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We determine the pressure of a cold and dense electron gas to a nearly complete next-to-next-to-next-to-
leading order (N3LO) in the fine-structure constant αe, utilizing a new result for the two-loop photon self-
energy from a companion paper. Our result contains all infrared-sensitive contributions to the pressure at
this order, including the coefficient of the Oðα3e ln αeÞ term, and leaves only a single coefficient associated
with the contributions of unresummed hard momenta undetermined. Moreover, we explicitly demonstrate
the complete cancellation of infrared divergences according to the effective-field-theory paradigm by
determining part of the hard contributions at this order. Our calculation provides the first improvement to a
45-year-old milestone result and demonstrates the feasibility of the corresponding N3LO calculation for
cold and dense quark matter.
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I. INTRODUCTION

The need to quantitatively understand the thermody-
namic properties of degenerate fermionic matter is ubiqui-
tous in theoretical physics. Examples of physical systems
of interest range from condensed matter physics [1,2] and
supersymmetric theories [3,4] to compact astrophysical
objects such as white dwarfs [5] and neutron stars [6].
Though the details of these systems vary greatly and the
relevant densities and temperatures are separated by orders
of magnitude, they all share common features stemming
from the Pauli exclusion principle. These properties typ-
ically include some type of a filled Fermi sea of hard
fermionic excitations with softer bosonic modes mediating
their interactions or being formed through pairing on the
Fermi surface. While in some cases specific techniques,
such as gauge-gravity duality or numerical lattice field
theory may offer valuable insights, the only first-principles
field-theory tool universally applicable at low temperatures
and large chemical potentials is perturbation theory (see

e.g., [7] for a recent review). This provides strong impetus
to further develop weak-coupling techniques for the study
of degenerate fermionic matter.
In the case of ultrarelativistic matter, the foundations of

modern perturbative computations were set in the seminal
works of Freedman and McLerran in the late 1970s [8–10],
where the authors determined the equations of state (EOS)
of degenerate quantum electrodynamics (QED) and quan-
tum chromodynamics (QCD) matter to next-to-next-to-
leading order (N2LO) in a weak-coupling expansion around
a free Fermi gas in powers of the coupling α. At this order,
the presence of the two distinct momentum scales in the
system becomes tangible: the hard fermionic modes, with
momenta of the same magnitude as the chemical potential,
kF ∼ μ, can be treated fully perturbatively, while the long-
wavelength gauge fields, with momenta proportional to the
Debye screening scale

ffiffiffi
α

p
μ, require a nonperturbative

treatment. In [8–10], the soft contributions were accounted
for through an explicit resummation of an infinite class of
ring diagrams, containing arbitrary numbers of fermionic
loops, but at even higher orders such a treatment becomes
intractable. Instead, it becomes imperative to treat the
physics of the soft momentum scale via an effective-
field-theory setup, which has indeed been realized in recent
years through the systematic implementation of the hard-
thermal-loop (HTL) framework to the description of cold
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and dense systems [11–15]. This development has led to
several advances, including the unification of perturbative
results throughout the temperature-chemical potential plane
for deconfined QCD matter [11,15].
For cold and dense quark matter, the first next-to-next-to-

next-to-leading order (N3LO) calculations determined the
fully soft contributions to the EOS [13,14], including also
the leading logarithmic contribution of Oðα3 ln2 αÞ [12],
absent in an Abelian theory. The contributions to the
leading and next-to-leading logarithms arising from the
fully soft sector have also recently been resummed [16].
However, in order to determine all logarithmically
enhanced terms at this order, i.e., to reach the Oðα3 ln αÞ
accuracy, so-called mixed contributions originating from
interactions between the hard and soft modes must also be
accounted for. In this article, we determine precisely these

mixed N3LO terms for the Abelian theory QED, providing
the first improvement to the EOS of this theory since
the late 1970s [10,17] (see, however, the related high-
temperature calculations [18,19]). This computation serves
as a proof of principle of the effective-theory framework
and for the first time demonstrates the nontrivial cancella-
tion of divergences arising from the soft and hard sectors at
N3LO, thus paving the way to the conceptually similar but
diagrammatically more laborious non-Abelian version of
this calculation.
Based on earlier computations within both QED and

QCD [10,14,20], we know that up to N3LO, the pressure p
of cold and dense QED matter takes the parametric form
[with the leading-order (LO) pressure pLO ¼ μ4Nf=ð12π2Þ,
μ being the fermion chemical potential, taken here to be
equal for each of the Nf flavors]

p
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Here, αeðΛ̄Þ ¼ eðΛ̄Þ2=4π is the renormalized fine-structure
constant at the renormalization scale Λ̄, with e the electric
charge of each fermion, also taken to be equal for each of
the Nf flavors; while δ ≈ −0.8563832 is available via a
one-dimensional integral expression that can be evaluated
to practically arbitrary precision [20]. The coefficients a3;n
are in principle unknown, although a3;3–a3;5 are available
from the lower-order coefficients using the renormaliza-
tion-scale independence of the pressure (see the Supple-
mental Material [21]).
The terms we determine in this work include
(i) the full contribution of the purely soft (scale eμ)

sector which turns out to identically vanish, imply-
ing a3;1 ¼ 0,

(ii) the full mixed contributions which determine the
a3;2 coefficient, and

(iii) part of the fully hard contribution, including all of its
infrared (IR) divergences and the leading large-Nf

part of a3;6.
As a result, we are able to explicitly demonstrate the
cancellation of all ultraviolet (UV) and IR divergences
between the soft and hard sectors at N3LO, which happens
exactly as predicted in [14]. Only one finite coefficient,
independent of logarithms and corresponding to the purely
hard subleading-in-Nf contributions to a3;6, is left missing
from the full Oðα3eÞ pressure. Our calculation extensively
utilizes results from a companion paper [24], where
we determine corrections to the one-loop HTL photon

self-energy from power corrections in soft momenta and
two-loop diagrams, generalizing the results of [25–27] to
nonzero μ. Importantly, both calculations pave the way
towards completing the same tasks in cold and dense QCD.

II. SETTING UP THE PROBLEM

Following the organizational scheme presented in [14]
and translating it to the somewhat simplified case of U(1)
gauge symmetry, the N3LO pressure of cold and dense
QED contains contributions from three different kinematic
regions. These are dubbed purely soft (s), purely hard (h),
and mixed (m), of which the last one couples the soft and
hard modes together. As explained in detail in [13], the split
between these different kinematic regions is not unique,
and this ambiguity renders the individual contributions
dependent on an additional factorization scale Λh, which
must cancel when summing over all contributions at a fixed
order (see the beginning of next section for the introduction
of Λh in dimensional regularization). We may thus write the
N3LO pressure correction, denoted here by p3, in the form

p3 ¼ ps
3 þ pm

3 þ ph
3; ð2Þ

with the three terms on the right-hand side corresponding to
the different momentum scales. The first, purely soft
contribution arises from interactions among soft, screened
photons, which can be described within the HTL effective
theory [28]. Due to the vanishing of the photon HTL
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N-point function for N ≥ 3 in QED [29] (and the
absence of tree-level gauge interactions), this term vani-
shes to all orders, so that we immediately obtain the
result ps

3 ¼ 0.
The mixed and hard pressure terms can, on the other

hand, be further split into different subcontributions based
on their potential IR sensitivity, as discussed in detail in
[14] for QCD. Using a second subscript to denote the

number of potential IR divergences in each graph, we
obtain

pm
3 ¼ pm

3;0 þ pm
3;1; ð3Þ

ph
3 ¼ ph

3;0 þ ph
3;1 þ ph

3;2: ð4Þ
Here, the different terms correspond to the diagrams

ð5Þ

ð6Þ

ð7Þ

where a sum over the direction of fermionic flow is
suppressed and HTL-resummed photon lines are denoted
by wavy double lines. There are multiple types of
divergences present in these diagrams: full-theory (unre-
summed) UV divergences, full-theory IR divergences and
HTL (resummed) UV divergences. Each pi

3;k contains full-
theory UV divergences, while full-theory IR divergences
are contained within ph

3;1 þ ph
3;2 and the HTL UV diver-

gences are contained within pm
3;0 þ pm

3;1. Note also that the
final diagram of Eq. (7) is included in this term only due to
its potential to be IR sensitive: as explained above, in
reality its IR limit is benign in QED, and the term will not
produce any real IR divergences.

III. OUTLINE OF THE CALCULATION

We regulate both the UV- and IR-divergent parts of
the above diagrams in dimensional regularization in
D ¼ 4 − 2ε dimensions, using the standard modified min-
imal subtraction scheme (MS) measure ½eγEΛ2=ð4πÞ�εdDK.
It is, however, important to note that two different values
are used for the renormalization scale Λ: The full-theory
UV divergences are regulated with the standard UV
renormalization scale Λ̄, whereas all the remaining diver-
gences are regulated with the factorization scale Λh. The
divergences can be unambiguously split in this way due to

the specific “ring” structure of the integrals that appear in
the expressions, and so we cannot readily generalize this
IR-UV split to arbitrary loop integrals.
Concentrating first on the mixed contribution, i.e.,

Eq. (5) above, we note that the general structure of the
UV-renormalized mixed contribution to the QED pressure
at N3LO reads

pm
3 ¼ e2m4

E

6ð4πÞ4
�
mE

Λh

�
−2ε

�
pm
−1
2ε

þ pm
0

�
: ð8Þ

Here, e ¼ eðΛ̄Þ is the renormalized gauge coupling of
QED, while the one-loop electric screening mass at zero
temperature but nonzero chemical potential reads m2

E ¼
NfeðΛ̄Þ2μ2=π2. This 1=ε divergence remaining after
renormalization arises from the separation between the
soft and hard momentum scales, hence the appearance of
Λh in the expression.
Similarly, the general structure of the UV-renormalized

hard contribution to the QED pressure at N3LO reads

ph
3 ¼

e2m4
E

6ð4πÞ4
�

μ

Λh

�
−2ε

�
ph
−1
2ε

þ ph
0

�
; ð9Þ

so that the full result for the Oðα3eÞ contribution to the QED
pressure takes the form
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p3 ¼
e2m4

E

6ð4πÞ4
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−1
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− pm
−1 ln

�
mE
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�

− ph
−1 ln

�
μ
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�
þ pm

0 þ ph
0

�
: ð10Þ

The technical details of the diagrammatic evaluation of
the terms pm

−1; p
h
−1; p

m
0 and part of ph

0 are presented in the
Supplemental Material [21]. In short, the computation starts
from working out the analytic structure of the diagrams
shown in Eqs. (5) and (7), after which their divergent
contributions are separated from the finite parts. The
divergent terms are evaluated fully analytically, and even
though standard numerics must be used in the evaluation of
the finite parts, these contributions can be obtained to
nearly arbitrary precision.
The final result for the terms pm

−1 and pm
0 reads
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ln 2 −

32

3
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ln

�
Λ̄
2μ

�

− 4 ln2
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þ 1.05960 −

1.03093
Nf

; ð11Þ

while an explicit determination of the IR divergences of
the hard diagrams, shown in detail in the Supplemental
Material [21], verifies the expected result ph

−1 ¼ −pm
−1.

This important fact verifies the full cancellation of Λh
from the final expression for p3 and also means that the
two logarithms in Eq. (10) combine into the form
lnðmE=μÞ ∼ lnðαeÞ=2. The mixed sector is also confirmed
to be gauge invariant on its own, akin to the observations
made about the QCD soft sector in [14].
The remaining ph

0 term in Eq. (10) is associated to the
finite parts of the 4-loop diagrams shown in Eqs. (6) and
(7), and can, after proper renormalization, be shown to take
the form

ph
0

Nf
¼ c2 ln2

�
Λ̄
2μ

�
þ c1 ln

�
Λ̄
2μ

�
þ c0: ð12Þ

Here, the coefficients c1 and c2 can be fully determined
using the renormalization-scale invariance of the pressure
and the known coefficients of the logarithmic terms in
Eq. (11) (see the Supplemental Material [21]), giving c2 ¼
8=3 and c1 ¼−275=9− 31=ð2NfÞþ 13π2=4þ 8=3 ln2.
The last finite coefficient c0 reads c0 ¼ c0;0 þ c0;1=
Nf þ c0;2=N2

f. The computation for the leading c0;0 term
[coming from the hard N3

f-diagram in Eq. (7)] gives
c0;0 ¼ 0.69328ð3Þ. The determination of the subleading

parts c0;1 and c0;2, however, requires numerically demand-
ing UV-divergent integrals and remains presently unknown.
Collecting results from the above, the N3LO pressure of

cold and dense QED obtains the final form

p3 ¼ NfpLO

�
αe
π

�
3
�
−
pm
−1
4

ln

�
Nf

αe
π

�

−
pm
−1
2

ln 2þ pm
0 þ ph

0

2

�
; ð13Þ

where the parameter pm
−1, determined entirely by the mixed

diagrams, is seen to provide the coefficient of the only term
nonanalytic in αe, proportional to ðαe=πÞ3 lnðNfαe=πÞ.
Translating this result to the notation of Eq. (1), we then
finally retrieve the main result of our paper in the form of a
list of numerical values for the coefficients a3;1–a3;6,
reproduced in Table I.

IV. RESULTS AND DISCUSSION

Inserting the newly determined coefficients into Eq. (1),
we are now in a position to inspect the result for the
pressure numerically and test its sensitivity with respect to
the choice of the renormalization scale Λ̄ and the value of
the unknown coefficient c0. In Fig. 1, we do exactly this by
plotting the pressure evaluated at Λ̄ ¼ Xμ as a function of
αeðΛ̄ ¼ 2μÞ and varying X by a factor of 2 around X ¼ 2 in
accordance with typical conventions in the field [14,30].
Concretely, in this figure, we take Nf ¼ 1 and use the
known three-loop running of αe (see, e.g., [31]) to para-
metrize αeðXμÞ in terms of αeð2μÞ, and then evaluate the
pressure as a function of αeðXμÞ. The value of the unknown
coefficient c0;1 þ c0;2 is finally varied within the range from
−10 to 10, which appears as a natural choice given the
magnitudes of the Oðα3eÞ terms that have been determined.
This range has also been seen to be in accordance with an
analysis performed with the MiHO algorithm of Ref. [32].
In Fig. 1, we observe a dramatic decrease in the

renormalization-scale sensitivity of the new N3LO result
in comparison to the previous order, which we believe to be
at least partially due to the determination of all explicit

TABLE I. List of numerical values for the coefficients a3;1–a3;6
appearing in Eq. (1), with δ being the same constant that appeared
already in Eq. (1). For the definition of the coefficients c0;1 and
c0;2, see Eq. (12).

a3;1 0
a3;2 − 5

4
þ 33

2
N−1

f þ 1
48
ð7 − 60N−1

f Þπ2
a3;3 2
a3;4 − 2

3

a3;5 − 79
9
þ 2

3
π2 þ 2

3
ð13 − 8 ln 2Þ ln 2þ δ − 31

4
N−1

f

a3;6 1.02270ð2Þ þ ð2.70082þ 1
2
c0;1ÞN−1

f þ 1
2
c0;2N−2

f
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logarithms at theOðα3eÞ level. At the same time, the result is
clearly rather sensitive to the unknown hard Oðα3eÞ con-
tribution, which motivates vigorous future work towards
completing the full N3LO pressure calculation.
Next, we inspect the use of a resummation scheme

motivated by the work of Moore, Ipp, and Rebhan [33–35],
who determined the pressure of both QED and QCD in the
limit of a large number of fermion flavors Nf, keeping the
parameter αeNf finite. In the present context, where Nf is
not large, this result can be used to resum all ring diagrams
built using the full one-loop photon self-energy to infinite
loop order. Just as with other resummation schemes, such as
the widely-used hard thermal loop perturbation theory [36],
this resummation amounts to including some higher-order
terms in the weak-coupling expansion of the pressure, which
is hoped to improve its convergence properties.
In Fig. 2, we demonstrate the effect of the large-Nf

resummation for Nf ¼ 3, displaying both the N2LO and
N3LO pressures. As the figure clearly demonstrates, the
resummation provides a marked improvement in the con-
vergence of the result by taming some of the renormaliza-
tion-scale dependence of the quantity, which motivates its
eventual use also in the context of dense QCD.We also note
in passing (see the Supplemental Material [21]) that our
new calculation provides the coefficients 3.18(5) and 3.4(3)
in Eq. (3.14) of [35] to the much improved precision
of ð60 − 7π2 þ 96 ln 2Þ=18 ≈ 3.1919388 and 3.36388(4),
respectively.
Finally, let us briefly study the behavior of the speed of

sound cs in cold and dense QED matter. This quantity is
particularly interesting in QCD, as there is strong tension
between the common expectation that it rises close to the

speed of light in dense nuclear matter and the fact that at
high temperatures, it is known to approach the asymptotic
conformal value of c2s ¼ 1=3 from below. In QED, the
conformal limit is known to be broken as the sign of
the beta function indicates that the leading correction to
the noninteracting massless limit comes with a positive
sign. This is indeed verified by our result, shown in Fig. 3.
We, however, observe that the higher-order corrections
prevent the speed of sound from significantly exceeding
the conformal value. Lastly, we note the extremely good
convergence of this quantity even at very large couplings.
In summary, we have found that at least in the case

of cold and dense QED matter, including contributions
beyond N2LO has a notable effect on the convergence

FIG. 2. The effect of the large-Nf resummation on the weak-
coupling expansion of the pressure. Here, we have set Nf ¼ 3

and c0;1 ¼ c0;2 ¼ 3.

FIG. 3. The speed of sound squared (times three) for different
orders of the weak-coupling expansion. Here, we have again
set Nf ¼ 1.

FIG. 1. The N3LO pressure of cold and dense QED matter,
displayed together with the old N2LO and next-to-leading-order
(NLO) results. Here, we have set Nf ¼ 1, while allowing the sum
c0;1 þ c0;2 of the yet-unknown constants to take values in
f−10; 0; 10g. All bands have been obtained to varying the
renormalization scale Λ̄ by a factor of 2 around Λ̄ ¼ 2μ.
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properties of the pressure. This provides compelling
reasons to pursue the evaluation of further N3LO terms
of the pressure of cold and dense matter. With the
coefficients c0;1 and c0;2 fixed, our results demonstrate
that the renormalization-scale uncertainty of the pressure
will drop to a small fraction of the previous N2LO result at
all coupling values of relevance for even QCD. This implies
that there is good reason to believe that performing similar
improvements within QCD will allow the perturbative EOS
of dense quark matter to become applicable at substantially
lower densities than what has been possible so far. This
would have dramatic effects for the model-independent
determination of the neutron-star-matter EOS as highlighted
by past interpolation works [37–39] and the more recent
results that enable rigorously translating perturbative con-
straints to lower densities using standard thermodynamic
relations [40,41]. We underline that the weak-coupling
computations presented in this work, once generalized to
QCD, would not be sensitive to any color-superconducting
phases, since only gluons with nonperturbatively small
energies ∼ expð−#= ffiffiffi

α
p Þ receive corrections to their screen-

ing from quark Cooper pairing [42,43].
Finally, let us briefly comment on the generalizations

necessary to complete the present calculation in QCD.
While it is true that there exists an additional soft NLO
correction to the gluon self-energy in QCD, the corre-
sponding contribution to the zero-temperature pressure has
already been determined in [13,14]. Hence, again at zero
temperature, the only contribution missing in the mixed

sector is the two-loop HTL gluon self-energy. Thanks to the
new technical advances made in the QED case here and in
the companion paper [24], this QCD contribution is
straightforward (if tedious) to compute. In order to com-
plete the computation of hard sector, the only remaining
terms needed are the currently unknown coefficients
c0;1 and c0;2, extended to QCD. On a technical level, the
computation of these coefficients (both in QED and QCD)
involves complicated UV-sensitive 4-loop diagrams, which
require novel methods in finite-density multiloop compu-
tations, e.g., see Refs. [44,45].
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