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We develop a systematic renormalization procedure for QFT in anti-de Sitter spacetime. UV infinities are
regulated using a geodesic point-splitting method, which respects AdS isometries, while IR infinities are
regulated by cutting off the radial direction (as in holographic renormalization). The renormalized theory is
defined by introducing Z factors for all parameters in the Lagrangian and the boundary conditions of bulk
fields (sources of dual operators), and a boundary counterterm action, Sct, such that the limit of removing
the UV and IR regulators exists. The results are in general scheme dependent (mirroring the analogous
result in flat space) and require renormalization conditions. These may be provided by the dual CFT (or by
string theory in AdS). Our analysis amounts also to a first principles derivation of the Feynman rules
regarding Witten diagrams. The presence and treatment of IR divergences is essential for correctly
accounting for anomalous dimensions of dual operators. We apply the method to scalar Φ4 theory
and obtain the renormalized two-point function of the dual operator to two loops, and the renormalized
four-point function to one-loop order, for operators of any dimension Δ and bulk spacetime dimension up
to dþ 1 ¼ 7.
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I. INTRODUCTION

The AdS=CFT correspondence [1–4] relates string theory
on (dþ 1)-dimensional anti-de Sitter (AdS) spacetime
(times a compact space) and conformal field theory (CFT)
in d dimensions. At low energies this becomes a relation
between AdS gravity and strongly coupled CFT. The holo-
graphic dictionary links parameters pi in the bulk action
(masses and couplings) with CFT data Cj (conformal
dimensions and operator product expansion (OPE) coeffi-
cients) and the fields φ0 parametrizing the boundary con-
ditions of bulk fields Φ with sources of boundary gauge
invariant operators O. Then the bulk partition function
Z½φ0;pi� is identified with the generating functional of
CFT correlation functions,

Z½φ0;pi� ¼
�
exp

�
−
Z
∂AdS

φ0O
��

CJ

: ð1Þ

Here the rhs is the path integral over the CFTat the conformal
boundary of AdS, specified by the CFT data CJ. The CFTs
that enter the AdS=CFT correspondence typically admit
a large N ’t Hooft limit, and bulk loops correspond to
1=N2 corrections.
This relation however needs renormalization and its

precise form has only been fully developed at tree level
in the bulk/leading large N limit in the boundary CFT [5,6].
There has been continuous progress about AdS=CFT at
loop level in recent years, mostly based on new results
regarding CFT correlators at subleading order in the large
N limit [7–30], but there has been no systematic discussion
of the bulk side. The purpose of this paper is to provide
such a systematic discussion. Our discussion follows
(on purpose) as close as possible textbook discussions of
renormalizability in flat space, but as we will see there are
important new issues.
A successful setup not only makes possible a meaningful

application of the duality, where both sides are well
defined, but also provides structural support to the duality,
independent of the specifics of any particular example. An
important property of holographic dualities is the so-called
UV/IR connection [31]: UV infinities of one theory are
linked to IR of the other and vice versa. An essential
property of local quantum field theory (QFT) is that the UV
infinities are local and an important general result of
holographic renormalization is that at tree level in the bulk
(and for arbitrary n-point functions) bulk IR infinities due
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to the infinite volume of spacetime are local [5,32]. When
considering the duality at loop order there are a number of
similar structural relations that need to be satisfied.
On the bulk side, there are now potentially both UV and

IR divergences. The IR divergences corresponding to
boundary UV divergences should continue to be local.
UV divergences in the bulk correspond to IR divergences in
the boundary QFT, and in QFT one does not add counter-
terms for such divergences: they should cancel on their
own. The bulk theory should thus be UV finite, suggesting
that in the full duality the bulk should have a string
theoretic description. At low energies however, where
the bulk is described by a supergravity theory there are
UV infinities at loop order and one would like to under-
stand how to treat them.
In a CFT two- and three-point functions are completely

fixed by conformal invariance, up to constants, and higher
points are fixed up to functions of cross ratios. One would
thus expect to be able to obtain the same results in the bulk
just using bulk isometries and we will see that this is indeed
the case. Conformal invariance is broken by conformal
anomalies and these are accounted by holographic renorm-
alization [33]. Renormalization of bulk UV infinities
however should respect conformal symmetry, and indeed
we will see that there is a bulk UV regulator that respects all
AdS isometries.
The CFT data, the dimensions of operators and the

constants and functions of cross ratios that appear in the
correlation functions may receive 1=N2 corrections, and
our purpose is to discuss how these renormalize from loops
in the bulk. We will use the Φ4 theory in a fixed AdS
background1 to illustrate the method but the methodology
applies generally. We will find that this specific theory is
renormalizable to one-loop order in bulk spacetime dimen-
sions up to seven in the sense that all UV infinities that
appear in the computation of boundary correlators up to
four-point functions can be removed by local bulk counter-
terms. One in general needs to renormalize both the bulk
parameters pi, the masses and the couplings that appear in
the bulk action, and the sources φ0.

II. REGULATORS

It is essential that we introduce both a UV and an IR
regulator. The IR regulator is the usual holographic radial
cutoff. Using the AdS metric, ds2 ¼ l2ðdz2 þ dx⃗2Þ=z2, we
restrict the radial integration to z ≥ ε. For the UV cutoff
we modify the bulk-to-bulk propagator by displacing
one of the points along a geodesic with affine parameter
τ. Let x1, x2 be two points in AdS and uðx1; x2Þ ¼
ððz1 − z2Þ2 þ ðx⃗1 − x⃗2Þ2Þ=2z1z2 the AdS invariant dis-
tance. Consider now the geodesic,

zðτÞ ¼ z
coshðτ=lÞ ; x⃗ðτÞ ¼ x⃗þ z tanhðτ=lÞn̂; ð2Þ

where n̂ is a unit vector that is orthogonal to ðx⃗1 − x⃗2Þ,
n̂ · ðx⃗1 − x⃗2Þ ¼ 0, and l is the AdS radius that we set to 1
from now on. A direct computation yields uðx1ðτÞ; x2Þ ¼
−1þ cosh τ½1þ uðx1; x2Þ�. Note that uðx1ðτÞ; x2Þ ¼ 0 iff
x1 ¼ x2 and τ ¼ 0, so τ acts as a short-distance AdS in-
variant regulator. In terms of the chordal distance, ξðx1;x2Þ¼
1=ð1þuðx1;x2ÞÞ, ξðx1ðτÞ; x2Þ ¼ ξðx1; x2Þ= cosh τ. Loop
diagrams are made out of bulk-to-bulk propagators and bulk
vertices. The UV regulator only affects the bulk-to-bulk
propagators, which now become

Gτðx1; x2Þ≡Gðx1ðτÞ; x2Þ ¼ G

�
ξðx1; x2Þ
cosh τ

�
≡GτðξÞ; ð3Þ

where x1ðτÞ is given in (2) and Gðx1; x2Þ is the
standard bulk-to-bulk propagator, GðξÞ ¼ 2−ΔcΔξΔ=
ð2Δ − dÞ2F1ðΔ=2; ðΔþ 1Þ=2;Δ − d=2þ 1; ξ2Þ and cΔ ¼
ΓðΔÞ=ðπd=2ΓðΔ − d=2ÞÞ.

III. RENORMALIZATION

We consider Φ4 theory with action,

S½Φ� ¼
Z

ddþ1x
ffiffiffi
g

p �
1

2
∂μΦ∂

μΦþm2
0

2
Φ2 þ λ0

4!
Φ4

�
: ð4Þ

The regulated bulk partition function is given by

Zreg
AdS½φ0;m2

0; λ0; ε; τ�

¼
Z
Φ∼ϕ½φ0�

DΦ exp

�
−S½Φ� −

Z
z¼ε

ddxLct½Φ�
�
; ð5Þ

where ϕ½φ0� specify the boundary conditions (to be dis-
cussed below) and Lct are boundary counterterms. These
were originally introduced in the process of holographic
renormalization [5,6], but (more fundamentally) are required
for the variational problem to be well posed [34,35]. To
renormalize the theory we treat the parameters that enter
the theory, φ0, m2

0, λ0 as bare parameters, and define the
renormalized parameters φ, m, λ via

1One may formally decouple dynamical gravity by taking the
limit of the Planck mass going to infinity (or equivalently
Newton’s constant to zero, GN → 0) keeping fixed (and inde-
pendent of GN) the parameters that enter in the Lagrangian of the
matter fields [as in (4) below]. With these conventions, matter
propagators and gravity-matter vertices are independent of GN ,
vertices involving only gravitons scale as G−1

N and the graviton
propagator as GN , and one may check that diagrams with internal
gravitons are suppressed. The AdS isometries then imply that
correlators in a fixed AdS background satisfy the conformal Ward
identities on their own. The application of our method to
perturbative gravity is technically more involved but it can be
done along the same lines and it will be presented elsewhere. In
particular, the geodesic point-splitting method we discuss below
also regulates graviton loops.
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φ0 ¼ Zφφ; m2
0 ¼ m2 þ δm2; λ0 ¼ λþ δλ: ð6Þ

Zφ, δm, δλ depend on regulators and φ, m, λ are finite. We
assume λ is small and work perturbative to order Oðλ2Þ. At
tree level δm ¼ δλ ¼ 0, Zφ ¼ 1.
The renormalized theory is now defined by

Zren
AdS½φ;m2; λ� ¼ lim

ε→0
lim
τ→0

Zreg
AdS½φ0;m2

0; λ0; ε; τ�; ð7Þ

and renormalized CFT correlators can be obtained by
functionally differentiating Zren

AdS with respect to φðx⃗Þ.
The theory is renormalizable if we can carry out this
program without introducing new terms in the bulk action.
We will see that this is the case to one-loop order for theΦ4

theory up to seven (bulk) dimensions. We emphasize that
bulk subtractions lead to scheme dependence. To fix the
renormalized parameters and thus the scheme dependence,
we need renormalization conditions. These can be provided
either by the full string theory in AdS or by the dual CFT:
the renormalized mass is fixed by the spectrum of theory, or
equivalently by the spectrum of dimensions of the dual
CFT, φ is fixed by the normalization of the two-point
function, and λ can be related to the OPE coefficients of the
dual CFT.

IV. PERTURBATIVE COMPUTATION

We split the field into its classical ϕ and quantum h parts,

Φ ¼ ϕ½φ0� þ h: ð8Þ

The classical field ϕ½φ0� solves the equations of motion,

ð−□þm2Þϕ ¼ −
λ

3!
ϕ3; ð9Þ

with the non-normalizable boundary condition ϕðz; x⃗Þ ∼
zd−Δφ0ðx⃗Þ as z → 0, with φ0ðx⃗Þ being the source for
the dual operator. The quantum fluctuation h on the
other hand satisfies normalizable boundary conditions,
hðz; x⃗Þ ∼ zΔȟðx⃗Þ.
Using (8) the partition function (5) becomes

Zreg
AdS ¼ e−Ssub½ϕ;ε;τ�

Z
Dh exp

�
−S½h�

−
Z
x

�
δm2ϕþ δλ

6
ϕ3

�
h

þ ðλþ δλÞ
�
1

6
ϕh3 þ 1

4
ϕ2h2

��
; ð10Þ

where
R
x ¼

R
z≥ε d

dþ1x
ffiffiffi
g

p
, S½h� is the action (4) with Φ

replaced by h, Ssub ¼ Son-shellreg þ Sct is the subtracted on-
shell action (as in [36]), and Son-shellreg is the regulated
on-shell action. This term gives the tree-level Witten

diagrams, see [6]. Here our focus is on computing the
loop contributions.
We are interested in computing quantum corrections to

CFT correlators, up to four-point functions to order λ2. As
the CFT source is the leading term in the classical field ϕ, it
suffices to expand (10) to fourth order in ϕ and then
integrate out h. The path integral over h is a straightforward
application of QFT methods and expresses the answer in
terms of bulk correlation functions. While the bulk-to-bulk
propagator Gðx1; x2Þ is divergent at coincident points the
regulated propagator, Gτðx; xÞ ¼ Gτð1Þ is finite, and this
suffices to regulate all UV infinities. Moreover, the regu-
lated propagator is invariant under transformations that
transforms simultaneously x1 and x2 by AdS isometries, so
bulk loop diagrams do not break any of the AdS isometries.
The regulation of coincident points by replacing ξ by
ξ=ð1þ ϵÞ in the bulk-to-bulk propagator was introduced
in [37], and our analysis relates this regulator to geodesic
point splitting.
To proceed we add a source term

R
Jh to the action and

following the usual QFT manipulations we arrive at the
expression

eWreg ¼ e−Ssube−
R
x
ðδm2ϕ þ δλ

6
ϕ3Þ δδJ þ δm2

2
δ2

δJ2

× e−
R
x
λ þ δλ

4
ðϕ2 þ 2

3
ϕ δ
δJ þ 1

6
δ2

δJ2
Þ δ2
δJ2e

1
2

R
x

R
y
JðxÞGτðx;yÞJðyÞjJ¼0:

ð11Þ

Here the source JðxÞ is only an intermediate device. The
true source is the boundary function φ0 inside the classical
field ϕ½φ0�. To a given order λp, one has to compute several
functional derivatives with respect to J. Once all derivatives
have been computed, J is set to zero and one is left with a
(nonlocal) functional of the classical field ϕ. Keeping the
terms relevant for the computation of two- and four-point
functions through order λ2 we get

Wreg ¼−Ssub−
1

2

�
δm2þ λþ δλ

2
Gτð1Þ

�Z
x
ϕ2ðxÞ

þ1

2

�
δm2þ λ

2
Gτð1Þ

�Z
x1

Z
x2

�
λ

2
ϕðx1Þ2G2

τðx1;x2Þ

þϕðx1ÞGτðx1;x2Þϕðx2Þ
�
δm2þ λ

2
Gτð1Þ

��

þ λ2

12

Z
x1

Z
x2

ϕðx1ÞG3
τðx1;x2Þϕðx2Þ−

δλ

4!

Z
x1

ϕðx1Þ4

þ λ2

16

Z
x1

Z
x2

ϕðx1Þ2G2
τðx1;x2Þϕðx2Þ2þOðλ3Þ; ð12Þ

where Gτð1Þ ¼ Gτðx; xÞ is the regulated value of the bulk-
to-bulk propagator at coincident points. Note that this is not
the final form of the perturbative series. The classical field

BULK RENORMALIZATION AND THE AdS/CFT … PHYS. REV. D 107, L021901 (2023)

L021901-3



ϕ is itself a series in λ, obtained solving perturbatively in
λ Eq. (9).
Using this result we may now compute the boundary

correlators up to four-point functions to order λ2.
Differentiating with respect to sources we find that the
boundary correlators are represented by the expected
Witten diagrams with the same symmetry factors as
Feynman diagrams (internal lines joined by bulk-to-bulk
propagators and external lines joined by bulk-boundary
propagator), a result which has now been derived from first
principles. All relevant diagrams are listed in Fig. 1 and we
shortly discuss their evaluation. Correlators of this type
have been calculated in various works in the past [7–30],
and while part of our methodology is present in many of
these papers, no previous work contains a complete and
coherent discussion of all issues. In particular, in most of
the existing literature, the UV regulator is often ad hoc,
only regularization but not renormalization was done,
scheme dependence was not discussed, and the importance
of IR regulator was overlooked. One of our main results is
that IR divergences are essentially responsible for the
appearance of anomalous dimensions in correlators, as
one may anticipate based on the fact that they correspond to
boundary UV divergences.
We start with the two-point function. The general form

for this function, to all orders in λ, is

C2ðy⃗1; y⃗2Þ ¼
Z
x1

Z
x2

Kðy⃗1; x1ÞKðy⃗2; x2ÞP2ðx1; x2Þ; ð13Þ

where Kðy⃗1; x1Þ ¼ cΔzΔ1 =ðz21 þ jx⃗1 − y⃗1j2ÞΔ is the bulk-to-
boundary propagator and P2ðx1; x2Þ is the “amputated”
bulk-to-bulk two-point function. P2ðx1; x2Þ is an integral
over all internal vertices of products of bulk-to-bulk
propagators that join the points x1 and x2 to themselves
and the internal vertices. As long as we use the regulated
bulk-to-bulk propagator, this expression is UV finite.
Recall that theGτðx1; x2Þ is invariant under AdS isometries,
and so is P2ðx1; x2Þ. Assuming (13) is IR finite, one may
extract the y⃗1 and y⃗2 dependence from the integral by
simple manipulations: first shift the integration variables,
x⃗i → x⃗i þ y⃗2; i ¼ 1, 2, and then rescale, xi → xijy⃗1 − y⃗2j,
where both transformations are AdS isometries. After these
manipulations the integral no longer depends on the
external points (but still depends on the UV regulator)
and we will call its value A2ðτÞ. Altogether we obtain

C2ðy⃗1; y⃗2Þ ¼ A2ðτÞy−2Δ12 ; ð14Þ

where y12 ¼ jy⃗2 − y⃗1j. One may now renormalize this
correlator by just rescaling the source φ0 (i.e., using
Zφ). This is the expected form of the two-point function
of an operator of dimension Δ. Here however Δ is the tree-
level dimension, and we thus find that Δ does not renorm-
alize to all orders: if there were no IR divergences, there
would be no anomalous dimensions.
This analysis is however not correct because (13) is IR

divergent and a cutoff is needed. The transformations
needed to arrive at (14) act on the integration limits and
the naive invariance under AdS isometries is broken. At
one-loop order, the relevant diagram is the tadpole diagram
T1 (see Fig. 1), and by explicit evaluation we find

T1 ¼
Z
z1≥ε

ddþ1x1
ffiffiffi
g

p
Kðx1; y⃗1ÞGτðx1; x1ÞKðx1; y⃗2Þ

¼ Gτð1Þ
�
ε−ð2Δ−dÞ

ð2Δ − dÞ δðy⃗1 − y⃗2Þ þ � � �

−
cΔ

jy⃗1 − y⃗2j2Δ
�
ln

�
ε

jy⃗1 − y⃗2j
�

2

þ ψðΔÞ − ψðνÞ
�

þ � � �
�
; ð15Þ

where ν ¼ Δ − d=2. It is no longer possible to remove the
infinities by only rescaling the source φ0 and renormaliza-
tion of the mass is now required.
Similar manipulations, now involving also inversions,

show that, barring IR divergences, three-point functions2

and four-point functions take the expected form, with Δ the
tree-level dimension. Renormalization produces anomalous
dimensions for Δ and corrections to the constants appear-
ing in the two- and three-point functions and the function of
cross ratios in higher point functions.
We are now ready to present the results of the evaluation

of theWitten diagrams in Fig. 1 for anyΔ and d. The theory
is renormalizable up to dþ 1 ¼ 7 bulk dimensions and the
counterterms that remove the infinities are given by

FIG. 1. Witten diagrams contributing to the two- and four-point function to order λ2.

2The three-point function vanishes in the theory (4) because
the action is invariant under Φ → −Φ. In theories with a non-
vanishing three-point function (for example Φ3 theory) the
argument shows that the three-point function would have the
form dictated by conformal invariance.
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δλ ¼ λ2

2

�
3Div½a0ðτÞ� þ

ð2Δ − d
2
Þ

Δ
Div½a1ðτÞ�

�
þ λ2G1;

ð16Þ

δm2 ¼ −
λ

2
Div½Gτð1Þ� −

λ2

4

�
Div

��
3Div½a0ðτÞ�

þ ð2Δ − d
2
Þ

Δ
Div½a1ðτÞ�

�
Gτð1Þ

�
þ 2G1Div½Gτð1Þ�

�

þ λ2

4
Div½Con½Gτð1Þ�EðτÞ� þ

λ2

6
Div½SðτÞ�

þ λ2

2
F1Div½EðτÞ� þ λF1 þ λ2F2; ð17Þ

where Div½fðτÞ� denotes the divergent part of the function
fðτÞ as τ → 0 and Con½fðτÞ� denotes the part that has
a limit as τ → 0. Such a split is always ambiguous
because one may add a finite piece to Div½fðτÞ� and
subtract it from Con½fðτÞ�. This ambiguity is encoded by
the functions G1, F1, F2 which represent scheme depend-
ence. To fix these functions, one needs renormalization
conditions, as noted earlier. The functions a0ðτÞ; a1ðτÞ;
EðτÞ; SðτÞ are defined by

Z
x2

G2
τðx1; x2Þ ¼ EðτÞ;

Z
x2

G3
τðx1; x2ÞKðx2; y⃗2Þ ¼ SðτÞKðx1; y⃗2Þ;

Z
x2

G2
τðx1; x2ÞKðx2; y⃗3ÞKðx2; y⃗4Þ ¼ χKðx1; y⃗3ÞKðx1; y⃗4Þ;

ð18Þ

where χ ¼ P∞
i¼0ðaiðτÞ þ biðτÞ log χ̂Þχ̂i, χ̂ ¼ K̃ðx1; y⃗3Þ ×

K̃ðx1; y⃗4Þy234 and K̃ðx; y⃗Þ ¼ z=ðz2 þ jx⃗ − y⃗j2Þ. The result
for the integrals in (18) is fixed by AdS isometries, i.e.,
following similar reasoning as that leading to the evaluation
of (13), as will be discussed in detail in [38].
The functions aiðτÞ, biðτÞ, EðτÞ, SðτÞ may be computed

in generality in terms of hypergeometric functions. The
general expressions are too long to be reported here (they
will be given in [38]). EðτÞ diverges for d ≥ 3, SðτÞ for
d ≥ 2, and aiðτÞ for d ≥ 3þ 2i, and biðτÞ are finite, where
we assume (as usual) Δ > d=2. When d > 6 the theory is
not renormalizable (as expected) as we need new counter-
terms of the schematic form ∂

2nΦ4, with n an integer. (The
renormalizability of the four-point function at one-loop
order for d ¼ 5, 6 also holds in flat space [38] and appears
to be accidental).

The renormalized mass is given by

m2
R ¼ m2 þ lim

τ→0

�
λ

2
Con½Gτð1Þ� þ

λ2

4

�
Con

��
3Div½a0ðτÞ�

þ ð2Δ − d
2
Þ

Δ
Div½a1ðτÞ�

�
Gτð1Þ

�
þ 2G1Con½Gτð1Þ�

�

−
λ2

4
Con½Con½Gτð1Þ�EðτÞ� −

λ2

6
Con½SðτÞ�

−
λ2

2
F1Con½EðτÞ�

�
þ λF1 þ λ2F2: ð19Þ

This expression is scheme dependent and one needs
renormalization conditions to obtain physical results.
Using m2

R ¼ ΔRðΔR − dÞ, one may work out the anoma-
lous dimension γ, ΔR ¼ Δþ γ, perturbatively in λ. It
remains to deal with the IR divergences. Apart from the
integral in (15), there are also IR divergent integrals of the
schematic form

R
GK and

R R
KGK, which are needed.

The detailed evaluation of these integrals will be pre-
sented in [38]. The main result is that one may cancel
all IR divergences by using Zφ ¼ ε−γ and the same
boundary counterterm action Sct as at tree level but
with Δ → ΔR.
The renormalization of Φ4 theory in AdS parallels

that of Φ4 theory in flat space, which is discussed
for example in chapter 4 of [39] (actually, our notation
for the scheme dependent functions matches that of [39]).
This is not unexpected as the short distance behavior
of the theory should not depend on the large distance
asymptotics. For example, the beta function for λ matches
exactly the beta function of Φ4 theory in flat space, as
already noted in [17]. One difference between the two
cases is that here we need to renormalize the boundary
source while in flat space we need wave function
renormalization.
We are now in position to state the final results

for the dual correlators. The two-point function takes
exactly the same form as the tree-level result3 but with
Δ → ΔR:

hOðy⃗1ÞOðy⃗2Þi ¼ ð2ΔR − dÞcΔR
y−2ΔR
12 : ð20Þ

The four-point function, for the renormalizable cases,
d < 7, is given by

3There is still a freedom of finite λ-depended rescaling of the
source φ, which will change the normalization of the two-point
function. This freedom may also be thought of as scheme
dependence.
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hOðy⃗1ÞOðy⃗2ÞOðy⃗3ÞOðy⃗4Þi ¼−ðλþ λ2G1Þc4ΔR
DΔR;ΔR;ΔR;ΔR

þ λ2

2
c4ΔR

X∞
i¼0

�
Con½aið0Þ�DΔR;ΔR;ΔRþi;ΔRþi y2i34

þbið0Þ
d
dα

ðDΔR;ΔR;ΔRþiþα;ΔRþiþα y
2iþ2α
34 Þα¼0

þ t-andu-channel

�
¼Fðu;vÞ

Y
i<j

y−2ΔR=3
ij ; ð21Þ

where DΔR;ΔR;ΔR;ΔR
is the tree-level contact diagram [40]. In the last equality we provide the answer in the form expected

from conformal invariance and the function of cross ratios u, v is given by

Fðu; vÞ ¼ πd=2

2

c4ΔR

ΓðΔRÞ2
ðuvÞΔR=3

	
−ðλþ λ2G1ÞĤ0 þ

λ2

2

X∞
i¼0

�
Con½aið0Þ�Ĥi þ bið0Þ

d
dα

ðĤiþαÞα¼0 þ 2 perms

�

; ð22Þ

where Ĥi ≡ Γð2ΔR−d
2
þiÞ

ΓðΔRþiÞ2 HðΔR;ΔR; 1 − i; 2ΔR; u; vÞ and the

function Hðα; β; γ; δ; u; vÞ is given in (5.9) of [41] (see also
[42]) and is related to the Appell F4 hypergeometric
function. The coefficients Con[aið0Þ] and bið0Þ are explic-
itly computable; for example, when d ¼ 3;Δ ¼ 2,
Con½aið0Þ� ¼ 2bið0Þ ¼ −δi;0=8π2.

V. CONCLUSIONS

We presented a systematic renormalization procedure for
loop diagrams in AdS, and we illustrated the method using
scalar Φ4 theory. Bulk renormalization is completely
consistent with expectations based on the AdS=CFT duality
and this provides further structural support for the duality. It
would be interesting to include graviton exchanges in the
bulk and discuss tensorial correlators, as well as generalize
the discussion to the general n-point function, possibly to
all loops. Finally, one should use the results obtained here

in conjunction with recent results based on the conformal
bootstrap.
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