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We find electric string solutions in Yang-Mills-Higgs theory.
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Cosmic strings have attracted a lot of attention for nearly
half a century since their discovery [1,2]. Such strings carry
magnetic flux and are analogous to vortices in super-
conductors. In contrast, strings that carry electric flux are
expected to lead to confinement in QCD and classical
solutions corresponding to electric strings are not known.
Even if electric strings were to exist as classical solutions in
a non-Abelian gauge theory, because gauge excitations
(“gluons”) are massless and carry a non-Abelian charge
one might expect that rapid production of gluons by the
Schwinger process [3,4] would dissipate such strings. In
view of these expectations it is surprising that electric string
solutions do exist in certain non-Abelian gauge theories
and are protected against the Schwinger process.
An essential element in constructing an electric string

solution1 is that a non-Abelian electric field does not
uniquely specify a gauge equivalent class of gauge fields.
As Brown and Weisberger (BW) showed [7], there is a one-
parameter family of gauge inequivalent gauge fields that all
result in the same electric field. Unlike a uniform non-
Abelian electric field produced in analogy with Maxwell
theory, BW gauge fields have been shown to be immune
from decay due to Schwinger pair production [8]. This
suggests the question: can there be string solutions con-
taining BW gauge fields? In pure non-Abelian gauge
theory, BW gauge fields do not solve the classical equations
of motion. Instead they require external current and charge
densities. Such external sources may arise due to quantum
effects—after all the classical equations are expected to
get modified due to the backreaction of quantum
fluctuations—or they may be due to other fields in the
system. Here we consider SUð2Þ gauge theory with a
scalar field in the fundamental representation. The same
solution can be embedded in models with larger gauge

group that have an SUð2Þ subgroup [9–11]. The
Lagrangian under consideration is

L ¼ −
1

4
Wa

μνWμνa þ jDμΦj2 − VðΦÞ; ð1Þ

where

Wa
μν ¼ ∂μWa

ν − ∂νWa
μ þ gϵabcWb

μWc
ν; ð2Þ

DμΦ ¼ ∂μΦ − i
g
2
Wa

μσ
aΦ; ð3Þ

VðΦÞ ¼ m2jΦj2 þ λjΦj4; ð4Þ

where σa are the Pauli spin matrices. The Lagrangian
actually has an SUð2Þ ×Uð1Þ symmetry but only the
SUð2Þ is gauged, while the Uð1Þ is global. (This corre-
sponds to the sin2 θw ¼ 0 limit of the electroweak model.)
The equations of motion are

ð∂ν þ gϵabcWb
νÞWμνc ¼ i

g
2
ðΦ†σaDμΦ − H:c:Þ ð5Þ

DμDμΦþm2Φþ 2λjΦj2Φ ¼ 0: ð6Þ

To find an electric-field solution to the equations of
motion, we first write the BW gauge field in temporal
gauge [8],

Wa
0 ¼ 0; W�

μ ¼ −
ϵ

g
e�iΩtfðrÞ∂μz; W3

μ ¼ 0; ð7Þ

where W�
μ ¼ W1

μ � iW2
μ, and we have introduced a cylin-

drical profile function, fðrÞ, with fð0Þ ¼ 1. This gauge
field needs sources as given by the right-hand side of (5).
Requiring thatΦ provides the currents that will produce the
gauge field in (7) allows us to construct Φ, which we have
to make sure also satisfies (6). Some algebra shows that the
required form of Φ is

Φ ¼ ϵ

g

ffiffiffiffi
Ω
ω

r
fðrÞ

�
z1eþiωt

z2e−iωt

�
; ð8Þ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Some early work on classical solutions in non-Abelian gauge
theories can be found in Refs. [5,6].
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where W�
μ ¼ W1

μ � iW2
μ and jz1j2 þ jz2j2 ¼ 1. Without

loss of generality we take Ω > 0 while ω can be positive
or negative. The Φ field can then provide suitable sources
for the gauge field as well as satisfy its classical equation of
motion provided we take

Ω ¼ m½4ð1 − 4λ=g2Þ2 − 1�−1=2; ð9Þ

ω ¼ 2ð1 − 4λ=g2ÞΩ; ð10Þ

with restrictions that are necessary for Ω to be real; namely,
for m2 > 0, we need 0 < λ < g2=8 (ω > 0), or λ > 3g2=8
(ω < 0), and for m2 < 0, g2=8 < λ < g2=4 (ω > 0) and
g2=4 < λ < 3g2=8 (ω < 0). An explicit check (see
Supplemental Material [12]) shows that the solution is
only valid for ω > 0, i.e., for λ < g2=4. In what follows we
will assume ω > 0. These constraints are summarized
in Fig. 1.
The profile function satisfies the equation,

f00 þ f0

r
þ Ω2

�
1 −

ϵ2

2ωΩ
f2
�
f ¼ 0 ð11Þ

with boundary conditions fð0Þ ¼ 1, f0ð0Þ ¼ 0.
For ϵ2 ≪ 2ωΩ the solution is closely approximated by

the zeroth order Bessel function, J0ðΩrÞ. For ϵ2=2ωΩ > 1,
there is no well-behaved solution. We define a rescaled
profile FðrÞ≡ ϵfðrÞ= ffiffiffiffiffiffiffiffiffiffi

2ωΩ
p

and a rescaled coordinate
R ¼ Ωr. A numerical solution for FðRÞ vs R is shown
in Fig. 2. The asymptotic form of the solution is approxi-
mately described by the asymptotic form of the Bessel
function,

FðRÞ ∼ Fð0Þ
ffiffiffiffiffiffi
2

πR

r
cos

�
R −

π

4

�
; R → ∞: ð12Þ

The field strength for the solution is

W�
μν ¼ −

ϵ

g
e�iΩt½iΩfðrÞð∂μt∂νz − ∂νt∂μzÞ

þ f0ðrÞð∂μr∂νz − ∂νr∂μzÞ� ð13Þ

and W3
μν ¼ 0. An SUð2Þ gauge rotation by

U ¼ eiσ
1Ωt=2e−iσ

1π=4e−iσ
2π=4 ð14Þ

brings the field strength to the form,

W0
μν ¼ UWμνU†; ð15Þ

whereWμν ¼ Wa
μνσ

a. This gives static field strengths of the
form in [7] (if we set f ¼ 1),

W10
μν ¼ 0; ð16Þ

W20
μν ¼ −

ϵ

g
f0ðrÞð∂μr∂νz − ∂νr∂μzÞ; ð17Þ

W30
μν ¼ −

ϵ

g
ΩfðrÞð∂μt∂νz − ∂νt∂μzÞ; ð18Þ

Then the static electric field is in the third SUð2Þ direction
and the spatial z-direction, while the static magnetic field is
in the second SUð2Þ direction and in the spatial azimuthal
direction. The structure of the solution consists of a tube of
electric field along z, wrapped by a magnetic field along the
azimuthal direction ϕ̂, which is then within a sheath of
electric field in the −z direction, wrapped in magnetic field
in the −ϕ̂ direction, and so on. The distinction between
electric and magnetic fields is frame dependent and so we
calculate the Lorentz invariant −Wa

μνWμνa ∝ F2 − F02 in
Fig. 3, confirming the alternating sequence of electric and
magnetic fields.

FIG. 1. Constraints on the parameters in the m2 − 8λ=g2 plane.
The unshaded regions give imaginary Ω and are not allowed. The
solution is only valid in the regions of parameter space
where ω > 0.

FIG. 2. FðRÞ vs R for Fð0Þ ¼ 0.5.
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The gauge transformation U when applied to Φ gives

Φ0 ¼ UΦ ¼ ϵ

g

ffiffiffiffiffiffi
Ω
2ω

r
fðrÞ

�
z01e

iω0t − z02e
−iω0t

z01e
iω0t þ z02e

−iω0t

�
; ð19Þ

where ω0 ¼ ωþΩ=2 and z01 ¼ z1e−iπ=4, z02 ¼ z2eiπ=4.
The energy density, E of the solution can be calculated

from the expression,

E ¼ 1

2
ðWa

0iÞ2 þ
1

4
ðWa

ijÞ2 þ jDtΦj2 þ jDiΦj2 þ VðΦÞ:
ð20Þ

In terms of rescaled variables, and restricting to ω > 0,

E0 ≡ g2

2ωΩ3
E ¼

�
1

2
þ 1

κ

�
F02 þ

�
1

2
þ 2κ −

1

κ

�
F2

þ 1

2

�
1

2
þ 1

κ

�
F4; ð21Þ

where [see (10)] 0 < κ ≡ ω=Ω < 2. In Fig. 4 we show an
example of E0 vs R.
The slow falloff ∝ 1=

ffiffiffiffi
R

p
of the gauge fields in (12)

implies that E ∝ 1=R and that the energy per unit length, μ,
diverges linearly with radial distance. Hence, the string is
not localized as in a Nielsen-Olesen string but is more like a
global string that has a logarithmically divergent energy per
unit length, or like a global monopole with linearly
divergent energy [2].2

We evaluate μ numerically by integrating over R ∈
½0; Rc� where Rc is a radial cutoff to get

μðRcÞ ¼ 2π

Z
Rc

0

dRRE0

≈
��

1

2
þ 1

κ

�
0.54þ

�
1

2
þ 2κ −

1

κ

�
0.54

�
Rc

þ 1

2

�
1

2
þ 1

κ

�
0.09 lnðRcÞ; ðω > 0Þ ð22Þ

where, from (10), κ may also be written as

κ ¼ 2ð1 − 4λ=g2Þ: ð23Þ

In the m2 < 0 case, we should add a constant piece to the
potential so that V ¼ 0 at its minimum. In that case,
however, the solution still has jΦj → 0 in the asymptotic
region. Since the true vacuum has jΦj ≠ 0, the solution has
divergent energy per unit length and the divergence will go
as R2

c instead of Rc.
Our electric string solution is with a scalar field in the

fundamental representation. This leads to the question
whether scalar fields in other representations can also
provide suitable sources for the gauge fields in (7). We
have examined the case of a scalar field in the adjoint
representation, ϕa, and can show that a solution does not
exist. Briefly, the gauge field equation is DνWμνa ¼ jμa

where the current jμa is now due to the adjoint scalar and
has a form such that ϕajaμ ¼ 0 for every value of the index
μ. This constraint then requires ϕaDνWμνa ¼ 0 for every μ,
where the gauge field is given in (7). The constraint is
strong enough that it fixes the form of ϕa. Then we can
calculate jaμ using ϕa and we see that it does not satisfy the
gauge field equation of motion, jμa ¼ DνWμνa.
Another interesting question is if electric string solutions

exist in the electroweak model. The difference between the
model in (1) and the bosonic sector of the electroweak
model is that the global Uð1Þ symmetry of (1) is now
gauged with coupling g0 and Φ has nonvanishing Uð1Þ
gauge charge (known as “hypercharge”). Then the Uð1Þ
hypercharge current is

FIG. 3. FðRÞ2 − F0ðRÞ2 vs R for F0 ¼ 0.5. The field strength is
electriclike where FðRÞ2 − F0ðRÞ2 is positive and magneticlike
where FðRÞ2 − F0ðRÞ2 is negative.

FIG. 4. E0 vs R for F0 ¼ 0.5 and κ ¼ 1.5.

2It is appropriate to call the solution an “electric string”
because it contains electric flux, has cylindrical symmetry, the
energy density peaks at the origin and falls off at large distances.
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jYμ ¼ i
g0

2
ðΦ†DμΦ − H:c:Þ ð24Þ

Using (7) and (8) we find,

jYμ ¼ −
g0ϵ2

g2
Ωf2ðjz1j2 − jz2j2Þ∂μt

−
g0ϵ3

2g2
Ω
ω
f3½z1z�2eiðΩþ2ωÞt þ c:c:�∂μz; ð25Þ

which shows that in general there is a hypercharge charge
density as well as a three current. If jYμ is nonvanishing, then
necessarily the hypercharge gauge field, Yμ, is nonvanish-
ing because it satisfies

∂νYμν ¼ jYμ: ð26Þ

Our solution does not include a hypercharge component
and so the question is if we can choose parameters such that
jYμ ¼ 0. The μ ¼ 0 component can be made to vanish by
choosing jz1j2 ¼ jz2j2. The μ ¼ 3 component is time
dependent except if Ωþ 2ω ¼ 0, which corresponds to
ω ¼ −Ω=2 < 0. Since the solution is only valid for ω > 0,
it does not hold in the electroweak model with Yμ ¼ 0. An
alternate possibility is that there exist solutions with non-
vanishing hypercharge gauge field Yμ and then we do not
need to require that jYμ vanish. We have not been able to
construct such solutions.
An important feature of the gauge field in the solution is

that it is stationary. In other words, consider perturbations
of only the gauge field,

W�
μ ¼ A�

μ þ e�iΩtQa
μ; W3

μ ¼ Q3
μ; Φ ¼ Φ0; ð27Þ

where Aa
μ, Φ0 denote the electric string solution. Then the

action for Qa
μ does not contain any terms that are explicitly

time dependent and hence the solution is protected from
decay to Schwinger pair production of gauge field exci-
tations as shown in Ref. [8]. The inclusion of the scalar
field, Φ, does not make any difference to the analysis in
Ref. [8] because the quadratic order interaction between Φ
and Qa

μ is simply g2jΦj2ðQa
μÞ2=4 and jΦj2 is time inde-

pendent. (The linear-order terms vanish because the sol-
ution obeys the classical equations of motion.) Fluctuations
of the scalar field Φ can indeed get excited by the time
dependence of the solution, and this means that Schwinger
pair production of Φ excitations will occur. (This is similar
to the Schwinger pair production of quarks on QCD
strings.) In the limit of large mass parameter m, the
Schwinger pair production of Φ will be suppressed.
A Maxwell electric field for example, with W3

z ¼ −Et
and all other components zero, is a classical solution of the
SU(2) pure gauge theory. However, the Schwinger process
for gluons in this background is non-vanishing at all

momentum scales [4] and the Maxwell electric field will
decay and evolve into another configuration. Since a BW
electric field is stable to the Schwinger process, it is likely
that it is the final state. In other words, if initially we start
with a Maxwell electric field, it may evolve into a BW
electric field.
In Ref. [13] the classical stability of a homogeneous

electric field of the BW type was analyzed. Several unstable
modes were found for the homogeneous configuration. For
the electric string, these unstable modes will be suppressed
due to the jΦj2ðQa

μÞ2 term, since this term provides an
effective mass to the gauge excitations wherever jΦj2 is
nonzero. The solutions withm2 < 0will almost certainly be
unstable since Φ approaches jΦj ¼ 0 in the asymptotic
region and this is at the top of the Mexican hat potential.
We plan to carry out a detailed stability analysis in a future
publication.
The electric string is a solution of the classical equations

of motion and it is interesting to consider what might
become of it in quantum theory, especially in the regime of
strong coupling. Generally, to quantize a classical solution,
quantum fields are split into the classical background and
quantum operators that live on top of the background. For
example, we may write Wa

μ ¼ Wð0Þa
μ þQa

μ, where Wð0Þa
μ

represents the background and Qa
μ are quantum operators.

(Similarly Φ ¼ Φð0Þ þ ψ, where ψ is a quantum operator.)
For weakly-coupled systems, the quantum fluctuations are
simple harmonic oscillators whose eigenfrequencies can be
determined by diagonalizing the fluctuation Hamiltonian.
Provided the background is classically stable, the ground
state of the field theory is simply given by the ground state of
the simple harmonic oscillators. In the regime of strong
coupling, the quantum operators Qa

μ and ψ will be strongly
coupled and the ground state is no longer given by a
collection of simple harmonic oscillators. Furthermore, the
quantum state will backreact on the background and modify
it, just as quantum fluctuations modify the true minimum of
an effective potential. These strongly coupled quantum
effects are difficult to evaluate and lattice methods may be
the only hope to quantify them. It is possible that the
asymptotic structure of the electric string solution will get
modified due to strong coupling at long wavelengths while
the small scale structure at the core survives due to asymp-
totic freedom.
We close with a speculative remark. The solution we

have found may be of interest in the context of pure non-
Abelian gauge theories. In that case, the field Φ must arise
as an effective degree of freedom due to quantum back-
reaction in the classical equations of motion. In this
connection, it has been conjectured that magnetic monop-
oles at strong coupling transform as a scalar degree of
freedom in the fundamental representation of a dual
symmetry group [14]. While there are no classical monop-
ole solutions in pure non-Abelian gauge theory, one can
still write configurations that resemble the gauge fields of
magnetic monopoles,
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Wa
i ¼

ð1 − kðrÞÞ
gr

ϵaijx̂j; ð28Þ

where kðrÞ is a suitable profile function. Can the back-
reaction due to such monopole configurations behave like
our scalar field Φ and provide the necessary sources for
electric strings?
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