg=M−1
Pl ; βÞ, and

obtain the posterior distribution,PðpjĈEBÞ∝ exp½−χ2ðpÞ=2�
[60].We assume that themock data, ĈEB

l , is described by the
EDE model with fEDE ¼ 0.07 and g=M−1

Pl ¼ 0.42.
Here, we consider two experiments: the Simons

Observatory (SO) [91] and CMB-S4 [92]. We choose
the same experimental setup for CMB-S4 as described
in Ref. [60], while for SO we use the noise curves provided
by the SO collaboration.2 In Fig. 4 we show the expected
error contours on g=M−1

Pl and β. For both SO and CMB-S4,
the constant rotation alone (g=M−1

Pl ¼ 0) cannot explain the
mock data, and the EDE model will be distinguished from a
constant rotation.
Discovery of the feature in the EB spectrum predicted by

the EDE model would be a breakthrough in cosmology and
fundamental physics.

V. SUMMARY

Polarization of the CMB is a powerful probe of new
physics beyond the standard model of elementary particles
and fields [9]. In this paper we connected two hints of new
physics from the current cosmological datasets: isotropic
cosmic birefringence and EDE. We included the dynamics
of the EDE field, ϕ, and its coupling to photons in the
Boltzmann equation for the CMB polarization and
evaluated the EB power spectrum, CEB

l , induced by iso-
tropic cosmic birefringence. The shape of CEB

l (Fig. 2) is
different from that of CEE

l and depends sensitively on the
EDE parameters given in Table I. We understood this result
in terms of the time evolution of ϕ shown in Fig. 1.

FIG. 4. The expected 1 and 2σ error contours on g=M−1
Pl and β (in units of degrees) for fEDE ¼ 0.07. The fiducial value of g=M−1

Pl is
chosen to give βeff ¼ 0.34° (magenta dots). We assume the SO-like (left) and S4-like (right) experiments.

2https://github.com/simonsobs/so_noise_models.
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We roughly translated the obtained CEB
l into an effective

rotation angle, βeff . By requiring that βeff be equal to the
observed rotation angle, we found g ¼ Oð0.01 − 0.1Þf−1.
We also discussed the testability of the EDE model and
showed that the cosmic birefringence predicted by the EDE
model can be distinguished from that with a constant
rotation angle by measuring CEB

l in future CMB experi-
ments such as SO and CMB-S4.
Our analysis can also be applied to other EDE

models [41,43]. Since the shape of CEB
l is sensitive to

the oscillation phase of the EDE field during the recombi-
nation and reionization epoch, the shape of CEB

l can be
different in other models. Although we have focused on the
effect of isotropic cosmic birefringence on CEB

l , the
perturbations of the EDE field will induce the anisotropic
cosmic birefringence [59], which may provide a distinct
signature in CEB

l . We leave this to future work.
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