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Inflationary scenarios motivated by high-energy physics generically contain a plethora of degrees of
freedom beyond the primordial curvature perturbation. The latter interacts in a simple way with what we
name “inflationary flavor eigenstates,”which differ, in general, from freely propagating “mass eigenstates.”
We show that the mixing between these misaligned states results in new striking behaviors in the squeezed
limit of the curvature perturbation three-point function, depending not only on the mass spectrum but also
on the “mixing angles” of the theory. These results bring about a new perspective on the cosmological
collider program: contrary to a widespread belief, the primordial signal needs not be dominated by the
lightest extra degree of freedom. Instead, we show that it may display either modulated oscillations, a
broken power law, or a transition from oscillations to a power law, thus offering a detailed cosmic
spectroscopy of the particle content of inflation.
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I. INTRODUCTION

In order to draw conclusions about fundamental physics
at the very high energy scales probed during cosmic
inflation, an important piece of information is still missing:
what is the particle content at play in the primordial
universe? The simplest models of inflation are of the
single-clock kind: one scalar field both drives the back-
ground evolution and seeds the large-scale inhomogeneities
that we observe nowadays in the cosmic microwave
background and in the distribution of matter [1–6].
Although this class of models is phenomenologically
viable [7,8]—provided the scalar potential is sufficiently
flat—we expect single-field inflation to be only an approxi-
mate emergent description stemming from a more funda-
mental theory. Indeed, not only are flat scalar potentials
sensitive to Planck-scale physics, but candidate theories at
these scales, such as string theory, generically predict
a plethora of active particles (see, e.g., [9]). Crucially,

single-clock models of inflation verify consistency rela-
tions, most notably relating the three-point function of
the primordial curvature perturbation in the squeezed limit
to its power spectrum and corresponding spectral index
[10–15]. Not only does this relation not hold in more
general scenarios, but recent years have seen the develop-
ment of the so-called cosmological collider program,
aiming at unveiling the inflationary particle content through
the robust signatures it leaves in the squeezed bispectrum
and other soft limits of higher-order correlation functions
(see, e.g., [16–25]).
Due to the widespread belief that only the lightest extra

particle is observationally relevant, previous studies have
limited themselves to a single extra particle (see [26–29]
about loop corrections from more fields). In this work, we
explain why this idea is misplaced by considering infla-
tionary scenarios featuring any number of fluctuating scalar
degrees of freedom, that we call “inflationary flavor eigen-
states,” coupled to the observable curvature perturbation
through a “portal field.” Analogous to the mixing of flavor
and mass eigenstates for neutrinos and quarks [30–33],
the inflationary flavor eigenstates mix with the freely
propagating “inflationary mass eigenstates” through a
mixing matrix to be determined by experiments.
Expressed in the language of an effective field theory for
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fluctuations [34,35], this generic setup encompasses dom-
inant effects of all explicit multifield models of inflation at
lowest order in derivatives [36]. We show that it leads to
striking many-field observational signatures that cannot be
mimicked by simpler models, in particular, for particles
with masses of order the Hubble scale, as motivated, e.g.,
by supersymmetry [18,37]. Depending on the mass spec-
trum, but also on the “mixing angles” of the theory, the
squeezed three-point function needs not be dominated by
the lightest field and may display either modulated oscil-
lations, a broken power law, or a transition between
oscillations and a power law. This nontrivial “cosmic
spectroscopy” would, therefore, undoubtedly confirm the
presence of multiple primordial degrees of freedom and
inform us about the fundamental physics at play in the very
early Universe.

II. FLAVOR AND MASS BASES,
MIXINGS AND INTERACTIONS

We consider an inflationary background in which all
quantities evolve much more slowly than the scale factor
aðtÞ, so that the Hubble scale H ¼ _a=a (a dot denoting a
derivative with respect to cosmic time t), the slow-roll
parameter ϵ ¼ − _H=H2, and other homogeneous functions
of time can be considered constant over the time scales
relevant for the present study.

A. Flavor basis

In addition to the usual massless comoving curvature
perturbation ζ, we consider the presence of Nflavor interact-
ing fields F α that are quadratically coupled to ζ through the
following Lagrangian:

Lð2Þ
flavor ¼

a3

2

�
δαβ

�
_F α _F β −

∂F α
∂F β

a2

�
−M2

αβF
αF β

þ 4
ffiffiffiffiffi
2ϵ

p
MPlωδα1F α _ζ

�
; ð1Þ

where ∂ is the spatial derivative, M2 is a symmetric mass
matrix, and ω=H is the dimensionless coupling quantifying
the strength of the quadratic interaction between ζ and the
new sector. For the purpose of this work, it will not be
necessary to spell out concrete models of inflation that
realize this setup. Nonetheless, we stress that this
Lagrangian for fluctuations is the one found in nonlinear
sigma models of inflation with Nflavor þ 1 fields. In this
context, theF α are entropic perturbations,ω is the covariant
rate of turn of the multifield background trajectory, andM2

αβ

is related to the inflationary potential and target space
geometry [36,38].1 We call the extra fields, F α, flavor

eigenstates since their interactions with the adiabatic sector
take a specific form: only F 1 is directly coupled to ζ, which
for this reason we dub the portal field. But crucially, these
flavor eigenstates mix due to the a priori nondiagonal mass
matrix M2, which calls for a study of the mass eigenstates.

B. Mass basis and mixing angles

Recalling that M2 is considered constant, we define the
mass eigenstates σi and eigenvalues m2

i (assumed to be
positive for simplicity), i ∈ f1;…; Nflavorg, and the ortho-
gonal matrix Oα

i representing the change of basis between
the flavor and mass eigenstates:F α ¼ Oα

iσ
i. The quadratic

Lagrangian in the mass basis reads:

Lð2Þ
mass ¼ a3

2

�
δij

�
_σi _σj −

∂σi∂σj

a2

�
−

XNflavor

i¼1

m2
i ðσiÞ2

þ 4
ffiffiffiffiffi
2ϵ

p
MPlωiσ

i _ζ

�
; ð2Þ

with ωi ¼ ωO1
i, showing that all mass eigenstates are

coupled to ζ with strengths that depend on their weights in
the portal field since F 1 ¼ O1

iσ
i. Because O is an

orthogonal matrix and represents the mixing of the flavor
and mass eigenstates, it may be parametrized with mixing
angles, just like the PMNS [30,31] and CKM [32,33]
matrices of the Standard Model of particle physics. But
actually, among the inflationary flavor eigenstates, only the
portal field F 1 is quadratically coupled to ζ, hence it is
enough to consider the fact that

P
i ðO1

iÞ2 ¼ 1, which
allows us to write the effective interactions ωi in terms of
only Nflavor − 1 mixing angles θ1i with i ≥ 2. For example,
if the new sector is a triplet, then Nflavor ¼ 3, and one writes

O1
i ¼ ½cosðθ12Þ cosðθ13Þ; sinðθ12Þ cosðθ13Þ; sinðθ13Þ�i; ð3Þ

which can easily be extended to a larger number of flavors.

C. Cubic interactions

One may distinguish three kinds of cubic interactions,
depending on the number of exchanged particles in the tree-
level Feynman-like diagrams. In the mass basis, we
consider the following ones:

Lð3Þ
single ¼ −

a3

H

ffiffiffiffiffi
2ϵ

p
MPlωiσ

i

�
_ζ2 −

ð∂ζÞ2
a2

�
; ð4Þ

Lð3Þ
double ¼ 2a3ϵHM2

PlRijσ
iσj _ζ; ð5Þ

Lð3Þ
triple ¼ −

a3

6
Vijkσ

iσjσk; ð6Þ

which coincide again with the leading-order interactions of
nonlinear sigma models of inflation, provided a suitable
identification of the fully symmetric tensors Rij (of mass

1In such models, there is an extra interaction in the entropic
sector, a3Ωαβ

_F αF β, with Ωαβ an antisymmetric matrix repre-
senting the rates of turn of the entropic basis along the infla-
tionary trajectory [36,38]. In the context of this paper, we have
checked that treating it perturbatively always leads to next-to-
leading order corrections only, and we, therefore, omit it.
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dimension −2) and Vijk (of mass dimension 1) [36]. Note

also that the coupling ωiσ
i in Lð3Þ

single is the same as the one
in the quadratic mixing and treats on equal footing time and
spatial derivatives of ζ. In the language of the effective field
theory of inflation [34,35], this fact can be understood as
the presence in the unitary gauge of a mixing operator with
the portal field, ωF 1δg00 → −ωiσ

i½2_π þ _π2 − ð∂πÞ2=a2�,
where we reintroduced π ¼ −ζ=H the Goldstone boson of
broken time diffeomorphisms.

III. FREE FIELDS,
POWER SPECTRUM, AND BISPECTRUM

A. Interaction picture: free fields and interactions

In this work, we treat perturbatively the coupling
between the portal field and the curvature perturbation,
which amounts to choosing as a free Lagrangian the first

line of Lð2Þ
mass in Eq. (2), together with Lð2Þ

ζ ¼ a3ϵM2
Pl½_ζ2−

ð∂ζÞ2=a2�. Note that with this choice, each free field is
independent, and independent initial conditions—and,
therefore, quantum oscillators—may be drawn. The corres-
ponding mode functions are

ζkðτÞ ¼
H=MPlffiffiffiffiffiffiffiffiffi
4ϵk3

p ð1þ ikτÞe−ikτ; ð7Þ

σikðτÞ ¼ eiðνi−1=2Þπ2
Hð−τÞ3=2 ffiffiffi

π
p

2
Hð1Þ

νi ð−kτÞ; with

νi ¼ ð9=4 −m2
i =H

2Þ1=2; ð8Þ

where we use conformal time such that dt ¼ adτ, withHð1Þ
νi

the Hankel function of the first kind with parameter νi,
and where νi may be purely imaginary if m2

i =H
2 > 9=4.

These free fields then interact via the quadratic coupling

Lð2Þ
int ¼ a32

ffiffiffiffiffi
2ϵ

p
MPlωiσ

i _ζ, as well as the cubic interactions.

B. Negligible corrections to the power spectrum

Doing the explicit calculation, we find that Lð2Þ
int leads

to a tree-level correction to the dimensionless power

spectrum of ζ as Pζ ¼ Pð0Þ
ζ ½1þ ω2

H2

P
iðO1

iÞ2CðνiÞ� with

Pð0Þ
ζ ¼ H2=ð8π2ϵM2

PlÞ the usual single-field power spec-
trum, and CðνiÞ a constant that depends on the mass of the
exchanged particle [17,39,40]. The effects from extra
particles, consisting here in an unobservable rescaling of
the scale-invariant power spectrum, must any way remain
negligible, consistently with the perturbative expansion
in ω=H < 1.

C. Bispectrum: Diagrams and shape function

The crucial novelty of the bispectrum, in contrast
to the power spectrum, is that the purely adiabatic con-
tribution from single-field interactions is tiny and sup-
pressed in the squeezed limit once subtle gauge issues are
taken into account [41–43]. Therefore, exchanges of extra
particles are dominant in the squeezed limit that, as we
show in this paper, is sensitive to all the mass eigenstates.
At leading order, each of the cubic interactions gives an
independent contribution to the three-point function, as
depicted in the corresponding Feynman-like diagrams of
Fig. 1, and we will be interested in the associated dimen-
sionless shape function S defined such that hζ̂k⃗1 ζ̂k⃗2 ζ̂k⃗3i ¼
ð2πÞ7δð3Þðk⃗1 þ k⃗2 þ k⃗3ÞðPð0Þ

ζ Þ2Sðk1; k2; k3Þ=ðk1k2k3Þ2.

IV. SQUEEZED LIMIT: THE COSMIC
SPECTROSCOPY

A. Scaling behavior

For definiteness, we parametrize the wave numbers in
the bispectrum as ðk⃗1; k⃗2; k⃗3Þ¼ðk⃗S− k⃗L=2;−k⃗S− k⃗L=2; k⃗LÞ.
In the so-called squeezed limit with parameter κ ¼
kL=kS ≪ 1, we find that the single-exchange bispectrum
shape is a sum of individual contributions, with normalized
weights ðO1

iÞ2,

Ssingle ≃
κ≪1

−
π

2

ω2

H2

XNflavor

i¼1

ðO1
iÞ2Si; with

Si ¼ e−πImðνiÞIm½κ1=2þνi JþðνiÞ þ κ1=2−νiJ−ðνiÞ�; ð9Þ

with coefficients J�ðνiÞ that depend on the mass of the
exchanged particle, see Eq. (10). Note that the mixing
angles in ðO1

iÞ2 ≤ 1 change the relative weights of each

FIG. 1. Diagrammatic expression of the tree-level bispectrum of ζ (propagators in red), including contributions from the extra scalars
σi (propagators in blue). From left to right: usual single-field slow-roll-suppressed contribution, one-particle σi exchange with cubic
interaction of strength ωi (sum over i), two-particles σi, σj exchange with cubic interaction of strength Rij (sum over i, j), three-particles
σi, σj, σk exchange with cubic interaction of strength Vijk (sum over i, j, k).
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individual contribution, but cannot enhance the overall
signal. For example, if the latter is dominated by a single
contribution ðO1

i0Þ2Si0 , then the total signal is still smaller
than the corresponding individual one Si0 . Moreover, this
amplitude is small, ðω=HÞ2 < 1, a feature that is not shared
by the double- and triple-exchange diagrams, whose
amplitudes can naturally be large, a familiar result for
the latter [16,17]. However, we chose for this paper to focus
on the single-exchange diagram, in order to exemplify the
new shape-dependence of the signal in the presence of
several additional particles in the simplest technical man-
ner. We refer the interested reader to the Discussion section
for comments about the amplitudes and shapes of the
double- and triple-exchange diagrams, see Eq. (13), as well
as to a separate publication [44] for more explicit results.
Let us now distinguish two physically distinct situations
in Eq. (9):

(i) For light fields, mi < 3H=2 with real mass para-
meter νi, the (þ) and (−) modes are respectively
growing and decaying modes as a function of κ.
Therefore, only J−ðνiÞ is relevant in the above
formula that is valid for κ ≪ 1.

(ii) For heavy fields, mi > 3H=2 with purely imaginary
mass parameter νi ¼ iμi, μi being a positive real
number, the (þ) and (−) modes are oscillating with
the same frequency μi in lnðκÞ space.

In our many-field context, the observable signal is the sum
of these individual contributions over all mass eigenstates,
and contrary to what may naively be thought, we will show
that it may not always be dominated by the lightest field.
But first, we investigate individual contributions, which
requires the computation of

J�ðνiÞ ¼
Z

∞

0

dx1

Z
∞

0

dx2Im½ð1þ 2ix1 − 2x21Þe−2ix1 �

× A�
νi x

−1=2�νi
1 x−1=22 e−ix2ðHð1Þ

νi ðx2ÞÞ�; ð10Þ
where A�

νi are νi-dependent complex numbers, defined (for

νi ≠ 0) by Hð1Þ
νi ðxÞ ≃x≪1

Aþ
νi x

þνi þ A−
νix

−νi, and where inte-

grals are regularized in the UV by the usual iϵ prescription
of the in-in formalism [45].

B. Investigating the individual contributions

Interestingly, it is possible to compute J� analytically,
both for light and heavy mass eigenstates.

(i) For light fields and sufficiently squeezed configu-
rations, only IðνiÞ ¼ Im½J−ðνiÞ� is relevant, and we
find

Si ¼ κ1=2−νi IðνiÞ; with

IðνiÞ ¼ −
2−1þ2νiΓð7=2 − νiÞΓðνiÞ cosðπνiÞffiffiffi

π
p ð−1þ 2νiÞ½1þ sinðπνiÞ�

; ð11Þ

where IðνiÞ is plotted in Fig. 2.

(ii) For heavy fields, we rewrite Si in order to make
explicit the amplitude AðμiÞ and the phase φðμiÞ of
the oscillations with frequency μi,

Si¼−κ1=2AðμiÞsin½μi lnðκÞ−φðμiÞ�; with

AðμiÞeiφðμiÞ ¼
ffiffiffi
π

p
2−1þ2iμi tanhðπμiÞΓð72− iμiÞ

ð2μiþ iÞΓð1− iμiÞ
×e−πμiðcothðπμiÞþ icschðπμiÞþ1Þ2;

ð12Þ
and AðμiÞ, φðμiÞ are plotted in Fig. 2.

We have checked that our results reduce exactly to
known ones in the limit of a single extra mass eigenstate σ,
both in the light case [19] and in the heavy one [21], even if
computed with a completely different method for the latter.
To simplify the discussion about observational signatures,

we restrict ourselves in the next paragraphs to the case of two
extra scalars, i.e., Nflavor ¼ 2, and therefore a single mixing
angle θ12: O1

i ¼ ½cosðθ12Þ; sinðθ12Þ�i, where here one can
actually choose θ12 ∈ ½0; π=2�. Moreover, we consider
masses close to the Hubble scale. For definiteness, we also
choose m2

1 > m2
2. Therefore, in the limit θ12 → 0 (respec-

tively, θ12 → π=2) one recovers the signal from the heavier
(respectively, the lighter) field alone. However, generic
values, such as θ12 ¼ π=4 for which the portal field has
equal weights in bothmass eigenstates,F 1¼ðσ1þσ2Þ=

ffiffiffi
2

p
,

result in a new striking phenomenology that we nowdiscuss.

C. Modulated oscillations

We first consider the situation of two heavy fields with
both ν1;2 ¼ iμ1;2 purely imaginary, and μ1 > μ2 > 0.

FIG. 2. Amplitudes and phase for the different contributions to
the squeezed bispectrum. Light fields with parameter 0 < νi <
3=2 contribute as a power law proportional to IðνiÞ (blue line).
Heavy fields with parameters μi > 0 contribute with lnðκÞ
oscillations with an amplitude AðμiÞ (orange line) and phase
φðμiÞ (green line). We have checked that the apparent divergences
of the signal in the νi; μi → 0 limit are regulated, either by taking
into account the other mode ∝ Im½JþðνiÞ� in the light case, or by
considering the vanishing phase in the heavy case, leading in both
situations to the same finite limit, κ−1=2Si → −2 − 15=8½π −
4 lnð2Þ þ lnðκÞ� ≃ −2.69 − 1.88 lnðκÞ, and demonstrating the
continuity of the signal across the mi ¼ 3H=2 threshold. The
divergence in the νi → 3=2 limit is a manifestation of the usual
burden of IR divergences for massless fields.
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The overall signal is then the sum of two oscillating
contributions with different frequencies μ1, μ2 and respec-
tive amplitudes and phases, meaning modulated oscilla-
tions with frequencies ðμ1 � μ2Þ=2. In Fig. 3, we show the
resulting signal for close masses ðμ1; μ2Þ ¼ ð1.3; 1.0Þ (left
panel) or differing by an order one factor ðμ1; μ2Þ ¼
ð1.5; 0.5Þ (right panel) for four values of the mixing angle,
θ12 ∈ f0; π=10; π=4; π=2g. While the modulated oscilla-
tions are clearly visible for a generic mixing in the case of
close masses (see the orange line for θ12 ¼ π=4 in the left
panel), the observation of such an effect for a larger
hierarchy of masses requires a smaller mixing angle and,
therefore, the portal field to be dominated by the heavier
mass eigenstate in order to compensate for its power
suppression (see the green line for θ12 ¼ π=10 in the right
panel). Observing modulated oscillations in the squeezed
limit of the bispectrum would be a striking signature of
multiple heavy degrees of freedom beyond the inflaton in
the very early Universe.

D. Broken power law

Another case consists in having only light fields, with
real mass parameters ν1;2 and 0 < ν1 < ν2 < 3=2, in which
case the resulting signal is the sum of two power laws. In
contrast to the oscillations of heavy fields that periodically
vanish, the individual contribution from the lighter field is,
in this case, always dominant. Therefore, it is only if the
portal field is dominated by the heavier mass eigenstate,
i.e., for small mixing angles, that the squeezed limit of the
bispectrum displays a many-field behavior. Indeed in that
case, the overall signal transitions between two different
power laws for intermediate values of the squeezing
parameter, as can be seen in the left panel of Fig. 4 (in
particular, see the green line for θ12 ¼ π=10).

E. Mixed case

An interesting possibility is to have a light field and a
heavy one in the new sector, with mass parameters ν1 ¼ iμ1

purely imaginary and ν2 real. Like the previous two-light-
fields case, it is only for small mixing angles that the effect
of the heavier of the two fields can be seen in the squeezed
bispectrum. In that case, there is a qualitative change of
behavior from a certain value of the squeezing parameter,
transitioning from oscillations to a power law at inter-
mediate squeezing values, as can be seen in the right panel
of Fig. 4 (in particular, see the green line for θ12 ¼ π=10).

V. DISCUSSION

In this paper, we have investigated how the mixing of
inflationary flavor and mass eigenstates affects the bispec-
trum of the primordial curvature perturbation in the
squeezed limit. We have identified that cosmological
observations are not only sensitive to the mass spectrum
of the freely propagating degrees of freedom, but also to
mixing angles that measure the weights of the different
mass eigenstates in the portal field, which is the only flavor
directly coupled to ζ. Indeed, large-scale fluctuations of
these fields of different masses interfere with unequal
amplitudes and phases with fluctuations of ζ on smaller
scales when the latter exit the horizon, imprinting a non-
trivial pattern in the primordial bispectrum. Recovering en
passant several known results of the literature when there is
only a single extra degree of freedom, we have shown that
single-exchange diagrams display new striking observa-
tional signatures: modulated oscillations, a broken power
law, or a transition between oscillations and a power law.
Importantly, our results show that the general belief that

only the lightest field is relevant in a many-field situation is
wrong in the case of heavy fields with mi > 3H=2, and
although true in the asymptotically squeezed limit κ → 0 in
the case of light fields with mi < 3H=2, and in the mixed
case with both light and heavy fields, it is also misplaced
for reasonable squeezing values of observational relevance.

FIG. 3. Rescaled signal in the squeezed limit of the bispectrum,
κ−1=2

P
iðO1

iÞ2Si, for two extra heavy fields. The left panel
corresponds to ðμ1; μ2Þ ¼ ð1.3; 1.0Þ and the right one to
ðμ1; μ2Þ ¼ ð1.5; 0.5Þ, for different values of the mixing angle
θ12 ∈ ½0; π=2�. The modulation of the oscillations from the
heavier field is clearly visible, even if only for a small nonzero
mixing angle θ12 when the mass hierarchy is too strong.

FIG. 4. Overall signal
P

iðO1
iÞ2Si in the squeezed limit of the

bispectrum, for two extra light fields with ðν1; ν2Þ ¼ ð0.5; 1.0Þ
(left panel), as well as one heavy field and one light one with
ðμ1; ν2Þ ¼ ð0.8; 0.4Þ (right panel), for different values of the
mixing angle θ12 ∈ ½0; π=2�. The effect of the heavier field is a
transition at intermediate squeezing values, between either two
different power laws or an oscillatory signal and a power law, but
is only visible for a small nonzero mixing angle θ12.
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The overall amplitude of the signal from the single-
exchange diagram considered in this paper is small:
fsqNL ∼ ðω=HÞ2 < 1, where ω=H is the dimensionless
coupling between the curvature perturbation and the
portal field. However, this needs not be the case for the

double- and triple-exchange diagrams, with dimensionless
couplings RijH2 and Vijk=H independent from ω=H, and
that feature boosted amplitudes (note the negative powers
of the scalar power spectrum),

Sdouble ≃
κ≪1

1

4

ω2

H2

1

Pð0Þ
ζ

X
i;j

RijH2O1
iO1

je−πImðνiþνjÞIm½κ1=2þνiJdoubleþ ðνi; νjÞ þ κ1=2−νi Jdouble− ðνi; νjÞ�;

Striple ≃
κ≪1

π2

4

ω3

H3

1ffiffiffiffiffiffiffiffiffi
Pð0Þ

ζ

q X
i;j;k

Vijk

H
O1

iO1
jO1

ke−πImðνiþνjþνkÞIm½κ1=2þνi Jtripleþ ðνi; νj; νkÞ þ κ1=2−νiJtriple− ðνi; νj; νkÞ�; ð13Þ

with coefficients Jdouble;triple� that depend on the masses of
the exchanged particles. We will report on the detailed
behaviors of the double- and triple-exchange diagrams,
qualitatively similar to the one presented in this work, in a
separate publication [44].
Our results open several avenues for new research.

Theoretically, it would be interesting to include spinning
particles, to consider higher-order correlation functions,
and to estimate subleading contributions in not-so-
squeezed configurations. Observationally, it motivates
studying how, and to which extent, the various cosmologi-
cal probes can fulfill the promise of the primordial cosmic
spectroscopy presented here.
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