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Drell-Yan production is one of the precision cornerstones of the LHC, serving as calibration for
measurements such as the W-boson mass. Its extreme precision at the level of 1% challenges theory
predictions at the highest level. We present the first independent calculation of Drell-Yan production at
order α3s in transverse-momentum (qT ) resummation improved perturbation theory. Our calculation reaches
the state-of-the-art through inclusion of the recently published four loop rapidity anomalous dimension and
three loop massive axial-vector contributions. We compare to the most recent data from CMS with fiducial
and differential cross-section predictions and find excellent agreement at the percent level. Our resummed
calculation including the matching to Z þ jet production at NNLO is publicly available in the upcoming
CuTe-MCFM 10.3 release and allows for theory-data comparison at an unprecedented level.
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I. INTRODUCTION

Drell-Yan (Z-boson) production is among the most
important standard candles of the high-energy LHC physics
program due to its very precise measurement at the level of
one percent [1–4]. It is used for the extraction of the strong
coupling [5,6], fitting of parton distribution functions [7,8]
that further constrain and determine Standard Model (SM)
input parameters, and is also a crucial ingredient of the
W-boson mass determination [9–11].
The current precision in QCD for Drell-Yan predictions

is at the level of α3s both fully differentially [12–15] and
more inclusively [16,17]. Calculations at this order have
been performed at fixed order (N3LO) and including the
effects of transverse momentum (qT) resummation up to
N3LL logarithmic accuracy. Currently all fully differential
calculations at the level of α3s employ transverse momentum
subtractions or transverse momentum resummation. They
have been enabled by the recent availability of the three-
loop beam-functions [18–20], complete three-loop hard
function [21–25] and the existence of a NNLO calcula-
tion of Z þ jet production [26–30]. Beyond pure QCD
corrections, the full set of two-loop mixed QCD ⊗ EW
corrections have been calculated very recently [31–33].

Traditionally there has been a focus on fixed-order calcu-
lations for total fiducial cross sections, but now that relatively
high perturbative orders have been reached, convergence
issues of the perturbative series due to fiducial cuts have
been identified [34–36]. These issues trace back to a linear
sensitivity of acceptance cuts to small transverse momenta,
where fixed-order predictions are unreliable, leading to
factorially divergent contributions [35]. It has shifted the
focus toward resummation-improved results even for total
fiducial cross sections, which can cure such problemswithout
requiring any modification of analysis cuts.
All calculations matched to NNLO Z þ jet fixed-order

at large qT have so far been based on the NNLOjet
results [27]. Different implementations of qT resummation
and subtractions are built on top of this calculation. Results
for a matching to the resummation in DYTurbo [37] have
been presented in Ref. [13] where only nonsinglet and
vector singlet1 contributions are included and truncation
uncertainties are estimated by considering differences
between successive orders. A matching to the RadISH
resummation approach [14,38] has been presented in
Refs. [12,14], also neglecting axial singlet contributions.
Axial singlet contributions in the mt → ∞EFT have been
included in the resummed calculation of Ref. [39] but
without the matching to α3s fixed-order. The NNLOjet setup
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1In singlet contributions the Z boson does not directly couple
to the incoming quarks, but is separated through loops involving
gluons. These contributions therefore only enter at higher orders.
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has subsequently been extended to calculate fiducial cross
sections also at fixed-order N3LO, comparing the impact of
power corrections through studying the difference between
symmetric and product cuts [15] and comparing with
13 TeV ATLAS data [4]. The RadISH based calculations
provide uncertainty estimates for differential and fiducial
results for the first time. Despite these studies, it is crucial
to have an independent calculation of both the fixed-order
components and the resummation implementation. While
the NNLOjet calculation is tested by the correct approach
of the triple singular limits through an implementation of
(differential) qT subtractions, it is important to also probe
the finite contributions. As well as acting as a cross-check,
an additional calculation also provides an independent
estimate of uncertainties.
In this paper we present both a publicly available

calculation of Z-boson production as well as differential
and fiducial cross sections at the state-of-the-art level
N4LLp þ N3LO. The “p” subscript denotes that we are
α3s accurate in fixed-order and RG-improved perturbation
theory up to missing effects from exact N3LO PDFs that
contribute both to fixed-order and logarithmic accuracy at
α3s . We include the four loop rapidity anomalous dimension
[40,41], pushing the accuracy to this level for the first time.
We also include the massive three-loop axial singlet
contributions [25] without the need for approximations.
We compare at α3s accuracy with the CMS 13 TeV
precision measurement. All parts, both resummation and
fixed-order are publicly available in the next CuTe-MCFM

release 10.3. Public codes are crucial to ensure reproduc-
ibility, allow the community to perform independent
checks, to calculate predictions with different parameters,
and provide the basis for future theoretical improvements as
strongly advocated by our community [42].

II. CALCULATION

Our calculation in CuTe-MCFM [43,44] matches qT-
resummation in the SCET formalism of Refs. [45–47] at
the level of N4LLp to α3s fixed-order Z þ jet production.
Apart from missing N3LO PDF effects we achieve full α3s
fixed-order and transverse momentum renormalization-
group-improved (RG-improved) logarithmic accuracy
by counting logðq2T=Q2Þ ∼ 1=αs. These logarithms are
resummed through RG evolution of hard- and beam
functions in the small-qT factorization theorem. Rapidity
logarithms are directly exponentiated through the collinear-
anomaly formalism.
We switch between the fixed-order region of large qT

and resummation region of small qT using a transition
function [43]. The overlap between fixed-order and resum-
mation has to be subtracted by expanding the resummation
to a fixed-order. This difference is referred to as matching
corrections. For Z boson production they quickly approach
zero for qT → 0 and remain at the few percent level up to

∼30 GeV, while becoming negligible below a certain
value, see our Supplemental Material [48].
Crucial ingredients in our calculation on the resumma-

tion side include the three loop transverse momentum
dependent beam functions [18–20] and the four loop
rapidity anomalous dimension [40,41]. The five loop cusp
anomalous dimension only enters through the hard function
evolution and we have checked that it is numerically
completely negligible. Already at a lower order the hard
function evolution is precise at the level of one per-mille.
We nevertheless include the hard function evolution taking
four loop collinear anomalous dimensions from Ref. [49]
and a five loop cusp estimate from Ref. [50] that agrees
with our own Padé approximant estimate. The five loop
beta function is taken from Ref. [51].
We include the resummation of linear power correc-

tions [34] through a recoil prescription [52]. This is crucial
to improve the resummation itself as well as the numerical
stability by allowing a larger matching cutoff (the value of
qT below which matching corrections are set to zero). It is
also crucial for the stability of our fixed-order results in the
presence of symmetric lepton cuts, see our Supplemental
Material [48].
Transverse momentum Fourier conjugate logarithms

L⊥ ∼ logðx2Tμ2Þ appearing in the factorization theorem
would traditionally be integrated over the full range of
xT . This requires the introduction of a prescription to avoid
the Landau pole. Following the SCET resummation for-
malism of Refs. [45,46] this is not necessary as scales are
always set in the perturbative regime. The formalism
further employs an improved power counting L⊥ ∼ 1=

ffiffiffiffiffi
αs

p
that is crucial to improve the resummation at small qT [46].
At N4LLp the α3s beam functions [18–20] are then not
sufficient for improved α3s accuracy. Using the beam
function RGEs we reconstructed the logarithmic beam
function terms up to order α6sL6⊥, α4sL4⊥, and α4sL2⊥. We
performed the Mellin convolutions of beam function
kernels and splitting functions up to three loops [53,54]
using the MT package [55].
The hard function entering the factorization formula

consists of MS-renormalized virtual corrections. We
naturally include the three-loop corrections to the vector
part [21–23], but also the three-loop corrections to the axial
singlet part with full top-quark mass dependence [25] (see
also Ref. [24] for massless QCD).
Our fixed-order NNLO Z þ jet calculation is based

on Ref. [28], employing 1-jettiness slicing subtractions
[26,56,57] and relies on the NNLO 1-jettiness soft func-
tion [58,59]. The Z þ jet and Z þ 2 jet calculations that
enter at a lower order include top-quark loop corrections at
the one-loop level [60]. Two-loop axial singlet contribu-
tions in the Z þ jet hard function are unknown so far and
have been neglected in our calculation.
We performed extensive cross-checks of all elements of

our calculation by comparing amplitudes with automatized
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codes [61] and the literature [62–64]. A further strong
check is the correct asymptotic approach of the triple
singular limits through the limit qT → 0, see below. As a
final check, we compared with fiducial NNLOjet results
presented in Ref. [65] for different partonic channels, as
well as Ref. [15], and find agreement.
Since our Z þ jet NNLO calculation is based on

1-jettiness slicing subtractions we have to pay attention
to the 1-jettiness slicing cutoff. For our resummed calcu-
lation the jettiness slicing cutoff needs to be sufficiently
small compared to the qT matching cutoff, and for fixed-
order qT-subtraction predictions compared to the qT slicing
cutoff. We verified this through checking the correct
asymptotic cancellation of large qT logarithms for qT → 0
differentially in qT and integrated with a slicing cutoff, see
our Supplemental Material [48].
The qT matching cutoff must be small enough that

residual matching corrections can be neglected. The impact
of this on fiducial results can be estimated by multiplying
the resummed cross section integrated up to the matching
cutoff with the relative size of the neglected matching
corrections. At αs and α2s matching corrections can be
safely neglected below 1 GeV. For the α3s coefficient we
find that they can be neglected below 5 GeV with residual
per-mille level effects at the order of the numerical
integration uncertainty. This larger value is possible due
to the inclusion of linear power corrections in our resum-
mation formalism. This results in an error that is below the
quoted numerical precision of our fiducial results (one pb).
Similarly, the effect on all shown differential distributions is
at the per-mille level.

III. RESULTS

We present results at
ffiffiffi
s

p ¼ 13 TeV using the NNPDF4.0

PDF set at NNLO with αsðmZÞ ¼ 0.118 [66]. Electroweak
input parameters are chosen in the Gμ scheme with
mZ ¼ 91.1876GeV,mW ¼ 80.385GeV, ΓZ ¼ 2.4952 GeV
and GF ¼ 1.16639 × 10−5 GeV−2. We denote the matched
resummation accuracy with αs for N2LLþ NLO, α2s for
N3LLþ NNLO and α3s for N4LLp þ N3LO.
Our fiducial selection cuts in Table I are chosen to

compare with the most recent Z-boson precision measure-
ment by CMS in Ref. [3]. The symmetric lepton cuts used
in this analysis cause a poor perturbative convergence for
fixed-order calculations and can also lead to numerical

issues. However, the use of resummation resolves such
issues [34–36].
In our calculation we distinguish between three scales for

estimating uncertainties. We use a low (resummation) scale
∼qT (see Ref. [43] for details) to which RGEs are evolved

down from the hard scale chosen as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Z þ p2
T;Z

q
. The

CuTe-MCFM resummation formalism [45–47] is originally
derived using an analytic regulator to regulate rapidity
divergences in the transverse position dependent PDFs
(collinear anomaly formalism). This is opposed to using a
rapidity regulator that introduces a rapidity scale [67]. We
have reintroduced a scale estimating the effect of a different
rapidity scale as suggested in Ref. [68]. We vary hard and
low scale by a factor of two, and rapidity scale by a factor of
six, tuned on the truncation of the improved power
counting, to obtain a robust estimate of truncation uncer-
tainties. Most importantly our formalism allows for the
variation of the low scale, which dominates uncertainties at
small qT . Last, in our uncertainty bands we include the
effect of varying the transition function in the region of
about 40 GeV to 60 GeV where matching corrections
become significant, following the same procedure as in
Ref. [43] at a lower order.
While for Drell-Yan production our resummation for-

malism does not set the central low scale below ∼2 GeV
[43], a downwards variation would probe close toward the
nonperturbative regime. We therefore set a minimum of
2 GeV and symmetrize the uncertainty bands since the
variation becomes ineffective at small scales. Note that
about 2% of the total fiducial cross section comes from the
region qT < 1 GeV where one might expect additional
nonperturbative effects of an unknown size.

A. Differential results

In Fig. 1 we present the Z boson transverse momentum
distribution at different orders and compare it to the CMS
13 TeV measurement [3] with cuts as in Table I.
Overall there is an excellent agreement between theory

and data at the highest order. Going from α2s to α3s decreases
uncertainties and improves agreement with data noticeably
at both large and small qT . In the first bin 0 GeV < qT <
1GeV we notice a relatively large difference to the data,
but this is also where one would expect a non-negligible
contribution from nonperturbative effects. For the Φ�
distribution shown in Fig. 2 results are overall very
similar.
Since our resummation implementation is fully differ-

ential in the electroweak final state we can naturally also
present the transverse momentum distribution of the final
state lepton, see Fig. 3. This is plagued by a Jacobian peak
at fixed-order and crucially requires resummation. The
higher-order α3s corrections further stabilize the results with
smaller uncertainties.

TABLE I. Fiducial cuts for Z → lþl− used in the CMS 13 TeV
analysis [3].

Lepton cuts qlT > 25 GeV; jηlj < 2.4
Separation cuts 76.2 GeV < mlþl− < 106.2 GeV,

jylþl− j < 2.4
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B. Total fiducial cross section

In Table II we present total fiducial cross sections.
Uncertainties of the fixed-order NNLO (α2s) result, obtained
by taking the envelope of a variation of renormalization
and factorization scales by a factor of two, are particularly
small at the level of 0.5% and do not improve toward
N3LO with large corrections. The resummation improved
results are obtained by integrating over the matched qT
spectrum shown in Fig. 1. Uncertainties of the resummation
improved predictions are obtained by taking the envelope
of the variation of hard, low, and rapidity scales in the
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FIG. 1. Differential transverse-momentum resummation im-
proved predictions for the ql

−lþ
T distribution at order αs, α2s ,

and α3s .
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FIG. 2. Differential transverse-momentum resummation im-
proved predictions for the Φ� distribution at order αs, α2s , and α3s .
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FIG. 3. Differential transverse-momentum resummation im-
proved predictions for the lepton transverse momentum distri-
bution at order αs, α2s , and α3s .

TABLE II. Fiducial cross sections in pb for the cuts in
Table I and input parameters as in the text. Uncertainties for
the resummation-improved results include matching to fixed-
order (mat.), neglected matching corrections (m.c.), and by
scale variation (sc.). The fixed-order result at N3LO has an
additional slicing-cutoff uncertainty. For comparison, the final
row shows the CMS measurement (for electron and muon
channels combined) [3].

Order k Fixed-order αks Resummation improved αks

0 694þ85
−92 —

1 732þ19
−30 637� 8mat: � 70sc.

2 720þ4
−3 707� 3mat: � 29sc.

3 700þ4
−6 � 1slicing 702� 1mat: � 1m:c: � 17sc.

699� 5ðsystÞ � 17ðlumiÞ (e, μ combined) [3]
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fixed-order and resummation region. The matching uncer-
tainty from the transition function variation is quoted
separately. We estimate the effect of neglecting matching
corrections at α3s below qT ≤ 5 GeV to be less than 1 pb.
The resummation improved result at αs has large

uncertainties that stem from an insufficient order of the
resummation (N2LL), which still has substantial uncertain-
ties in the Sudakov peak region (cf. Fig. 1). The results
quickly stabilize, with less than a percent difference
between the central α2s and α3s predictions. Nevertheless,
the uncertainties we obtain are noticeably larger than
the fixed-order uncertainties. We further observe that
going from N3LL=α2s to N4LLp=α3s does not reduce
uncertainties as substantially as when going from αs to
α2s . This is because the resummation uncertainties around
the Sudakov peak region at small qT ∼ 5 GeV do not
improve dramatically.
While this behavior, of only moderately decreasing

uncertainties going from α2s to α3s , is consistent with the
findings of Ref. [15] using RadISH resummation, our
uncertainties of the resummation improved fiducial cross
section are larger than the uncertainties presented there.
Our α3s prediction has uncertainties of about 2.5%, while
using RadISH for the resummation results in uncertainties
of about 1%. Given that differentially in Fig. 1 we see still
some variation in the low qT region between the central α2s
and α3s results, we are confident in our more conservative
uncertainty estimate.
Indeed, theory uncertainties have become an important

topic within recent years [69]. First, they cannot be
interpreted statistically and second, perturbative predictions
are limited to the level presented here for the foreseeable
future. It is therefore important to study them with as much
scrutiny as possible. An approach followed in Ref. [13] has
been to take half the difference between the two highest
order results as an uncertainty. This would bring our
uncertainties closer in line with the uncertainties presented
in Ref. [15], less than one percent.

IV. CONCLUSIONS AND OUTLOOK

In this paper we presented the first transverse-momen-
tum (qT) resummation improved calculation at the level of
N4LLp þ N3LO, which broadly reduces theory uncertain-
ties to the few percent level. Our results show excellent
agreement with the 13 TeV CMS measurements within a
few percent both at the differential level from qZT ¼ 1 GeV
to ∼500 GeV and for Φ� over the whole spectrum, as well
as for the total fiducial cross section. As a consequence
of the resummation (and inclusion of linear power correc-
tions), our calculation can provide reliable predictions also
for past experimental analyses using symmetric lepton cuts.
All previous calculations of order N3LLþ N3LO rely on

a single Z þ jet NNLO calculation [27]. Further, uncer-
tainties (via scale variation) for resummation improved

results were only estimated by using the RadISH resum-
mation framework [14,38]. Due to the utmost importance
of this process, it is crucial to provide an independent
calculation using completely different methods to reliably
estimate uncertainties. It allows future (experimental)
studies to assess the validity of their input theory predic-
tions through independent results. This becomes increas-
ingly important with the advent of very precise collider
measurements that might indicate tension with the SM [11].
The public availability of our calculation as part of the
upcoming CuTe-MCFM release allows for a much larger
audience to make use of this state-of-the-art precision, to
implement modification of cuts and input parameters, and
also to reuse parts and to validate other calculations [42].
Although the theoretical precision of the calculation

discussed in this paper is now at an impressive level, there
are two important aspects that require further work.
Statistical PDF uncertainties have reached the level of
one percent [66,70] and systematic effects can no longer be
neglected. Since these uncertainties are at the same level as
perturbative truncation uncertainties, a careful study of
PDF effects at this order will be an important future
direction. Indeed, while finalizing this manuscript, approxi-
mate N3LO PDFs have been introduced by the MSHT
group [71].2

In addition, in order to better match with data at very
small qT , it is possible to include a parametrization of
nonperturbative effects [72,73]. This can then inform the
modeling of the related process ofW-boson production and
thus have implications for the extraction of the W-boson
mass. Extending W-boson production in CuTe-MCFM to α3s
accuracy will thus allow for very precise W=Z boson ratio
predictions [39].
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