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We provide a novel approach to calculate the gravitational form factor of pion under the ladder
approximation of the Bethe-Salpeter equation, with contact interactions. Central to this approach is a
symmetry-preserving treatment of the dressed ππ amplitude, which shows explicitly the contributions from
intrinsic quarks and bound states, the latter being necessary to produce the D-term of pion in the soft-pion
limit. The approach we provide in this work can be applied to many processes of physical significance.
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I. INTRODUCTION

The coupling of gravitons to hadrons via the energy-
momentum tensor (EMT) provides the gravitational form
factor (GFF) of the hadron [1,2], a form factor that has been
of interest because fundamental physical quantities of
hadrons such as mass and spin, can be extracted from it.
In addition to mass and spin, another fundamental physical
quantity can be extracted from the GFF, the so called
D-term [3], which is related to the variation of the spatial
components of the spacetime metric. Although all hadrons
have a D-term, in most cases there is no fundamental
principle governing their values.
The value of theD-term is unambiguously constrained in

some special cases. For example, the Nambu-Goldstone
boson for chiral symmetry breaking in quantum chromo-
dynamics (QCD), pion, theD-term of this Goldstone boson
is very special in the soft-pion limit [2,4], and has the same
value as that of the free spin-0 field [1,5]. Additionally, it
has been pointed out that the slope of D-term correlates
with chiral symmetry breaking [6], and so the study of the
D-term of pion may provide us with an opportunity to
investigate the mechanism of dynamical chiral symmetry
breaking in QCD, furthermore, to study the mechanism of
emergent hadron mass.
Inspired by this, the GFF of pion has now been studied

both experimentally and theoretically. In experiments, the
GFF of pion can be extracted from the pion pair production

process γ⋆γ → ππ [7]. In theory, there are relevant calcu-
lations for the pion GFF using phenomenological models,
such as the Nambu–Jona-Lasinio (NJL) [8] and the chiral
quark model [9,10]. Meanwhile, the Dyson-Schwinger
equations (DSEs) approach [11] provides a continuum
field theory approach to understanding hadrons, particu-
larly for pion subject to chiral symmetry and its breaking
constraints, where the relative uncertainties introduced by
modeling and truncation can be well controlled in studies
using this approach [12,13]. Given this advantage, the
electromagnetic form factor [14], the distribution ampli-
tude/function [15,16] and the generalized parton distribu-
tion (GPD) [17] of pion have been calculated in the
framework of this approach. In view of this, the study of
the GFF seems to be very straightforward and in high
demand. Therefore, in the following we will provide a
general method to the calculation of the pion GFF using the
DSEs approach. For simplicity, we will perform a sym-
metry-preserving regularized contact model [18] to illus-
trate the main ideas.
The paper is organized as follows. Section II introduces

the general equation for the quark-graviton vertex, and
relates the GFF to the ππ amplitude. Section III discusses
the solution for the ππ amplitude in the contact model and
shows the contributions of scalar and vector propagators.
Section IV provides numerical results, and the final section
gives a summary.

II. GRAVITATIONAL FORM FACTOR

The gravitational form factors of pion can be extracted
from its energy-momentum tensor (EMT), which can be
expressed as follows:1
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1We employ an Euclidean metric with fγμ; γνg ¼ 2δμν; γ
†
μ¼γμ;

γ5 ¼ γ4γ1γ2γ3; and a · b ¼ P
4
i aibi. The isospin symmetry is

considered in this work.
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Mπ
μνðQ2Þ ¼ 2PμPνAðQ2Þ þ 1

2
ðQμQν −Q2δμνÞDðQ2Þ

þ 2m2
πδμνc̄ðQ2Þ; ð1Þ

where Q is the momentum transfer between the initial and
final states, P is the average momentum, andmπ is the pion
mass. Here we define AðQ2Þ ¼ P

a A
aðQ2Þ, where a

denotes the different kinds of partons, and similarly for
DðQ2Þ and c̄ðQ2Þ. For hadrons with different spins, trans-
lational invariance requires the form factor Að0Þ ¼ 1 and
EMT conservation implies c̄ðQ2Þ ¼ 0. A spin-0 boson
possesses an intrinsic D-term, defined as D≡Dð0Þ.
Specially, the Goldstone boson in the soft-pion limit, which
has D ¼ −1, see Refs. [2,4].
At the typical hadronic scale, the pion structure is

dominated by dressed quarks with gluons hidden in these
dressed quasiparticles [19]. We will stick to such a physical
picture and consider only the quark part of the pion GFF. In
the impulse approximation, the quark part EMT is
expressed by a triangle diagram, as follows:

Mπ
μνðQ2Þ ¼ 2Nctr

Z
q
ΓG
μνðqþ k; qþ pÞSðqþ pÞ

× iΓπðpÞSðqÞiΓπð−kÞSðqþ kÞ; ð2Þ

where p ¼ P −Q=2, k ¼ PþQ=2 is the total momentum
of the incoming and outgoing pion, respectively, the factor 2
comes from the isospin symmetry of the u, d quarks,Nc ¼ 3
is the color degree of freedom and the trace is over Dirac
space, and

R
q represents a four-dimensional integral. Two

building blocks in Eq. (2) that have been intensively studied
are the dressed quark propagator SðqÞ and the pion Bethe-
Salpeter amplitude (BSA) ΓπðPÞ, and here we neglect the
relative momentum of the pion BSA in the notation for
simplicity. They follow the corresponding quark gap equa-
tion and the Bethe-Salpeter equation (BSE), which are
consistently truncated under the constraints of the Ward-
Takahashi identities (WTI) [12]. However, the third building
block, the quark-graviton vertex (QGV) ΓG

μνðkþ; k−Þ, is a
brand new object, satisfying the following corresponding
gravitational Bethe-Salpeter equation (GBSE),

ΓG
μνðkþ; k−Þ ¼ γGμνðkþ; k−Þ

−
4

3

Z
q
Gαβðk − qÞγαχGμνðqþ; q−Þγβ; ð3Þ

where kþ ¼ kþ ηQ and k− ¼ k − ð1 − ηÞQ is the momen-
tum of the outgoing and incoming quarks, respectively, with
an arbitrarymomentumpartition η. The ladder approximation
has been applied in Eq. (3). Gαβðk − qÞ is the effective gluon
propagator, χGμνðqþ; q−Þ ¼ SðqþÞΓG

μνðqþ; q−ÞSðq−Þ is the
QGV Bethe-Salpeter wave function. γGμνðkþ; k−Þ is the bare
QGVof the form

γGμνðkþ; k−Þ ¼ iγμ
kþν þ k−ν

2
− δμν

S−10 ðkþÞ þ S−10 ðk−Þ
2

; ð4Þ

where S−10 ðkÞ ¼ i=kþm is the inverse of the bare quark
propagator, with m being the current quark mass.
The traditional way to compute the triangle diagram is to

first solve the fully dressed QGV in Eq. (3) and then insert it
into Eq. (2). However, due to the complexity of the dressed
QGV, we decide not to compute the dressed QGV directly.
Instead, we propose a novel method to compute the GFF in
the impulse approximation, based on the connection
between the ladder approximation and the impulse approxi-
mation in Eq. (2). The quark part EMT can be expressed as

Mπ
μνðQ2Þ ¼ 2Nctr

Z
q
γGμνðqþ k; qþ pÞSðqþ pÞ

× i2Fðq; p;−kÞSðqþ kÞ; ð5Þ
where Fðk; P1; P2Þ is the dressed amputated ππ amplitude
we introduce, which satisfies its corresponding BSE in the
ladder approximation,

Fðk; P1; P2Þ ¼ F0ðk; P1; P2Þ þ ΣFðk; P1; P2Þ; ð6Þ
with the bare ππ amplitude

F0ðk; P1; P2Þ ¼ ΓπðP1ÞSðkÞΓπðP2Þ; ð7Þ
and the self-energy term

ΣFðk; P1; P2Þ ¼ −
4

3

Z
q
Gαβðk − qÞγαSðqþ P1Þ

× Fðq; P1; P2ÞSðq − P2Þγβ: ð8Þ
The graphical presentation of Eq. (6) is shown in Fig. 1.
It follows that the triangle diagram can be calculated in

two ways, either by solving for the fully dressed QGVor by
solving for the fully dressed ππ amplitude. The equivalence
of these two ways of describing the triangle diagram was
formally presented in Ref. [20]. The ππ amplitude we
introduced, has been calculated within rainbow-ladder
truncation of DSEs to sketch the π − π scattering proc-
ess [21]. It is worth noting that, for π − π scattering
processes, the calculation of ππ amplitude is necessary
to ensure symmetry. By contrast, for the triangle diagram in
Eq. (2) under the impulse approximation, since it is self-
consistent with the ladder approximation, if the fully
dressed QGV in Eq. (3) is known, there is in principle

FIG. 1. BSE for the dressed ππ amplitude in graphical form.
Solid and coiled lines represent quarks and gluon, respectively.
Double-solid lines are pions, blobs are dressed ππ amplitudes and
filled circles are pion BSAs.
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no need to perform ππ amplitude calculations. Yet, as we
mentioned earlier, a fully dressed QGV is very complex.
Instead, as one will see in the next section, the dressed ππ
amplitude can be formally solved in the contact model, and
one will read a lot of interesting physics directly from its
solution. The GFF can then be systematically obtained, in
the absence of any information about the dressed QGV.

III. DRESSED ππ AMPLITUDE IN THE
CONTACT MODEL

In the contact model [22,23], the effective gluon propa-
gator in Eq. (3) is

Gαβðk − qÞ ¼ δαβ
m2

g
; ð9Þ

where mg is a gluon mass scale. Consequently, the self-
energy term in Eq. (8) becomes

ΣFðP1; P2Þ ¼ −Δg

Z
q
γαSðq1ÞFðq; P1; P2ÞSðq2Þγα; ð10Þ

where we define for convenience Δg ¼ 4
3m2

g
, q1 ¼ qþ P1,

and q2 ¼ q − P2. Note that ΣFðP1; P2Þ is now independent
of the quark momentum k, which is its feature in the
contact-interaction model.
The self-energy term ΣFðP1; P2Þ can be generally

written as

ΣFðP1; P2Þ ¼
X4
i¼1

tiTi; ð11Þ

where Ti is a set of orthogonal basis

Ti ¼
�
1;
−i
M
=K;

−i
M
=Z;

i
M2

σμνZμKν

�
; ð12Þ

with K ¼ ðP1 − P2Þ=2, Z ¼ −ðP1 þ P2Þ, and M is the
quarkmass function, which ismomentum independent in the
contact model. The Kinematic relations entail K · Z ¼ 0,
K2 ¼ −m2

π − Z2=4, thus the dressing scalar functions ti are
functions of Z2, i.e., ti ¼ tiðZ2Þ. Consequently, the BSE of
the dressed ππ amplitude is equivalent to the equation
satisfied by the self-energy, i.e.,

ΣFðP1; P2Þ ¼ ΣF0ðP1; P2Þ

− Δg

Z
q
γαSðq1ÞΣFðP1; P2ÞSðq2Þγα; ð13Þ

where the inhomogeneous term is

ΣF0ðP1;P2Þ¼−Δg

Z
q
γαSðq1ÞF0ðq;P1;P2ÞSðq2Þγα; ð14Þ

which can obviously also be decomposed in terms of the
orthogonal basis in Eq. (12), i.e., ΣF0ðP1; P2Þ ¼

P
4
i¼1 biTi.

Considering Eq. (13), the charge conjugate symmetry
requires the structure T3 to vanish. Moreover, the vector-
vector contact interaction can not give rise to the tensorlike
structure T4. Given this, only two orthogonal structures T1;2

remain. Projecting Eq. (13) onto T1;2, one can obtain the
corresponding dressing scalar functions t1;2. By doing so, it
is found that Eq. (13) is decoupled into two equations, and
their solutions are simple as

t1ðZ2Þ ¼ b1ðZ2Þ
1þ ΔgfsðZ2Þ ;

t2ðZ2Þ ¼ b2ðZ2Þ
1þ ΔgfvðZ2Þ ; ð15Þ

where the defined functions in the denominators are

fsðZ2Þ ¼ tr
Z
q
Sðq1ÞSðq2Þ;

fvðZ2Þ ¼ KμKν

2K2
tr
Z
q
iγTμSðq1ÞiγTνSðq2Þ; ð16Þ

with γTμ ¼ γμ −
ZμZ
Z2 . fs and fv, as can be read directly from

their expressions, correspond to the polarization of scalar
and vector mesons, respectively. The defined functions in
the numerators are

b1ðZ2Þ ¼ −
1

4
Δgtr

Z
q
T1γαSðq1ÞF0ðq; P1; P2ÞSðq2Þγα;

b2ðZ2Þ ¼ M2

4K2
Δgtr

Z
q
T2γαSðq1ÞF0ðq; P1; P2ÞSðq2Þγα:

ð17Þ
Recalling that the definition of the pion scalar form factor
Fs and the electromagnetic form factor Fem in the impulse
approximation are

iFsðZ2Þ ¼ Nctr
Z
q
iΓIðZÞSðq1Þi2F0ðq; P1; P2ÞSðq2Þ;

2KμFemðZ2Þ ¼ Nctr
Z
q
iΓμðZÞSðq1Þi2F0ðq; P1; P2ÞSðq2Þ;

ð18Þ
with ΓIðZÞ being the dressed quark-scalar vertex and ΓμðZÞ
being the dressed quark-photon vertex, one immediately
realizes that b1 and b2 are connected to the scalar and
electromagnetic form factors respectively.
Substituting the results for t1;2 into the general expres-

sion for the self-energy term, we obtain the solution for the
self-energy in Eq. (13) as

NcΣFðP1;P2Þ¼Fb
s ðZ2ÞΔsðZ2Þþ i=KFb

emðZ2ÞΔvðZ2Þ; ð19Þ

where Fb
s ðZ2Þ and Fb

emðZ2Þ are computed by replacing
the dressed vertices with the bare vertices in Eq. (18), i.e.,
ΓI → 1 and Γμ → γμ, while Δs=v are given by
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Δs=vðZ2Þ ¼ 1

Δ−1
g þ fs=vðZ2Þ : ð20Þ

The poles of the scalar and vector mesons are shown in the
expressions for Δs and Δv. These two expressions can also
be considered as part of, up to the Lorentz structure, of the
scalar and vector meson propagators. After obtaining the
self-energy solution, the solution for the dressed ππ
amplitude can eventually be written as

Fðk; P1; P2Þ ¼ F0ðk; P1; P2Þ þ ΣFðP1; P2Þ: ð21Þ
The explicit form of ΣFðP1; P2Þ in Eq. (19) shows rich

physics, including not only the scalar and vector poles, but
also the scalar and vector form factors. Consequently, the
same is true of the ππ amplitude in Eq. (21). As a result, the
bare vertex can then be used to extract the GFF from the ππ
amplitude. Additionally, it is worth being pointed out that
such direct connections between ΣFðP1; P2Þ and the form
factors in Eq. (19) are obtained due to the momentum-
independent gluon propagator in the contact model.
Nonetheless, even with the momentum-dependent gluon
propagator, there must be implicit connections between the
form factor and the ππ amplitude.

IV. GFF RESULTS

Substituting the dressed ππ amplitude in Eq. (21) into the
quark part EMT in Eq. (5), the EMT of pion can be
expressed as two parts,

Mπ
μνðQ2Þ ¼ Mπ

1μνðQ2Þ þMπ
2μνðQ2Þ; ð22Þ

Here, Mπ
1μν corresponds to the so-called impulse approxi-

mation with insertion of the bare QGV, γGμν, while Mπ
2μν

provides the contribution from the scalar bound state, and
graphical representations of both are shown in Fig. 2. It
should be noted that the vector bound states do not
contribute to the pion GFF. More notably, the appearance
ofMπ

1μν andM
π
2μν explicitly shows contributions from the

intrinsic quarks and bound states.
In order to calculate the ππ amplitude, and immediately

afterwards the GFF, the dressed quark propagator and the
pion BSA are required. The general structures of the quark
propagator and the pion BSA in the contact model are as
follows:

S−1ðkÞ ¼ i=kþM;

ΓπðPÞ ¼ iγ5Eπ þ
γ5P
M

Fπ: ð23Þ
The procedures for calculating these two quantities are
described in Ref. [23]. In the course of the calculations, we
use the regularization approach and parameters developed
in Ref. [18]. The results of all the required values are listed
in the Table I. By substituting these numerical results into
the expression of the quark part ETM, we obtain directly

the numerical results of the form factors, whose Q2

dependencies are shown in Fig. 3.
Remarkably, we find that the form factor AðQ2Þ has only

the contribution from Mπ
1μν, which does not have any

singularities. In contrast, the form factor DðQ2Þ and the
electromagnetic form factor FemðQ2Þ contain the scalar
meson and vector meson poles in the timelike region,
respectively, with partial contributions from Mπ

2μν.
In the chiral limit, we obtain the D-term where the

contributions of Mπ
1μν and Mπ

2μν are

D1ð0Þ¼−
Eπ−6Fπ

3ðEπ−2FπÞ
; D2ð0Þ¼−

2Eπ

3ðEπ−2FπÞ
; ð24Þ

and the sum of the two gives the total contribution of the
pion D-term as

D ¼ D1ð0Þ þD2ð0Þ ¼ −1: ð25Þ
This is exactly the result predicted by the soft-pion theorem.
We also note that in the limit of Fπ ¼ 0, our results are
consistent with those in the Ref. [8] applying the NJL
method. In addition to the impulse approximation, the
second term Mπ

2μν is necessary to obtain the correct D
term. We would like to highlight that this result is a
consequence of the chiral symmetry-preserving truncation
of the model. In Mπ

2μν, an effective scalar propagator is
introduced which can be rewritten as

ΔsðQ2Þ¼ 1

Δ−1
g þfsðQ2Þ¼Δg

X
n

ð−ΔgÞn½fsðQ2Þ�n: ð26Þ

From the expansion form of this expressionwe canventure a
guess that the second termMπ

2μν is likely to be similar to the
contact Feynman diagram introduced in Ref. [24].

FIG. 2. Left: Mπ
1μν, the impulse approximation with the bare

QGV. Right: Mπ
2μν, showing the scalar meson pole. Solid,

double-solid, double-wavy and dashed lines represent quark,
pion, graviton, and the effective scalar propagator Δs, respec-
tively. Filled, crossed and empty circles represent pion BSA, bare
QGV γGμν, and bare quark-scalar vertex, respectively.

TABLE I. Numerical results for the gap equation and pion BSE,
with masses are given in GeV and BSAs as dimensionless.

M mπ Eπ=
ffiffiffi
2

p
Fπ=

ffiffiffi
2

p

0.368 0.140 3.595 0.475
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After observing the value of the form factor at Q2 ¼ 0,
we can also observe the trend of the form factor as Q2

changes and, more precisely, how fast it falls. The slope of
the electromagnetic form factor is found to be greater than
that of −DðQ2Þ, contrary to the previous prediction in
Ref. [17]. This is mainly because the pion scalar form factor
is hard and not well described in the contact model, as
explained in Ref. [25]. Therefore, complementary to the
solved ΔsðQ2Þ, we also use a monopole ansatz

Δpole
s ðQ2Þ ¼ Δsð0Þ

1þQ2=m2
σ
; ð27Þ

with mσ being the σ meson mass extracted from the scalar
meson pole. In this way, the ansatz manifests a scalar
meson-dominated ansatz. The form factor computed using
this ansatz, labeled DpoleðQ2Þ is depicted in Fig. 3 with a
red dashed line. For a better illustration, we also calculate
the radii of the corresponding form factors and present the
results in Table II. The radius we obtain for AðQ2Þ is found
to be around half the electromagnetic radius, which is
consistent with the calculation in the large Nc limit [4]. The
radius of DðQ2Þ without the monopole ansatz lies between
the radii of AðQ2Þ and FemðQ2Þ. The monopole ansatz
increases the radius ofDðQ2Þ to a large extent, and the ratio
of the radius of DpoleðQ2Þ obtained using the monopole
ansatz, to the electromagnetic radius, is 1.2, close to the
previous prediction in Ref. [17].
Another issue in our calculations is that c̄ does not

vanish. Contracting Fig. 2 by Qμ, and using charge
conjugation and translational invariance, one obtains

QμMπ
μνðQ2Þ ¼ 2QνðM −mÞFsðQ2Þ

− Nctr
Z
q
i2ΓπðpÞSðqÞΓπð−kÞ

×
Qν

2
½Sðqþ kÞ þ Sðqþ pÞ�; ð28Þ

whereFsðQ2Þ, as defined in Eq. (18), is the pion scalar form
factor computed with a fully dressed quark-scalar vertex. It
is obvious from this equation that c̄ ≠ 0. This issue has been
overlooked in Ref. [9,10]. In particular, note that the first
term on the right-hand side of Eq. (28) is proportional to
M −m, which vanishes if the current quark mass m is
replaced by the dressed quark mass M. And, since the bare
QGV γGμν is the only element that explicitly contains m, this
substitution is equivalent to modifying the bare QGV to

γ̃Gμν ¼ γGμν þ ðm −MÞδμν: ð29Þ
Indeed, Ref. [8], which uses the NJL method, shows that
using a five-point vertex, one can derive a driving term in the
GBSE, precisely ðm −MÞδμν in Eq. (29). If in Eq. (3) using
γ̃Gμν instead of γGμν as the inhomogeneous term, one finds that
under the constraints of such an equation, ΓG

μν satisfies
exactly the gravitational WTI in the framework of the
contact interaction model [26]. However, the presence of
the second term on the right-hand side of Eq. (28) implies
that the impulse approximation is not sufficient to guarantee
conservation of energy-momentum even if GBSE matches
GWTI. Themissing terms, complements to Fig. 2 to recover
c̄ ¼ 0, can be understood in terms of the fact that thegraviton
can interactwith, quarks exchanged between any two gluons
in the quark-antiquark scattering kernel. A similar situation
arises when using the ladder approximation to calculate the
pion distribution function, and Ref. [27] proposed an addi-
tional diagram as a compensation to ensure momentum
conservation. How to remedy this shortcoming of the ladder
truncation method is beyond the scope of this article.

V. SUMMARY

In this paper, we provide a symmetry-preserving way to
calculate the pion gravitational form factor under the ladder
approximation of the BSEs approach. Instead of solving for
the dressed quark-graviton vertex, as is commonly used in
other form factor calculations with the impulse approxi-
mation, we have turned to expressing the form factor by
considering the dressed ππ amplitude and coupling the
dressed ππ amplitude to the corresponding bare vertex. In
practical calculations, a contact model is used and the ππ
amplitude is found to contain additional scalar and vector
bound state contributions. Using this symmetry-preserving
approach, the result of the calculation, Að0Þ ¼ 1 reflects
that the quark carries all of the pion momentum, as
expected on the typical hadron scale. Moreover, the
D-term D ¼ −1 in the chiral limit reproduces exactly what
would be expected in the soft-pion limit. Unfortunately,

FIG. 3. Gravitational form factors AðQ2Þ, DðQ2Þ and the
electromagnetic form factor FemðQ2Þ. DpoleðQ2Þ is computed
with the scalar-meson dominated ansatz Eq. (27).

TABLE II. Radii of the corresponding form factors, defined as
hr2#i ¼ −6∂ lnF#ðQ2Þ=∂Q2jQ2¼0, where # denotes different types
of radius and corresponding form factor. The unit is fm.

hr2Ai1=2 hr2Di1=2 hr2Dpole
i1=2 hr2emi1=2

0.24 0.39 0.54 0.45
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the ladder approximation does not guarantee energy-
momentum conservation, which can be seen as a defect
of the ladder approximation in its own right, independent of
the gluon-interaction model.
Although we have chosen a simple contact model to

illustrate the computational procedure of the GFF, the
present approach can be extended to realistic cases using
momentum-dependent interactions. Study using realistic
gluon interactions is ongoing and its development is
essential as it can reveal more features of the GFF, such
as the order of the form factor radii and its large Q2

behavior, thus further rescuing some of the shortcomings
of using the contact model. We also note that the study
of the contribution of the pion loop to the GFF is also
urgent and should be addressed in the future. Finally,
we would like to highlight that, in addition to its
application to the GFF calculations here, the ππ amplitude

is a desired ingredient for the calculation of the m → n
(with mþ n ¼ 4) process, such as the pion-pair produc-
tion process γ⋆γ → ππ. Furthermore, the ππ amplitude can
be extended to analogous amplitudes consisting of other
mesons. These studies will be a useful addition to the
current work.
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