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A first nonperturbative and unitary treatment of multichannel systems with anomalous thresholds based
on realistic potentials is presented. We consider the isospin one-half example system, with Dπ, Dη, DsK̄,
D�π, D�η, D�K̄ coupled channels in the JP ¼ 1− partial wave, chosen such that various phenomena that
come with the opening of an anomalous threshold can be illustrated in a stepwise procedure by a suitable
variation of up, down and strange quark masses. We use a set of low-energy constants in the chiral
Lagrangian that were adjusted to a large set of lattice QCD results. The six phase shifts and inelasticity
parameters are presented for various choices of the pion mass. For a pion mass of 150 MeV there are no
anomalous thresholds encountered. The small change from 150 MeV to 145 MeV pion mass causes a
dramatic impact of the anomalous threshold on the phase shifts showing that our results are highly relevant
for the extrapolation of lattice QCD calculations toward the physical pion mass.
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I. INTRODUCTION

A system that is subject to strong interactions is typically
characterized by a set of not-necessarily well-separated
scales, which reflect its dynamical features. This is con-
trasted by the fact that the underlying fundamental theory
of QCD exhibits clear scale separations at least if evaluated
in perturbation theory. While with lattice QCD technology
the nonperturbative sector is more and more accessible,
the unraveling of the various scales is quite a challenging
enterprise. Here effective field theory (EFT) approaches
can test assumptions on the active scales in given sectors of
QCD. Traditionally this is explored in terms of an effective
Lagrangian with a particular choice of hadronic degrees of
freedom supplemented by some power counting rules that
justify in the best case a perturbative evaluation of the
Lagrangian. In that case a possible scale separation is part
of the setup of the effective Lagrangian, i.e. no further
scales are then generated dynamically. Unfortunately, the
best case assumption is rarely met. Typically an EFTworks
best at kinematical points, where physical scattering
processes are not possible. In case of a two-body reaction

this kinematic condition is met if the three Mandelstam
variables s, t and u are set to values below their respective
thresholds. This is unfortunate since experimental data are
collected typically outside the Mandelstam triangle, where
the amplitude is characterized by possible resonance states.
Therefore it is highly desirable to extend the scope of

EFT beyond its perturbative domain with the possibility to
generate additional scales that are not manifest in the
effective Lagrangian. From a mathematical point of view
the solution to this problem is almost trivial, in the sense
that a fundamental theorem of analytic functions guarantees
that if we know a reaction amplitude within the
Mandelstam triangle, there exists a unique analytic con-
tinuation into the entire complex plane. The caveat is, that
we would need knowledge on the amplitude at infinite
precision. Clearly, such a request is impossible to be
delivered by an EFT. Or turned around, the analytic
continuation from inside the Mandelstam triangle to out-
side points turns more and more uncertain with increasing
distance from the center of the triangle. It would appear that
an EFT is unable to make any statement on the resonance
spectrum of QCD. However, such a conclusion is incorrect,
since there is a powerful way out of this misery. Consider
only such analytic continuations that are exactly consistent
with the coupled-channel unitarity conditions. Within such
a setup the desired analytic continuation is stabilized and
the properties of resonances can be studied systematically
in terms of the generalized potential approach (GPA) as
introduced in [1–4].

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, L031505 (2023)
Letter

2470-0010=2023=107(3)=L031505(6) L031505-1 Published by the American Physical Society

https://orcid.org/0000-0003-3292-3435
https://orcid.org/0000-0002-5813-8235
https://orcid.org/0000-0003-0940-3175
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.L031505&domain=pdf&date_stamp=2023-02-27
https://doi.org/10.1103/PhysRevD.107.L031505
https://doi.org/10.1103/PhysRevD.107.L031505
https://doi.org/10.1103/PhysRevD.107.L031505
https://doi.org/10.1103/PhysRevD.107.L031505
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In this letter we present a realistic example system at the
hand of which some novel features of such an extended
EFT can be illustrated. Our basis is the chiral Lagrangian
for the open-charm sector of QCD with three light flavors,
i.e. with up, down and strange quarks, and one heavy
flavor, i.e. the charm quark. There are two well-known
approximate symmetries that characterize the EFT. The
chiral SU(3) and the heavy-quark spin symmetry [5]. While
the chiral symmetry explains the pseudo-Goldstone nature
of the pion, kaon and eta, the spin symmetry does the
approximate degeneracy of the JP ¼ 0− and JP ¼ 1−

charmed meson masses. In the pioneering work [6] it
was demonstrated that with the leading order two-body
interaction terms of such an EFT, if extended from the
center of the Mandelstam triangle by a s- or u-channel
unitarization into the resonance region, a striking set of
open-charm resonance states with JP ¼ 0þ and JP ¼ 1þ
quantum numbers is dynamically generated with their
associated set of additional scales. In the flavor limit with
degenerate up, down and strange quark masses, a strongly
bound flavor triplet and a less bound flavor sextet were
predicted. While by now there is a rich literature on such
s-wave resonances (see e.g. [7–13]), it is much less studied
what happens if the two-body states sit in a relative p-wave.
This is so since the assumption that the coupled-channel
interaction is dominated by short range forces starts to
break down in higher partial-wave contributions. Therefore
unitarization methods that are able to cope with short- and
long-range interactions simultaneously are required as is
possible in the GPA [14]. In particular further work is
needed in the case that anomalous thresholds arise [15–21].
P-wave studies probe the subleading order LEC of the

chiral Lagrangian that need to be determined by some
dataset. Only recently the authors considered the possible
dynamic generation of p-wave states with JP ¼ 1− as
implied by a set of LEC extracted from lattice QCD data
for the first time. Such studies are significant as they
depend on a set of LEC that can be determined from lattice
QCD data at unphysically large quark masses [22–29].
While such a computation can be executed along the GPA
introduced in [1–4] for large quark masses, as the up and
down quark masses are reduced toward the physical point
conceptional challenges that require an extension of the
conventional GPA along the line worked out recently in
[19,20] arise. Our p-wave target system requests 6 chan-
nels, Dπ, Dη, DsK̄ and D�π, D�η, D�

sK̄, where depending
on the choice of quark masses various reaction channels
need particular attention. In our study we dial the quark
masses such that the kaon masses are kept on their physical
value always. A particular choice for the pion mass can
then be translated back to specific values of the quarks mass
mu ¼ md and ms. Given such a framework the reactions
D�π ↔ D�η or D�π → D�π develop anomalous left-hand
cuts from the u-channel exchange of the D meson at pion
masses smaller than about 150MeV. In our numerical study

we implemented the scheme [19,20], for which we show
explicit results for the first time.

II. COUPLED-CHANNEL REACTION
AMPLITUDES

A coupled-channel partial-wave reaction amplitude,
TJ
abðsÞ, with total angular momentum J is characterized

by left-hand and right-hand cuts, where the right-hand cuts
are implied by the s-channel coupled-channel unitarity
condition. The generalized potential, UJ

abðsÞ, is determined
by the left-hand cut contributions only. The separation is
implied by the nonlinear integral equation

TJ
abðsÞ ¼UJ

abðsÞþ
X

c;d

Z
∞

μ2thr

ds̄
π

s−μ2M
s̄−μ2M

TJ
acðs̄ÞρJcdðs̄ÞTJ�

dbðs̄Þ
s̄− s− iϵ

;

ð1Þ

with the phase-space matrix, ρJabðsÞ, depending on the
coupled-channel indices a and b. Turned around, for a
given UJ

abðsÞ an amplitude TJ
abðsÞ that solves the nonlinear

coupled-channel integral equation (1) satisfies the coupled-
channel unitarity condition by construction. The matching
scale

μ2M ≡m2
1 þM2

1 þm1M1; ð2Þ

in (1) specifies where we expect the conventional EFT
approach to coincide with the nonperturbative coupled-
channel approach followed here. It should be slightly below
the smallest two-body threshold atm1 þM1 accessible in a
sector with given isospin and strangeness. Given our
approximation scheme it cannot be moved much further
left, as the unitarity effects from the crossed u-channel will
turn more and more important.
From the form of (1) it follows that the existence of a

solution requires the generalized potential to be bounded
asymptotically, modulo some possible logarithmic terms.
Therefore, a direct evaluation of UJ

abðsÞ in the EFT is not
achievable. Any finite order truncation leads to an
unbounded potential, characterized by an asymptotic
growth in some powers of s. However, we may split the
left-hand cut contributions into “close-by” and “far-distant”
contributions

UðsÞ ¼ Uclose−byðsÞ þ Ufar−distantðsÞ;
with Ufar−distantðsÞ ¼

X

k

ckξkðsÞ; ð3Þ

where we may expand the far-distant term by means of a
conformal expansion. While the close-by contributions are
obtainable by the EFT and are asymptotically bounded by
construction, the far-distant terms are bounded also if a
properly constructed conformal map is used [1,3]. They
may be reconstructed unambiguously in terms of some
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derivatives at a chosen point, where the results of the EFT
approach are reliable. For sufficiently large quark masses
such a program is well-defined and documented in our
recent work [14]. From a global fit to lattice QCD data a set
of LEC was determined, which we rely on in this work.
Matters turn more complicated in the presence of

anomalous thresholds [19,20]. In the nonlinear integral
equation (1) the integration contours have to be modified.
While the normal threshold points are untouched the
contour lines have to be mended as illustrated in Fig. 1.
For a normal system such a deformation of the contour lines
does not change the reaction amplitudes evaluated above
the real axis. As we lower the pion mass anomalous left-
hand cut lines may develop, drawn here in dashed red.
Now, a left-hand cut line may circle around a threshold
point. Only with the mended solid blue lines the left-hand
cut lines in dashed-red can be chosen not to cross any of the
unitarity cut lines in solid blue. This implies that the use of
the mended cut lines defines an analytic continuation from
the normal case to the anomalous case as is requested by
our change of quark masses.
While it is almost trivial to make the point, the challenge

is to translate this in a stable numerical method as to
actually derive the reaction amplitudes in such cases. The
solution of the integral equation (1) proceeds in few steps
(for technical details see Ref. [20]) of which the first is the
assurance of unitarity requirements by enforcing the
Schwarz reflection principle, followed by formulation of
a nonlinear integral equation based on (1) on complex
contours. A major step is the careful transition to real
contours facilitating the required integrations through
introduction of a number of auxiliary functions. Finally,
in such a way the obtained linear integral equation is solved
numerically by discretization based on suitably adjusted
Gauss integration and the solution is used to compute the
partial-wave scattering amplitude. As we have shown in
our previous work, [19] the topology of anomalous cuts in

partial-wave amplitudes is quite cumbersome. Specific
mass relations have been worked out that depend on
quite many conditions and need to be applied to a given
multichannel system.
A discussion of the subtle consequences of the presence

of an anomalous threshold is the main focus of the current
work. We will not attempt to provide an estimate of
systematic uncertainties, as our goal is the documentation
of our novel method how to tackle coupled-channel
systems in the presence of anomalous thresholds. Rather
than repeating the formal developments already estab-
lished in [19,20] we present here results from our numeri-
cal implementation.

III. COUPLED-CHANNEL PHASE SHIFTS

Given the results of our previous work [14] we can
choose the pion and kaon masses such as to simplify the
discussion of the anomalous threshold phenomena in the
p-wave system with the Dπ, Dη, DsK̄ and D�π, D�η, D�

sK̄
isospin one-half channels. Insisting on the physical value of
the kaon mass it suffices to consider the pion mass from its
physical value up to masses about 150 MeV. For the pion
masses larger than 150 MeV the system is void of
anomalous thresholds. For this case we show in Fig. 2
all phase shifts and inelasticity parameters as implied by
our global set of LEC from [14]. The reaction amplitudes
show a real pole on the 1st Riemann sheet at the D� mass.
By construction that pole is below the Dπ threshold, and
therefore not seen in any of the phase shifts.
As a first novel and striking result we compare the

normal system at pion mass 150 MeV with the anomalous
system at pion mass of 145 MeV in Fig. 3. Despite the
minor change in the pion mass, for the phase shift and
inelasticity parameters in the Dπ and D�π channels, the
opening of the anomalous threshold in the D�π ↔ D�η
channel from the u-channel exchange of the D meson has a
large impact on the form of the reaction amplitudes. We do
not show here phase shifts and inelasticity parameters in
channels where such a small change in the pion mass is
of minor importance. It was explicitly checked that our
numerical results are compatible with the coupled-channel
unitarity condition for both cases, in particular for the case
encountering the anomalous threshold. To the best knowl-
edge of the authors such an effect has not been documented
in the literature before. We emphasize that for both
choices of the pion mass the D� meson is stable against
hadronic decays, and therefore the D�π is a clean two-
body state.
In the final Fig. 4 we show our results for the physical

pion mass. In this case the left-hand cut in the D�π → D�π
channel from the u-channel exchange of the D meson is
characterized by branch points above the D�π threshold.
We illustrate the role of the anomalous cut in the D�π ↔
D�η channel. The solid blue lines show our result in the
presence of such a cut, the dashed red lines in the absence

FIG. 1. The deformed left- and right-hand cut lines for the
reaction amplitudes in (1). The crosses show the location of the
normal threshold points. While the anomalous left-hand cut lines
are shown with dashed red lines, the deformed right-hand cut
lines are represented by blue solid lines. The filled and open red
circles indicate the location of the anomalous threshold points
and the return points respectively as explained in [20].
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of it. Switching this contribution off causes a dramatic
change in the Dπ and D�π phase shifts. We note that our
final result for both phase shifts is quite close to the results

at mπ ¼ 145 MeV, where the left-hand cut is normal in the
D�π → D�π channel with branch points below the D�π
threshold.

FIG. 3. P-wave phase shifts with I ¼ 1=2 and JP ¼ 1− quantum numbers. The left-hand panels show the phase shifts, the right-hand
panels the inelasticity parameters for the Dπ and D�π channels. Results are shown for two choices of the pion masses, mπ ¼ 145 MeV
and mπ ¼ 150 MeV.

FIG. 2. P-wave phase shifts with I ¼ 1=2 and JP ¼ 1− quantum numbers. Results are shown for the pion massmπ ¼ 150 MeV, where
no anomalous threshold is encountered. Phase shifts are shown in blue solid lines, inelasticities in dashed red lines.
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IV. SUMMARY

In this letter we illustrated the impact of an anomalous
threshold in a specific coupled-channel system. Such
systems occur frequently in hadron physics particularly
in lattice QCD studies, where the light quark masses can
be changed off their physical values. Sustainability and
economic efficiency suggest to start such computations at
unphysically large quark masses and then chirally extrapo-
late down the results to the physical point. We have shown
that such extrapolations are possible, however, they require
more sophisticated technology, in particular, if the system
goes through anomalous regions. Small changes in the pion

mass may cause dramatic effects in the phase shift, and
even the dynamic generation of p-wave resonances is
possible and natural in this case.
Our results show that it is imperative to have a unitarity

respecting treatment of anomalous thresholds in nonper-
turbative approaches to p- and higher partial waves in
multichannel scattering.
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