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The choice of optimal event variables is crucial for achieving the maximal sensitivity of experimental
analyses. Over time, physicists have derived suitable kinematic variables for many typical event topologies
in collider physics. Here, we introduce a deep-learning technique to design good event variables, which are
sensitive over a wide range of values for the unknown model parameters. We demonstrate that the neural
networks trained with our technique on some simple event topologies are able to reproduce standard event
variables like invariant mass, transverse mass, and stransverse mass. The method is automatable and
completely general and can be used to derive sensitive, previously unknown, event variables for other, more
complex event topologies.
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I. INTRODUCTION

Data in collider physics is very high dimensional, which
brings a number of challenges for the analysis, encapsulated
in “the curse of dimensionality” [1]. Mapping the raw data to
reconstructed objects involves initial dimensionality reduc-
tion in several stages, including track reconstruction, calo-
rimeter clustering, jet reconstruction, etc. Subsequently, the
kinematics of the reconstructed objects is used to define
suitable analysis variables, adapted to the specific channel
and targeted event topology. Each such step is essentially a
human-engineered feature-extraction process from compli-
cated data to a handful of physically meaningful quantities.
While some information loss is unavoidable, physics prin-
ciples and symmetries help keep it to a minimum.
In this paper, we shall focus on the last stage of this

dimensionality reduction chain, namely, the optimal

construction of kinematic variables, which is essential to
expedite the discovery of new physics and/or to improve
the precision of parameter measurements. By now, the
experimentalist’s toolbox contains a large number of
kinematic variables, which have been thoroughly tested
in analyses with real data (see Refs. [2–5] for reviews).
The latest important addition to this set is the so-called
singularity variables [6–10], which are applicable to miss-
ing energy events—the harbingers of dark matter produc-
tion at colliders. In the machine-learning era, a myriad of
algorithms have been invented or adopted to tackle various
tasks that arise in the analysis of collider data, e.g., signal-
background discrimination (see Ref. [11] for a continu-
ously updated complete review of the literature). Under the
hood, the machines trained in these techniques could learn
to construct useful features from the low-level event
description because they are relevant to the task at hand.
But it is difficult to interpret what exactly the machines
have learned in the process [12,13]. Furthermore, it is rarely
studied whether the human-engineered features are indeed
the best event variables for certain purposes and whether
machines can outperform theorists at constructing event
variables.
These two issues, explainability and optimality, are

precisely the two questions which we shall address in this
paper. We shall introduce a new technique for training
neural networks to directly output useful features or event
variables (which offer sensitivity over a range of unknown
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parameter values). This allows for explainability of the
machine’s output by comparison against known features in
the data. At the same time, it is important to verify that the
variables obtained using our technique are indeed the
optimal choice, and we will test this by directly comparing
them against the human-engineered variables that are
known to be optimal for their respective event topologies.
Once we have validated our training procedure in this way,
we could extend it to more complex event topologies and
derive novel kinematic variables in interesting and difficult
scenarios.
Understanding how and what a neural network (NN)

learns is a difficult task. Here, we shall consider relatively
simple physics examples that are nevertheless highly non-
trivial from a machine learning point of view: (1) visible
two-body decay (to two visible daughter particles), (2)
semi-invisible two-body decay (to one visible and one
invisible daughter particle), and (3) semi-invisible two-
body decays of pair-produced particles. It is known that the
relevant variables in those situations are the invariant mass
m, the transverse mass mT [14,15], and the stransverse
mass mT2 [16], respectively. We will demonstrate that in
each case the NN can be trained to learn the corresponding
physics variable in the reduced latent space. The method
can be readily generalized to more complex cases to derive
deep-learned, next-generation event variables.

II. METHODOLOGY

Let X represent the high-dimensional input features from
a collision event, e.g., the 4-momenta of the reconstructed
physics objects. Let VðXÞ be a low-dimensional event
variable constructed from X. In this work, we shall model
the function V using a neural network, where for notational
convenience the dependence of V on the architecture and
weights of the network will not be explicitly indicated. We
imagine that V retains the relevant physics information and
will be the centerpiece of an experimental study of a theory
model with a set of unknown parameters Θ. The goal is to

train the NN encoding the function V to be “useful” over a
wide range of values for Θ. For this purpose, we will need
to train with events generated from a range of Θ values.
Note that this is a departure from the traditional approach in
particle physics, where training is done for specific study
points with fixed values of Θ. In addition, we will have to
quantify the usefulness of a given event variable VðXÞ, as
explained in the remainder of this section.
Using intuition from information theory (see the

Appendix), we propose the strategy schematically outlined
in Fig. 1: train the event variable network so that the
distributions pV ⊗ pΘ and pðV;ΘÞ are highly distinguish-
able, as quantified by an auxiliary classifier network. Here,
pV and pΘ are the probability distribution functions of V
and Θ, respectively, and pðV;ΘÞ is their joint distribution.

A. Training data generation

To generate the training data, we start with the two
distributions pΘ and pXjΘ, where pXjΘ is the distribution of
the event X conditional on Θ. General-purpose event
generators can be used to sample from pXjΘ. The specific
choice of a prior distribution pΘ is not crucial—as long as it
allows us to sample θ over a sufficiently wide range (the
one in which we want the event variable V to be sensitive),
any distribution will do, and one is further free to impose
theoretical prejudice like fine-tuning, etc. The overall
distribution of X, namely, pX, is given by

pXðxÞ ¼
Z
Ω
dθpΘðθÞpXjΘðxjθÞ: ð1Þ

Our training data consist of two classes, whose gener-
ation is illustrated in the left (green) block of Fig. 1. Each
training data point is given by a 2-tuple ðX;ΘÞ along with
the class label ytarget ∈ f0; 1g of the data point. Under class
0, X and Θ are independent of each other, and their joint
distribution is given by pX ⊗ pΘ. This is accomplished by
simply replacing the true value ofΘ used to generate Xwith

FIG. 1. A schematic diagram of the training strategy for the artificial event variable V. The left (green) and right (blue) blocks depict
the generation of training data and the composite neural network layout, respectively.
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a fake one for the data points in class 0. Under class 1, the
joint distribution of ðX;ΘÞ is given by

pðX;ΘÞðx; θÞ ¼ pXjΘðxjθÞpΘðθÞ: ð2Þ

B. Event variable training

As shown in the right (blue) block in Fig. 1, we then set
up a composite network for classifying the data points
ðX;ΘÞ into the two classes. The composite network
consists of two parts. First, an event variable network
(EVN) takes the high-dimensional collider event informa-
tion X of dimensionality dX ≡ dimðXÞ as input and returns
a low-dimensional VðXÞ of dimensionality dV ≡ dimðVÞ as
output. As indicated, this network parametrizes the artifi-
cial event variable function VðXÞ, which is precisely what
we are interested in training. The output layer of the EVN
network does not use an activation function (or, equiv-
alently, uses the identity activation). Since dV ≪ dX, the
main task of the EVN network is to perform the needed
dimensionality reduction. However, to ensure that this
retains the maximal amount of information, we introduce
an auxiliary classifier network which takes the event
variable VðXÞ and the parameters Θ as input and returns
a one-dimensional output, yðV;ΘÞ ∈ ½0; 1�. Note that the
input received by the auxiliary network is distributed as
pV ⊗ pΘ under class 0 and as pðV;ΘÞ under class 1.
The information bottleneck [17] VðXÞ created by the

EVNmodule is optimized by simply training the composite
network as a classifier for the input data ðX;ΘÞ, using the
class labels ytarget as the supervisory signal.

III. EXPERIMENTS

The EVN module in the network architecture from Fig. 1
reduces the original dX-dimensional features to a dV-
dimensional subspace of event variables, which by con-
struction are guaranteed to be highly sensitive to the theory
model parameters Θ, but without any explicit dependence
on them. Such variables have been greatly valued in
collider phenomenology, and a significant number have
been proposed and used in experimental analyses. As a
proof of principle, we shall now demonstrate how our
approach is able to reproduce the known kinematic vari-
ables in a few simple but nontrivial examples. Here, we
shall only consider one variable at a time, i.e., dV ¼ 1,
postponing the case of dV > 1 to future work.

A. Example 1: Fully visible two-body decay

First, we consider the fully visible decay of a parent
particle A into two massless visible daughter particles,
A → bc. The parameter Θ in this example is the mass mA
of the mother particle A. The event X is specified by the
4-momenta of the daughter particles pb and pc, leading
to dX ¼ 8.

The prior pΘ is chosen to sample mA uniformly in the
range [100, 500] GeV. For each sampled value of mA, we
generate an event as follows. A generic boost for the parent
particle A is obtained by isotropically picking the direction
for its momentum and uniformly sampling its laboratory-
frame energy in the range ½mA; 1500 GeV�. Subsequently,
A is decayed on shell into two massless particles (isotropi-
cally in its own rest frame) so that the input X consists of
the laboratory-frame final-state 4-momenta fpb; pcg≡
fEb; p⃗b; Ec; p⃗cg. The pair ðX;mAÞ forms a data point in
class 1. For all data points in class 0, the true values of mA
are replaced with fake ones sampled from the same prior
distribution pΘ.
All the neural networks used in this work were imple-

mented in TENSORFLOW [18]. For the event variable net-
work, we used a sequential fully connected architecture
with five hidden layers. The hidden layers, in order, have
128, 64, 64, 64, and 32 nodes, all of them using rectified
linear unit (ReLU) as the activation function. The output
layer has one node with no activation function. The
classifier network is a fully connected network with three
hidden layers (16 nodes each, with ReLU activation). The
output layer of the classifier has one node with sigmoid
activation. These two networks were combined as shown in
the right (blue) block in Fig. 1 and trained with 2.5 million
events total (50=50 split between classes 0 and 1), out of
which 20% was set aside for validation. The network was
trained for 20 epochs with a minibatch size of 50, using the
Adam optimizer and the binary cross-entropy loss function.
For the event topology considered in this example, it is

known that the event variable most sensitive to the value of
mA is the invariant mass of the daughter particles

mbc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEb þ EcÞ2 − ðp⃗b þ p⃗cÞ2

q
ð3Þ

as well as any variable that is in one-to-one correspondence
with it. To test whether our artificial event variable V
learned by the NN correlates withmbc, we show a heat map
of the joint distribution of ðV;mbcÞ in the upper-left panel
of Fig. 2. Here, and in what follows, the heat map is
generated using a separate test dataset with 105 events. In
the plot, we also show two nonparametric correlation
coefficients, namely, Kendall’s τ coefficient [19] and
Spearman’s rank correlation coefficients rs [20]. A value
of �1 for them would indicate one-to-one correspondence.
Our results depict an almost perfect correspondence
between V and mbc. Here, and in what follows, we append
an overall minus sign to V if needed, in order to make the
correlations positive and the plots in Fig. 2 intuitive.
In practice, the artificial variable can be used to compare

the data against templates simulated for different values of
Θ. To illustrate this usage, in the lower-left panel of
Fig. 2, we show unit-normalized distributions of the
deep-learned variable V for several different values of
mA ¼ f200; 280; 320; 400g GeV. It is seen that the
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distributions are highly sensitive to the parameter choice
mA and, if needed, V can be calibrated so that the peak
location directly corresponds to mA. The observed spread
around the peak values in the histogram and the less-than-
perfect correspondence between V and mbc are due to
limitations in the NN architecture and training.

B. Example 2: Semivisible two body decay

Next, we consider the semivisible two-body decay of a
particle A into a massless visible particle b and a possibly
massive invisible particle C, A → bC, where A is singly
produced (with zero transverse momentum). The parameter
Θ is two dimensional: ðmA;mCÞ. The event X is specified
by the 4-momentum pb ¼ fEb; p⃗bT; pbzg of b and the
missing transverse momentum, leading to dX ¼ 6.
We generate ðmA;mCÞ by uniformly sampling ðmA; δmÞ

in the region defined by 100 GeV ≤ mA ≤ 500 GeV and
0 ≤ δm ≤ mA, where δm ≡ ðmA −mCÞ2=mA. This choice of
prior ensures that the relevant mass difference parameter in
this event topology μ≡ ðm2

A −m2
CÞ=mA is adequately

sampled in the range [0, 500] GeV. For each sampled
value of ðmA;mCÞ, we generate an event as follows. The
parent particle A is boosted along the beam axis �z (with
equal probability) to an energy chosen uniformly in the
range ½mA; 1500 GeV�. The particle A is decayed on shell
into b and C, isotropically in its own rest frame. For data
points in class 0, the values of ðmA;mCÞ are replaced with

fake ones. The details of network architectures and training
are the same as in Example 1.
The relevant variable for this event topology is the

transverse mass mT , which in our setup is given by

mTðm̃CÞ≡ pbT þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
bT þ m̃2

C

q
; ð4Þ

where the choice of mass ansatz m̃C for the mass of the
invisible particle C does not affect the rank ordering of the
events. For concreteness in what follows, we shall use
m̃C ¼ 0. The corresponding heatmapof the joint distribution
ðV;mTÞ and unit-normalized distributions of the variable V
for several choices of mA ¼ f200; 280; 320; 400g GeV and
mC ¼ 100 GeV are shown in the middle panels of Fig. 2.
Once again,we observe an almost perfect correlation between
V andmT , and a high sensitivity of the V distributions to the
input masses.

C. Example 3: Symmetric semivisible two body decays

Finally, we consider the exclusive production at a hadron
collider of two equal-mass parent particles A1 and A2 which
decay semivisibly as A1A2 → ðb1C1Þðb2C2Þ. The param-
eterΘ is given by ðmA;mCÞ, and the event X is described by
the 4-momemta of b1 and b2, and the missing transverse
momentum, leading to dX ¼ 10.
The masses ðmA;mCÞ are generated as in Example 2. To

avoid fine tuning the network to the details of a particular

FIG. 2. Top row: correlation plots between the artificial variable V and a relevant human-engineered variable for each of the three
examples considered in the text (mbc, mT , and mT2 from left to right). Bottom row: unit-normalized histograms of the corresponding
artificial variable V for different mass inputs (104 events for each histogram).
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collider, we uniformly sampled the invariant mass mA1A2
of

the A1A2 system in the range ½2mA; 1500 GeV� and the
laboratory-frame energy of the A1A2 system in the range
½mA1A2

; 2500 GeV�. The direction of the system was chosen
to be along�zwith equal probability. The direction of A1 is
chosen isotropically in the rest frame of the A1A2 system.
A1 and A2 are both decayed on shell, isotropically in their
respective rest frames. For data points in class 0, the values of
ðmA;mCÞ are replacedwith fake ones. The details of network
architectures and training are the same as in Example 1.
The straightforward generalization of the idea of the

transverse mass to the considered event topology leads to
the stransverse mass variable mT2ðm̃CÞ [16]. In the upper-
right panel of Fig. 2, we show a heat map of the joint
distribution of ðV;mT2ð0ÞÞ, which reveals reasonably good,
but not perfect, correlation, implying that the artificial event
variable encapsulates information beyond mT2. This could
have been expected for the following two reasons: (1)
unlike the previous two examples of singular variables with
sharp features in their distributions, mT2 does not belong to
the class of singular variables [10] and (2) mT2 only uses a
subset of the available kinematic information, namely, the
transverse momentum components. In contrast, the artifi-
cial kinematic variable can use all of the available infor-
mation, and in a more optimal way. The lower-right panel
of Fig. 2 displays unit-normalized distributions of the
artificial variable for several choices of mA and fixed
mC ¼ 100 GeV, again demonstrating the sensitivity of V
to the mass spectrum.

IV. DISCUSSION AND OUTLOOK

We proposed a new deep-learning technique pictorially
summarized in Fig. 1 which allows the construction of
event variables from a set of training data produced from a
given event topology. The novel component is the simulta-
neous training for varying parameters Θ, which allows the
algorithm to capture the underlying phase space structure
irrespective of the benchmark study point. This is the first
such method for constructing event variables with neural
networks and can be applied to other, more challenging
event topologies in particle physics and beyond. In future
applications of the method, one could enlarge the dimen-
sionality of the latent space to dV > 1 and supplement the
training data with additional features, like tagging and
timing information, etc. By manipulating the specifics of
the generation of the training data, one can control what
underlying physics effects are available for the machine to
learn from and what physical parameters the machine-
learned variable will be sensitive to. Our method opens the
door to new investigations on intepretability and explain-
ability by incorporating modern representation learning
approaches like contrastive learning [21].
Code and data availability. The code and data that

support the findings of this study are openly available in
Ref. [22] under the directory named arXiv_2105.10126.
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APPENDIX

1. Intuition from information theory

Each event X carries some information about the under-
lying model parameter values from which it was produced.
Some of this information could be lost when reducing the
dimensionality of the data from dX to dV , as a consequence
of the data processing inequality [23]. Good event variables
minimize this information loss and efficiently retain the
information about the underlying parameter values Θ
[17,24]. This is precisely why the invariant mass m, the
transverse mass mT , and the stransverse mass mT2 have
been widely used in particle physics for mass parameter
measurements and for new physics searches.
The mutual information of V and Θ is given by

IðV;ΘÞ≡
Z
V
dv

Z
Ω
dθpðV;ΘÞðv;θÞ ln

�
pðV;ΘÞðv;θÞ
pVðvÞpΘðθÞ

�
; ðA1Þ

where pV and pΘ are the probability distribution functions
of V and Θ, respectively, and pðV;ΘÞ is their joint distri-
bution. V and Ω are the domains of V and Θ, respectively.
One can think of pΘ as the prior distribution of Θ. The
distributions pðV;ΘÞ and pV can then be derived from pΘ
and the conditional distribution pVjΘðvjθÞ.
The mutual information IðV;ΘÞ quantifies the amount of

information contained in V about Θ. Therefore, a good
event variable V should have relatively high values of
IðV;ΘÞ. From Eq. (A1), one can see that IðV;ΘÞ is nothing
but the Kullback-Leibler (KL) divergence from (a) the
factorized distribution pV ⊗ pΘ to (b) the joint distribution
pðV;ΘÞ. The KL divergence, in turn, is a measure of how
distinguishable the two distributions a and b are.
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2. Unexpected linear relationships

In the fully visible and semivisible two-body decay
examples, the artificial variables learned by the neural
networks appear to be linearly related to the corresponding
theoretical variables, namely,mbc andmT (top-left and top-
middle panels of Fig. 2). This feature is accidental, since
one-to-one transformations of the artificial variable will
leave its performance unaffected under our training prin-
ciple. We found that the linearity persists under different
runs of the pseudoexperiments with different random seeds.
However, the relationship becomes nonlinear with a slight
change in the activation function in the hidden layers of the
event variable network from ϕReLUðxÞ ¼ max ½0; x� to

ϕmodifiedðxÞ ¼ max ½0; xjxj0.1�: ðA2Þ

Training the modified network for the case of Example 1
now leads to the artificial variable V 0 shown in Fig. 3,

which clearly exhibits a nonlinear relationship with the
theory variable mbc.

3. Comparison to regression approaches

A popular ML technique for estimating per-data-point
features is regression. A natural question that arises is
whether sensitive kinematic variables can be learned by
regressing collider events to the underlying model para-
meter values. Here, we will show that regression is not an
effective technique for learning sensitive event observables,
except in simplistic situations.
We begin by noting that, in order to use regression, the

dimensionality of the NN output V should be the same as
the dimensionality of the parameter Θ. However, in our
Examples 2 and 3, the dimensionality of V is 1, and the
dimensionality of Θ is 2. Such a mismatch in dimension-
alities is incompatible with regression, which rules out the
possibility of using regression in those cases.
Furthermore, even if the dimensionality of V is chosen to

match that of Θ, regression will typically be ineffective for
the following reasons. Let VregðxÞ be the expected value of
Θ under the training data distribution, conditional on
X ¼ x,

VregðxÞ ¼
R
dθθpXjΘðxjθÞpΘðθÞR
dθpXjΘðxjθÞpΘðθÞ

: ðA3Þ

The event observable Vreg will be informative about Θ if
the distribution of Θ conditional on X is localized around
the true value ofΘ. This is the case in Example 1, where the
parameter mA can exactly computed from a single event as
the invariant mass mbc. However, for event topologies
featuring invisible particles, like Examples 2 and 3, this is
not the case. In other words, performing regression for
Examples 2 and 3 (with two-dimensional output) will not
lead to the learning of a useful event variable.
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