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When massless particles are involved, the traditional scattering matrix (Smatrix) does not exist: It has no
rigorous nonperturbative definition and has infrared divergences in its perturbative expansion. The problem
can be traced to the impossibility of isolating single-particle states at asymptotic times. On the other hand,
the troublesome nonseparable interactions are often universal: In gauge theories, they factorize so that the
asymptotic evolution is independent of the hard scattering. Exploiting this factorization property, we show
how a finite “hard” S matrix, SH , can be defined by replacing the free Hamiltonian with a soft-collinear
asymptotic Hamiltonian. The elements of SH are gauge invariant and infrared finite and exist even in
conformal field theories. One can interpret elements of SH alternatively 1) as elements of the traditional S
matrix between dressed states, 2) as Wilson coefficients, or 3) as remainder functions. These multiple
interpretations provide different insights into the rich structure of SH .
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One of the most fundamental objects in high energy
physics is the scattering or S matrix. Not only is it a bridge
between a definition of a quantum theory and data from
particle colliders, but the study of the S matrix itself has led
to deep insights into the mathematical and physical pillars
of quantum field theory itself. The idea behind the S matrix
is that it gives the amplitude for a set of particles in an “in”
state jψ ini at t ¼ −∞ to turn into a different set of particles
in an “out” state hψoutj at t ¼ þ∞. To go from this intuitive
picture to a mathematically rigorous definition of the S
matrix has proven remarkably challenging. For example,
suppose we take the in and out states to be eigenstates of the
Hamiltonian H with energy E. Then they would evolve in
time only by a phase rotation, and the S-matrix elements
would all have the form limt→∞ e−2iEthψoutjψ ini. Such an S
matrix would be both ill defined (because of the limit) and
trivial (because of the projection). In nonrelativistic quan-
tum mechanics, one avoids this infinitely oscillating phase

by subtracting fromH the free HamiltonianH0 ¼ p⃗2

2m. More
precisely, one looks for states jψi which, when evolved
with the full Hamiltonian, agree with in and out states
evolved with the free Hamiltonian: e−iHtjψi → e−iH0tjψ ini
as t → −∞ and e−iHtjψi → e−iH0tjψouti as t → þ∞. Then
the projection of in states onto out states is given by matrix

elements hψoutjSjψ ini of the operator S ¼ Ω†
þΩ− where the

Møller operators are defined as Ω� ¼ eiHt�e−iH0t� , with t�
shorthand for the t → �∞ limit. In this way, the free
evolution, which is responsible for the infinite phase, is
removed. Note that limt→�∞ e−iHtjψi is not a well-defined
state, so the in and out states should be thought of as either
Heisenberg picture states or as Schrödinger picture states at
t ¼ 0 not at t ¼ �∞ (see Fig. 1). Defining the Smatrix this
way gives sensible results and a pleasing physical picture:
Particles we scatter are free when not interacting. Their
freedommeans they should have momentum defined by the
free Hamiltonian, and the S matrix encodes the effects of
interactions impinging on this freedom.
In quantum field theory, a similar construction is fraught

with complications. The Møller operators, which convert
from the Heisenberg picture to the interaction picture, do
not exist as unitary operators acting on a Fock space
(Haag’s theorem [1]). So one must work entirely in the
Heisenberg picture without reference to H0. The matching
of the states at t → �∞ is then replaced with an asymptotic
condition on the matrix elements of fields. In the Haag-
Ruelle construction [2–4], a mass gap is required to isolate
the few-particle asymptotic states as limits of carefully
constructed wave packets. From there, one can derive the
Lehmann-Symanzik-Zimmermann (LSZ) reduction theo-
rem, relating elements of the S matrix to time-ordered
products of fields [5,6].
While it is satisfying to know that the S matrix can be

rigorously defined, its existence requires a theorywith amass
gap, a unique vacuum state, and fields whose two-point
functions vanish exponentially at spacelike separation. None
of these requirements hold in any real-world theory. The
practical resolution to this impasse is to ignore Haag’s
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theorem, ignore that charged particles cannot be isolated and
other assumptions, and simply use theLSZ reduction theorem
as if it were true, computing S-matrix elementswith Feynman
diagrams.Although the resultingmatrix elements are singular
(due to infrared divergences), as long as one combines
S-matrix elements computed this way into observable cross
sections, the singularities will drop out. This is guaranteed by
the Kinoshita–Lee–Nauenberg (KLN) theorem [7,8], which
says that infrared divergences will cancel when initial and
final states are summed over, or by its stronger version, that
the cancellation occurswhen initialor final states are summed
over [9]. Despite the success of this pragmatic approach, it
remains deeply unsettling that the underlying object we
compute, the Smatrix, has no formal definition even in QED.
There has been intermittent progress on constructing an S

matrix for QED (and QCD) over the last 50 or so years. The
infrared divergence problem of the S matrix can be seen
already in nonrelativistic scattering off a Coulomb potential.
Because of its 1r behavior, theCoulombpotential is not square
integrable, and the asymptotic states do not exist. This
complication was observed by Dollard [10] and resolved by
using a modified Hamiltonian HasðtÞ that appends the
dominant large-distance behavior of the Coulomb interac-
tion to the free Hamiltonian. Chung [11], independently,
observed that if instead of scattering single-particle Fock-
state elements, one scatters linear combinations of these
elements, similar to coherent states used in quantum optics
(and to an early attempt by Dirac [12]), finite amplitudes
would result. In Chung’s construction, the IR divergent
phase space integrals from cross-section calculations
are moved into the definition of the states. Faddeev and
Kulish [13] subsequently redefined the S matrix to include
the dominant long-distance interactions of QED in its
asymptotic Hamiltonian (similar to Dollard), and identified
Chung’s coherent states as arising during the asymptotic
evolution. Over the years, various subtleties in the coherent-
state approach to soft singularities in QED have been
explored [14–16], and attempts have been made to construct
a finiteSmatrix for theories likeQCDwithmassless charged
particles and hence, collinear singularities [17–20].

Remarkably, in all this literature, there are very few
explicit calculations of what a finite S matrix looks like.
Indeed, almost all of the papers concentrate on the
singularities alone. Doing so sidesteps the challenge of
how to handle finite parts of the amplitudes and precludes
the possibility of actually calculating anything physical.
With an explicit prescription, you have to contend with
questions such as what quantum numbers do the dressed
states have? They cannot have well-defined energy and
momentum outside of the singular limit, since they are
superpositions of states with different numbers of noncol-
linear finite-energy particles.
The basic aspiration of much of this literature is that

when there are long-range interactions, the S matrix should
be defined through asymptotic Møller operators Ωas

� ¼
eiHt�e−iHast� with some kind of asymptotic Hamiltonian
Has replacing the free Hamiltonian H0. Despite the simple
summary, working out the details and establishing a
productive calculational framework has proved a resilient
challenge.
In this paper, we continue the quest for a finite S matrix

by folding into the previous analysis insights from the
modern understanding of scattering amplitudes and fac-
torization. We argue that the principle by which the
asymptotic Hamiltonian is to be defined is not that the
dominant long-distance interactions be included (which
allows forHas ¼ H and S ¼ 1), but that the evolution of the
states be independent of how they scatter.
In gauge theories, infrared divergences can be either soft

or collinear in origin. Both soft and collinear interactions
are universal and can be effectively separated from the
remainder of the scattering process. Factorization has been
understood from many perspectives [21–29]. A precise
statement of factorization can be found in [28,29], where it
is proven that the IR divergences of any S matrix in QCD
are reproduced by the product of a hard factor, collinear
factors for each relevant direction, and a single soft factor.
A useful language for understanding factorization is soft-
collinear effective theory (SCET) [23–27,30,31]. The
SCET Lagrangian is

LSCET ¼ −
1

4
ðFs

μνÞ2 þ
X
n

−
1

4
ðFc;n

μν Þ2

þ
X
n

ψ̄c
n
=̄n
2

�
in ·Dþ iDc⊥

1

in̄ ·Dc
iDc⊥

�
ψc
n

þ LGlauber; ð1Þ

where s and c, n are soft and collinear labels, respectively;
these act like quantum numbers for the fields. The
derivation of the SCET Lagrangian and more details on
the notation an be found in the reviews [30,31]. The
Glauber interactions denoted by LGlauber are discussed
in [32]; when they are included, the SCET Lagrangian
can reproduce all of the IR singularities of any non-Abelian

FIG. 1. (Left) The traditional S matrix is computed from Fock
states evolved using H0 and H. (Right) The hard S matrix is
computed either using Fock states evolved with Has and H or
using dressed states evolved with H0 and H.
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gauge theory. The main relevant features of the SCET
Lagrangian are that 1) there are no interactions between
fields with different collinear-direction labels (up to
Glauber effects), and 2) collinear particles going in differ-
ent directions only interact through soft photons or gluons
with eikonal interactions. We define the asymptotic
Hamiltonian Has as the SCET Hamiltonian appended with
the free Hamiltonians for massive particles, which we
denote with Has ¼ Hsc.
In collider physics applications, one typically adds to the

SCET Hamiltonian a set of operators necessary to repro-
duce the hard scattering of interest. For example, one might
add ΔH ¼ Cψ̄γμψ for jet physics applications in eþe−
collisions. Then one determines theWilson coefficientC by
choosing it such that matrix elements computed using
SCET agree with matrix elements computed in the full
theory. Importantly, the infrared divergences cancel in the
difference so that C is IR-finite order by order in perturba-
tion theory. Motivated by such cancellations, we define
hard Møller operators as ΩH

� ¼ eiHt�e−iHsct� and the hard S
matrix as SH ¼ ΩH†

þ ΩH
− . Because Hsc reproduces the IR-

divergence-generating soft and collinear limits of H, we
expect the hard S matrix will be IR finite. In addition, SH
and corresponding observables will inherit the symmetry
properties of LSCET, such as Lorentz invariance, as opposed
to when Has includes explicit energy and angular cutoffs.
To evaluate matrix elements of SH in perturbation theory,

one could attempt to work out Feynman rules in an
interaction picture based on Hsc instead of H0. A propa-
gator would then be a Green’s function for Hsc, which has
no known closed-form expression. Alternatively, we can
write SH suggestively as (cf. [13,18])

SH ¼ ΩH†
þ ΩH

− ¼ ΩscþΩ
†
þΩ−Ωsc†

− ; ð2Þ

where Ωsc
� ¼ eiH0t�e−iHsct� . This encourages us to define

jψd
ini ¼ Ωsc†

− jψ ini and jψd
outi ¼ Ωsc†

þ jψouti ð3Þ

as dressed in and out states. Then,

hψoutjSHjψ ini ¼ hψd
outjSjψd

ini: ð4Þ

We will take jψ ini and jψouti to be eigenstates of the free
momentum operator Pμ

0 with a few (finite number of)
particles in them. Thus, we can think of SH as computing
either projections among few-particle states with the hard
Møller operators or projections of dressed states with the
original S-matrix Møller operators. For example, in the
process eþe− → Z in QED, jψ iniwould be an eþe− state of
definite momentum and jψd

ini a superposition of jeþe−i,
jeþe−γi, jeþe−γγi, and so on.
More explicitly, we can relate jψd

ini to jψ ini using time-
ordered perturbation theory (TOPT). For example, if jψ ini
is the state of an electron with momentum p⃗, then in QED,

jψd
ini ¼ jūsðpÞiþ e

X
ϵ

Z
dd−1k
ð2πÞd−1

×
1

2ωp

1

2ωk

2p · ϵ

ωk−
p⃗·k⃗
ωp

− iε
jūsðp− kÞ;ϵðkÞiþ � � � : ð5Þ

The denominator factor comes from the soft expansion of
the TOPT propagator ðωp−k þ ωk − ωp − iεÞ−1. Note that
the states in the expansion of jψd

ini have different energies.
Although electric charge and three-momentum are con-
served, energy is not as we evolvewithΩas

− in TOPT. Due to
the IR-divergent integral over k⃗, dressed states do not exist
(in contrast to jψ ini and jψouti), but they do provide a useful
qualitative handle on scattering.
As a concrete example, we now compute SH for deep-

inelastic scattering, e−γ⋆ → e− in QED with massless
fermions at momentum transfer Q ¼

ffiffiffiffiffiffiffiffi
−q2

p
in the Breit

frame. At order e2, the loop contribution to the S-matrix
element is, in MS and d ¼ 4 − 2ϵ dimensions [33],

ð6Þ

with M defined by SH ¼ 1þ ð2πÞ4δ4ðqþ p1 − p2ÞiM
and M0 ¼ −eūðp2Þγμuðp1Þ is the tree-level amplitude.
While this S-matrix element is IR divergent, there are

other contributions to SH at the same order. These can be
thought of as S-matrix elements for the e−γ components of
jψd

ini or jψd
outi. We can represent the new graphs as cuts

through a broader graph, going from 0 → −∞ → ∞ → 0.
The first and last transitions go backward in time and
represent the dressing and undressing of the state in the
asymptotic regions. For example, the graph with both
photon vertices coming from soft-collinear interaction in
Hsc is

ð7Þ

To derive this integrand, we have power expanded in the
soft limit as in the method-of-regions approach [34], rather
than using LSCET directly. Although energy is not con-
served in the asymptotic regions, the central region gives
δðωk þ ωp1−k − ωk − ωp2−kÞ ≅ δðω1 − ω2Þ, which is fac-
tored out in the definition of M.
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This integral is scaleless and vanishes. Although we
cannot easily separate all the UV and IR poles, the double
soft and collinear pole in this amplitude is

MB ¼ M0

α

4π

�
−

2

ϵ2IR
þ � � �

�
: ð8Þ

Focusing on the double pole also lets us restrict to just the
soft graphs, as they contain the complete soft-collinear
singularity. There are also graphs with one vertex coming
from Hsc and one coming from H:

ð9Þ

¼ M0

α

4π

�
4

ϵ2IR
þ � � �

�
: ð10Þ

The double IR pole from the S-matrix element cancels
exactly in the sumMAþMBþMCþMD, as anticipated.
It is worth emphasizing the even the double-pole

calculation is not trivial and requires careful manipulation
of the distributions involved (cf. Ref. [9]). Moreover, the
cancellation is different in nature from the cancellation in
the computation of a Wilson coefficient. There, the soft
exchange graph (the analog of MB) is subtracted from
MA; here, the graphs add, with the cancellation coming
from graphs MC þMD with one soft and one regular
vertex.
The other TOPT diagrams involving soft-collinear ver-

tices in Hsc, such as

ð11Þ

are not infrared divergent. In fact, the second diagram is
zero, because there is no electron-positron annihilation
vertex inHsc. Similarly, there are no diagrams with the hard
vertex in the asymptotic regions, as Hsc has only soft and
collinear interactions.
To see the cancellation of subleading IR poles explicitly,

we need regulators other than those provided by dimen-
sional regularization, such as off shellness (see [33,35]), or
explicit phase space restrictions. One should also then
include graphs involving the collinear interactions inHsc as
well as a zero-bin subtraction to avoid overcounting [35].
Using dimensional regularization is simplest, since all of
the graphs other than MA are scaleless. Thus, after
removing UV poles with renormalization, we find

he−jSHjγ⋆e−i
¼ ð2πÞ4δ4ðqþp1 −p2Þūðp2Þγμuðp1Þ

× ð−ieÞ
�
1þ α

4π

�
− ln2

μ2

Q2
− 3 ln

μ2

Q2
− 8þ π2

6

��
: ð12Þ

To confirm that the IR divergences cancel in SH, without
invoking scaleless-integral magic, we can impose physical
cutoffs on the degrees of freedom that interact in Hsc, such
as including only photons with energy less than δ or within
angle R of an electron [36]. Then the diagrams likeMB are
no longer scaleless. We have checked that all of the IR
divergences cancel in SH using this approach. Although SH
comes out IR finite, it retains sensitivity to the scales R and
δ; in pure dimensional regularization, these cutoff scales are
replaced by the single scale μ.
With a new definition of the S matrix, it is natural to ask,

what are its predictions for observables? Consider an
infrared-finite observable, such as the total cross section
in Z → hadrons. To compute it, note that the total cross
section for Z → anything, at order αs is zero, since the
forward scattering Z → Z cross section exactly cancels the
cross section to everything else. This follows from unitarity,
whether using SH or S. Now, the Z has no soft or collinear
interactions, so jZdi ¼ jZi. Thus, hZjSHjZi ¼ hZjSjZi to
all orders in perturbation theory. Therefore, the Z → Z
forward-scattering cross section is the same with SH and S
and so is the Z → hadrons cross section.
More generally, if we consider an observable less

inclusive than the total cross section, such as a jet rate,
then the details of the asymptotic dynamics will be
important to determining the differential cross section.
When we include this dynamics by evolving the final state
with an e−iHastþ factor, we would effectively be computingP

X jhXje−iHastSHjZij2 ¼
P

X jhXjSjZij2, so the differen-
tial cross section will agree exactly with one computed
using S. Since infrared-safe cross sections computed
using S are incontrovertible agreement with data, this is
reassuring: we have not created more problems than we
have solved with a finite S matrix. On the other hand,
there are also issues where physical predictions using S
are ambiguous, such as with charged particles in the
initial states. SH could possibly shed light on these
processes.
Having a finite S matrix is perhaps most appealing in

situations where the S matrix is of interest for its own sake,
for example, for its mathematical properties. One popular
playground for studying the mathematics of the S matrix is
N ¼ 4 super-Yang-Mills theory. This theory is a conformal
gauge field theory. Although its S matrix is UV finite, it is
still IR divergent. Moreover, its mathematical properties
depend on how these IR divergences are removed. For
example, the simplest approach is simply to drop the 1

ϵIR

terms, MS-style. Doing so for the planar two-loop six-
particle amplitude, for example, gives a complicated
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function of the nine kinematical invariants. If instead, one
employs the Bern-Dixon-Smirnov (BDS)-Ansatz, taking
the ratio of the S-matrix element to the exponentiation of
the one-loop result [37,38], then the result is a relatively
simple “remainder function” of only the three dual-
conformally invariant cross-ratios [39,40]. While dual-
conformal invariance is preserved by the BDS-Ansatz,
the BDS remainder functions have unappealing analytic
properties, such as violating the Steinmann relations [41].
A BDS-like Ansatz might preserve these [42]. A minimal
normalization is another option [43]. In the computation of
SH, the IR divergences cancel automatically: The analog of
the BDS subtraction comes naturally from multiplying 1=ϵ
counterterms for SH with the finite OðϵÞ parts SH-matrix
elements. Thus, SH-matrix elements provide some of the
benefits of IR-finite remainder functions, without the
arbitrariness of a ratio. Moreover, as the SH operator is
unitary, properties that follow from unitarity (perhaps
including the Steinmann relations) should be automatically
satisfied. This is in contrast to remainder functions, which
are quotients of S-matrix elements to other quantities.
In this paper, we have argued that there is nothing sacred

about the traditional Smatrix. Its nonperturbative definition
is absurdly complicated, and its interaction-picture defi-
nition involves an admixture of free and full-theory time
evolution. In a theory with massless particles, it is natural to

replace the free evolution with universal soft and collinear
evolution. Unlike S, whose matrix elements are either
infinite (IR divergent) or zero (after exponentiation of
the IR divergences), matrix elements of this new object
SH are IR finite to all orders.
In summary, this paper provides the first explicit con-

struction of a S matrix for non-Abelian gauge theories with
no collinear or soft divergences; it provides rules (see
also [44]) for computing SH beyond just the cancellation
of the singularities, allowing the mathematical properties of
the S matrix to be explored with the IR-divergence problem
removed in a naturalway; it connects to previous literature on
dressed and coherent states but also argues that such non-
normalizable states are not needed for SH or to compute
observables; finally, it connectsSH-matrix elements to SCET
and to remainder functions inN ¼ 4SYMtheory for the first
time. While there is much still to be understood about SH, it
provides a solid starting point for an improved understanding
of scattering in theories with massless particles.
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