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Gravity in 4d asymptotically flat spacetime constitutes the archetypal example of a gravitational system
with leaky boundary conditions. Pursuing our previous analysis of [Carrollian Perspective on Celestial
Holography, Phys. Rev. Lett. 129, 071602 (2022)], we argue that the holographic description of such a
system requires the coupling of the dual theory living at null infinity to some external sources encoding the
radiation reaching the conformal boundary and responsible for the nonconservation of the charges. In
particular, we show that the sourced Ward identities of a conformal Carrollian field theory living at null
infinity reproduce the Bondi-van der Burg-Metzner-Sachs flux-balance laws. We also derive the general
form of low-point correlation functions for conformal Carrollian field theories and exhibit a new branch of
solutions, which is argued to be the relevant one for holographic purposes. We then relate our Carrollian
approach to the celestial holography proposal by mapping the Carrollian Ward identities to those
constraining celestial operators through a suitable integral transform.
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I. INTRODUCTION

The program of flat-space holography consists in build-
ing a holographic duality between gravity in asymptotically
flat spacetime and a lower-dimensional field theory. The
motivations are twofold. Firstly, from a purely theoretical
perspective, this program is enshrined in a broader context
that aims at understanding how general is the holographic
principle. Does it extend beyond the framework of the
celebrated AdS=CFT correspondence [1–3]? Secondly,
asymptotically flat spacetimes provide realistic models to
describe a huge range of physical processes occurring in
our Universe, all the way up to astrophysical scales which
are below the cosmological scale.
In spite of repeated early efforts from various points of

views [4–9], it became clear very soon that flat-space
holography would not merely immediately follow from
AdS=CFT via a simple limit procedure where the anti–de

Sitter (AdS) radius is sent to infinity. But fortunately, the
last decades have also taught us that the symmetries of flat
spacetime turn out to be way richer and more subtle than
originally thought [10–15]. Building on the constraints
imposed by the Bondi-van der Burg-Metzner-Sachs
(BMS) symmetries, two bottom-up roads towards flat-space
holography have emerged over the years: Carrollian and
celestial holography.
The Carrollian approach to flat space holography pro-

poses that the role of the dual theory is played by a
conformal Carrollian field theory (or Carrollian CFT for
short) that lives on the codimension-one boundary of
spacetime (null infinity I ). Alternatively, one could refer
to this theory as a BMS-invariant field theory, as it has been
known for quite some time that the BMS group is
isomorphic to the conformal Carroll group [16], but it is
fair to say that the “Carrollian” name, due to Lévy-Leblond
[17], has struck physicists’ imagination.
This first approach has proven to be very successful in

the context of three-dimensional (3d) gravity. Among other
results, one can find: (i) a matching between the entropy of
asymptotically flat cosmological solutions and entropy
computed with a Cardy-like formula for a Carrollian
CFT [18,19]; (ii) a computation of the entanglement
entropy in the Carrollian CFT from the bulk geometry
using some extension of the Ryu-Takayanagi prescription
[20–22]; (iii) the form of the correlation functions in the
dual theory [23–27]; and (iv) an effective action for the dual
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Carrollian CFT [28–31]. This construction of effective
action has been repeated in 4d gravity and shown to
describe the dynamics of nonradiative spacetime [32]. A
complementary approach was adopted earlier in [33] where
an action encoding the radiative modes at I was explicitly
written. Let us also mention that Carrollian holography is
well-understood in the fluid/gravity correspondence for
both 3d and 4d spacetimes using a suitable flat-limit
procedure [34–38]. The dual fluid is a Carrollian fluid
[39–43] at I whose properties are deduced by taking the
ultrarelativistic limit of a relativistic fluid.
The main difficulties inherent to the Carrollian holo-

graphic approach are related to two key differences
compared to what one is used to encounter in
AdS=CFT. (i) The conformal boundary I is a null
hypersurface, implying that the dual theory involves some
Carrollian or “ultralocal” physics [44–49] which intrinsi-
cally defines the unconventional features of Carrollian
CFTs [41,50–55,60], about which very little is known so
far. This contrasts with the AdS=CFT correspondence
where the boundary is timelike and the dual theory is an
honest CFT whose proprieties have been studied for
decades. (ii) The gravitational charges at null infinity are
generically nonconserved due to the presence of matter or
gravitational radiation [10,11,56–59]. This constitutes the
plain vanilla example of a gravitational system with leaky
boundary conditions. Describing the nonconservation of
the charges from the point of view of the dual theory
requires the development of new techniques such as the
coupling with external sources [60]. On the contrary,
Dirichlet-type of boundary conditions are usually imposed
in AdS, preventing leaks through the conformal boundary,
which thus acts as a reflective cavity. Let us however
mention that leaky boundary conditions can also be
imposed in AdS by relaxing the usual boundary conditions
and turning on boundary sources [61–65]. This relaxation
is necessary in order to recover a radiative phase space and
BMS symmetries from a large radius limit of AdS.
In the celestial holography paradigm, the proposed dual

theory to gravity in flat space is a celestial CFT (or CCFT
for short) living on a codimension-two boundary, the
celestial sphere. It is anchored in the fact that S-matrix
elements in the bulk, once rewritten in the boost eigenstate
basis, enjoy conformal invariance in a manifest way
[13,66–71]. The advantages of this approach is that one
can use some of the very powerful CFT techniques to study
the celestial dual, such as operator product expansions
(OPEs) [72–83], conformal block decomposition [84–88],
state-operator correspondence [89], null states and con-
formal multiplets [90–93], crossing symmetry [94] or
shadow formalism [70,95–97]. This CFT language has
recently allowed one to uncover new w1þ∞ symmetries in
CCFT [98] (see also [99–101]). This remarkable finding
suggests that gravity might exhibit much more symmetries
than one could have expected. Patterns of these symmetries

have been found in the subleading orders of the gravita-
tional solution space in [102,103]. However, there is always
a price to pay for the emergence of CFT-like features in flat
space, and this is manifested in some of the exotic features
that CCFTs exhibit. It is indeed not clear for the moment
exactly to which extent they differ from standard (e.g.
unitary and compact) CFTs or what could be an axiomatic
definition of CCFTs. Moreover, the fact that the dual theory
is codimension-two with respect to the bulk makes the link
with the AdS=CFT correspondence more nebulous, since it
would require more involved steps than simply getting
celestial correlators from a flat limit of those in AdS (see
however [66,69,104–108] for connections to AdS and
[109] to wedge holography). Finally, because the celestial
encoding favors conformal transformations over time trans-
lations (which we recall are not lost but rather reshuffled
into shifts in the conformal dimension of celestial oper-
ators), the dynamics of the gravitational theory such as the
Bondi mass loss formula is not easily interpreted in the
celestial CFT.
Though these two approaches to flat space holography

seem in apparent tension, it has been argued in [60] (see
also [55]) that they are in fact complementary to each other,
as depicted in Fig. 1. Explicit links between them can be
established; in particular, Carrollian source operators σðk;k̄Þ
living at null infinity can bemapped to CCFToperatorsOΔ;J
living on the celestial sphere after using an appropriate
integral transform. This allows one to relate the correlation
functions between the sourced Carrollian CFT and those of
the CCFT. In particular, the Ward identities of the sourced
CarrollianCFTare then found to be equivalent to those of the
CCFTencoding the bulk soft theorem. In this paper, wewill
pursue our previous analysis of [60] and provide more
details about the interplay between the Carrollian and the
celestial approaches to flat space holography.

A. Summary of the paper

The aims of this paper are threefold. The first objective is
to review the key ingredients needed to bridge Carrollian
and celestial holography. These both build up on the fact
that the S-matrix is in a sense holographic by nature,
namely scattering amplitudes in the bulk can be identified
with correlation functions at the boundary. Depending on
the choice of basis for the fields, position space or Mellin
space, one ends up with the Carrollian or the celestial
approach. We will also review the asymptotic symmetry
analysis of both electrodynamics and gravity. These will
constitute the two concrete examples that we shall discuss
in our setup.
After this review part, the second objective is to improve

the Carrollian holography proposal. As mentioned above,
one of the main obstructions to this approach [obstruction
(ii)] is the nonconservation of the asymptotic charges Q at
null infinity due to the presence of radiation, as illustrated
in the left part of Fig. 1. We argue that, from the point of
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view of the dual theory, these dissipative properties can be
encoded by coupling the theory to some external sources.
We discuss the general framework needed to treat sym-
metries in that context. This allows us to write flux-balance
laws and Ward identities for a sourced field theory.
Applying these considerations to a sourced Carrollian
CFT, we show that the sourced Ward identities are able
to describe the asymptotic dynamics of 4d asymptotically
flat spacetimes given an appropriate holographic map
between the bulk and boundary quantities. In particular,
the external sources are argued to encode holographically
the radiation in the bulk, which in gravity is contained
in the asymptotic shear and the Bondi news tensor.
While the insertion of external sources locally spoils the

symmetries of the theory, leading to nonconservation of the
currents and dissipation, one can still extract some useful
constraints implied by the symmetries on the correlators by
using some holographic inputs. A crucial ingredient to
implement this constraint is to consider that the Carrollian
CFT is not living on Iþ and I − separately, but on the
whole conformal boundary Î ¼ Iþ⊔I − obtained by
gluing antipodally Iþ and I − along Iþ

− and I −þ, which
provides a geometric implementation of the antipodal
matching from the Carrollian point of view, see Fig. 2.
After providing details of this construction, we show that

the sourced Ward identities of the Carrollian CFT

integrated over Î determine the general form of low-point
(1-, 2- and 3-point) correlation functions of this theory. In
particular, for the 2-point function, we exhibit a new branch
of solutions that does not seem to have appeared in previous
literature. We then argue that this new branch is precisely
the one that is relevant for holographic Carrollian CFT. We
relate it to the usual bulk propagator via Fourier transform.
The third objective is to provide further details on the

relation between the Carrollian and the celestial approaches
to flat space holography. We show that the Carrollian
source operators are mapped on celestial operators through
an integral transform, coined as the B-transform, which is
the combination of a Mellin and a Fourier transform. This
allows us to relate the correlation functions in the two
theories. After providing the properties of the B-transform,
we demonstrate the equivalence between the sourced Ward
identities in the Carrollian CFT that holographically encode
the asymptotic bulk dynamics and the Ward identities in the
CCFT that encode the leading and subleading soft theo-
rems. For each of these two points, we consider both
electrodynamics and gravity in the bulk.

B. Organization of the paper

The remaining of the paper is organized as follows. In
Sec. II, we review the scattering of massless particles in flat

FIG. 1. Holographic nature of null infinity—two equivalent visions: (i) On the left picture,Iþ is seen as a boundary along which there
is a Carrollian time evolution. This naturally leads to the Carrollian holography proposal where the putative dual theory is a 3d
Carrollian CFT. This picture is well adapted to describe the dynamics of the system through the flux-balance laws encoding the
nonconservation of the charges Q. (ii) On the right picture,Iþ is seen as a portion of a Cauchy hypersuface at late time. This naturally
leads to the celestial holography proposal where the putative dual theory is a 2d CCFT. This second approach is particularly natural
when considering a scattering process in flat spacetime.
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spacetime, which serves to introduce important notations
and conventions for the remaining of the article. In Sec. III,
we review the asymptotic symmetry analysis of electrody-
namics and gravity in 4d asymptotically flat spacetime. In
Sec. IV we develop a framework to treat the symmetries
and their associated flux-balance laws/Ward identities in
presence of external sources. We then specify this formal-
ism to sourced theories exhibiting Uð1Þ or conformal
Carrollian symmetries. In Sec. V we provide more insights
about the nature of the proposed 3d holographic sourced
conformal Carrollian field theory. We derive the low-point
functions for this theory using the sourced Ward identities.
We also propose a holographic correspondence between
bulk metric and boundary Carrollian stress tensor, which
allows us to show that the sourced Ward identities of the
Carrollian CFT encode the BMS flux-balance laws. In
Sec. VI, we relate the sourced conformal Carrollian field
theory with the celestial CFT. We provide the integral
transform that maps Carrollian source operators to celestial
operators and show that the BMS Ward identities in both
theories are equivalent. The low-point functions are also
related with each other. Finally, in Sec. VII, we conclude
our analysis with some comments and future directions.
This paper is also complemented with some appendices;
Appendix A describes our coordinate conventions,
Appendix B reviews the isomorphism between global
conformal Carroll algebra in three dimensions and the
Poincaré algebra in four dimensions, and finally
Appendix C provides details on the derivation of the
classical constraints on the Carrollian stress tensor.

II. MASSLESS SCATTERING IN FLAT
SPACETIME

This section is a review of salient features of scattering of
massless fields in flat spacetime. We consider a scattering

of massless bosonic spin-s fields through the S-matrix
approach via perturbation theory in Minkowski spacetime.
We describe the asymptotic free states in terms of plane
wave and conformal primary wave function bases. The
boundary operators are obtained by taking the large radius
expansion of the bulk fields as they approach null infinity.
Reciprocally, the bulk fields can be reconstructed from the
boundary operators using the Kirchhoff-d’Adhémar for-
mula that defines a boundary-to-bulk propagator. Finally,
we discuss various integral transforms that relate position
space, momentum space and Mellin space. This allows one
to relate formulate the scattering problem in position and
Mellin spaces, which will be suitable for the subsequent
discussion on flat space holography. To write this section,
we abundantly used references [13,68,70,110–113] where
complementary material can be found.

A. Bulk operators

1. Massless fields in Minkowski spacetime
and plane wave expansion

Let us consider a freemassless bosonic spin-sFronsdal field

ϕðsÞ
I in Minkowski spacetime [114–116] (s ¼ 0; 1; 2;…).

I ¼ ðμ1μ2…μsÞ is a symmetrized multi-index notation,
μi ∈ f0;…; 3g, and spacetime is covered by standard
Cartesian coordinates Xμ ¼ ft; x⃗g. The massless spin-s field

ϕðsÞ
I can be conveniently put in the De Donder traceless gauge

∂
νϕðsÞ

νμ2…μsðXÞ ¼ 0; ημνϕðsÞ
μνμ3…μsðXÞ ¼ 0; ð2:1Þ

in which the equations of motion reduce to

∂
μ
∂μϕ

ðsÞ
I ðXÞ ¼ 0 ð2:2Þ

and the residual gauge transformations are

FIG. 2. Geometric implementation of the antipodal matching.
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δλϕ
ðsÞ
μ1…μsðXÞ ¼ ∂ðμ1λμ2…μsÞðXÞ

such that ∂νλνμ3…μsðXÞ ¼ 0 and ημνλμνμ4…μsðXÞ ¼ 0: ð2:3Þ

The field can be quantized in the Heisenberg representation and expanded in Fourier modes. Eachmode is labeled by an on shell
null 4-momentum vector (see e.g. [13])

pμðω; w; w̄Þ ¼ ωqμðw; w̄Þ; qμðw; w̄Þ ¼ 1ffiffiffi
2

p ð1þ ww̄; wþ w̄;−iðw − w̄Þ; 1 − ww̄Þ; ð2:4Þ

parametrized by the light cone energy ω > 0 and coordinates ðw; w̄Þ on the complex plane. Let ε�μ ðq⃗Þ be the polarization
covectors,

εþμ ðq⃗Þ ¼ ∂wqμ ¼
1ffiffiffi
2

p ð−w̄; 1;−i;−w̄Þ;

ε−μ ðq⃗Þ ¼ ½εþμ ðq⃗Þ�� ¼ ∂w̄qμ ¼
1ffiffiffi
2

p ð−w; 1; i;−wÞ: ð2:5Þ

We can complete these into a null co-tetrad N ¼ fqμ; nμ; εþμ ; ε−μ g satisfying

qμnμ ¼ −1; εμþε−μ ¼ 1; qμε�μ ¼ 0 ¼ nμε�μ ; ð2:6Þ

by setting nμ ≡ ∂w∂w̄qμ. The spin-s field in De Donder gauge (2.1) can be expanded in Fourier modes as

ϕðsÞ
I ðXÞ ¼ KðsÞ

X
α¼�

Z
d3p

ð2πÞ32p0
½ε�αI ðq⃗ÞaðsÞα ðp⃗ÞeipμXμ þ εαI ðq⃗ÞaðsÞα ðp⃗Þ†e−ipμXμ � ð2:7Þ

after choosing a Lorentz-invariant measure in momentum space and defining the polarization tensors

ε�μ1…μsðq⃗Þ ¼ ε�μ1ðq⃗Þε�μ2ðq⃗Þ…ε�μsðq⃗Þ; ð2:8Þ

which are fully symmetric and transverse tensors, i.e. qμiε�μ1…μi…μsðq⃗Þ for any i ¼ 1;…; s. The overall constantKðsÞ ∈ Rþ
0 may

depend on the coupling constant for the relevant spin (e.g. the elementary charge e for the spin-1 field or the Newton-Cavendish
constant G for the spin-2 field). One usually takes

Kð1Þ ¼ e
ffiffiffi
ℏ

p
; Kð2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGℏ

p
: ð2:9Þ

Ladder operators obey the usual commutation relations

½aðsÞα ðp⃗Þ; aðsÞα0 ðp⃗0Þ†� ¼ ð2πÞ32p0δð3Þðp⃗ − p⃗0Þδα;α0 ð2:10Þ

as induced by the canonical commutation relations of the field (2.7).
Importantly, a residual gauge transformation (2.3) driven by λμ2…μsðXÞ admitting a well-defined Fourier transform acts on

the field (2.7) by addition of a term of the form

∂ðμ1λμ2…μsÞðXÞ ¼
Z

d3p
ð2πÞ32p0

½pðμ1 λ̂μ2…μsÞðp⃗Þeip
μXμ þ pðμ1 λ̂

�
μ2…μsÞðp⃗Þe−ip

μXμ �: ð2:11Þ

This impacts the polarization tensors as

δλε
α
μ1…μsðq⃗Þ ¼ qðμ1 λ̃

α
μ2…μsÞðp⃗Þ ð2:12Þ
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writing λ̂μ2…μs ð⃗pÞ ≡ KðsÞ
ω λ̃αμ2…μs ð⃗pÞaðsÞα ð⃗pÞ and ημνλ̃αμνμ4…μs ¼ 0, but the ladder operators aðsÞα are left invariant by these

gauge transformations. However, as we will review later, asymptotic gauge symmetries (whose generating parameters do
not have finite energy) do act nontrivially on the operators.
Transforming the integration measure for the parametrization (2.4), we can write

ϕðsÞ
I ðXÞ ¼ KðsÞ

16π3
X
α¼�

Z
ωdωd2w½aðsÞα ðω; w; w̄Þφ�α

I ðω; w; w̄jXÞ þ aðsÞα ðω; w; w̄Þ†φα
I ðω; w; w̄jXÞ�; ð2:13Þ

where d2w ¼ idwdw̄ denotes the integration measure on the complex plane with local holomorphic coordinates ðw; w̄Þ and

φ�α
I ðω; w; w̄jXÞ≡ ε�αI ðw; w̄ÞeiωqμXμ ð2:14Þ

are the basis vectors of plane waves. In this parametrization, the canonical commutation relations (2.10) become

½aðsÞα ðω; w; w̄Þ; aðsÞα0 ðω0; w0; w̄0Þ†� ¼ 16π3ω−1δðω − ω0Þδð2Þðw − w0Þδα;α0 : ð2:15Þ

At the quantum level, aðsÞþ ðω; w; w̄Þ† (resp. aðsÞ− ðω; w; w̄Þ†) creates a massless particle of spin s and helicity J ¼ þs (resp.
J ¼ −s), with energy ω and a null momentum pointing towards the direction qμðw; w̄Þ.
Poincaré transformations X0μ ¼ Λμ

νXν þ tμ act on the gauge field as

ϕðsÞ
μ1μ2…μsðXÞ ↦ ϕ0ðsÞ

μ1μ2…μsðX0Þ ¼ Λμ1
ν1Λμ2

ν2…Λμs
νsϕðsÞ

ν1ν2…νsðXÞ: ð2:16Þ

Lorentz transformations induce a SLð2;CÞ Möbius transformation

w ↦ w0ðwÞ ¼ awþ b
cwþ d

ð2:17Þ

with ad − bc ¼ 1 on the complex coordinates determining
the direction of the null momentum qμ with the embedding
(2.4) of the Riemann sphere into the light cone. The
expression of the matrix Λμ

ν in terms of the Möbius
parameters ða; b; c; dÞ can be found e.g. in [117]. Since
pμ is a Lorentz vector, one has

ω0 ¼
����∂w0

∂w

����−1ω; qμðw0; w̄0Þ ¼
����∂w0

∂w

����Λμ
νqνðw;w̄Þ: ð2:18Þ

The second equation states the fact that a Lorentz trans-
formation on the light cone induces the corresponding
Möbius transformation on the Riemann sphere via the
embedding (2.4). Owing to (2.5) and (2.18), one can show
that ε�μ ðw; w̄Þ do not transform homogeneously under the
action of (2.17) but the supplementary terms are part of the
residual gauge freedom (2.12), i.e.

ε0�μ ðw0; w̄0Þ ¼
�
∂w0

∂w

�∓1
2

�
∂w̄0

∂w̄

��1
2

Λμ
νε�ν ðw; w̄Þ þA ðw; w̄ÞΛμ

νqνðw; w̄Þ; ð2:19Þ

where A is a fixed function of ðw; w̄Þ. For the expansion (2.13) and (2.14) recalling that the integration measure and the
plane wave are Lorentz invariant, we deduce from (2.19) that the transformation of ladder operators under the Poincaré
group is

aðsÞ�0 ðω0; w0; w̄0Þ ¼
�
∂w0

∂w

�
−J
2

�
∂w̄0

∂w̄

�J
2

e−iωq
μðw;w̄ÞΛν

μtνaðsÞ� ðω; w; w̄Þ: ð2:20Þ

In particular, one recovers that the ladder operators are eigenvectors of translations, which is expected since they are
assumed to create/annihilate energy eigenstates. The infinitesimal version of (2.20) can be obtained by setting
X0μ ¼ Xμ − ϵξμ, with ξμ ¼ ϖμ

νXν þ τμ (ϖμν ¼ ϖ½μν�) and w0ðwÞ ¼ w − ϵYwðwÞ, and retaining only the linear terms in
ϵ. One concludes that
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δξðT ;YÞa
ðsÞ
� ðω; w; w̄Þ ¼

�
−iωT þ Yw

∂w þ Yw̄
∂w̄ þ J

2
∂wYw −

J
2
∂w̄Yw̄ −

ω

2
ð∂wYw þ ∂w̄Yw̄Þ∂ω

�
aðsÞ� ðω; w; w̄Þ; ð2:21Þ

where ξðT ;YÞ is now parametrized by the function
T ðw; w̄Þ ¼ −qμðw; w̄Þτμ and the vector Y ¼ YwðwÞ∂w þ
Yw̄ðw̄Þ∂w̄ on the Riemann sphere, while acting in momen-
tum space covered by coordinates ðω; w; w̄Þ.

2. Mellin transform and conformal primary basis

In (2.13), we expanded the massless spin-s field in the
plane wave basis (2.14) whose elements are energy
eigenstates. Another convenient choice is the conformal
primary wave function basis [66,68–70] whose elements
are boost eigenstates. This basis trades the energy param-
eter ω for the eigenvalue Δ of the Lorentz boost along the
direction fixed by the null momentum pμ.
The map between the two bases is given by the Mellin

transform defined as

FðΔÞ ¼ M½fðωÞ;Δ�≡
Z þ∞

0

dωωΔ−1fðωÞ ð2:22Þ

for f∶ Rþ → C where Δ ¼ cþ iν is generically complex
[see e.g. [118] for the precise assumptions that make the
integral (2.22) well-defined]. According to the Mellin
inversion theorem, if FðΔÞ is analytic in the complex strip
defined by c ∈�a; b½⊂ R and the integral

fðωÞ ¼ 1

2π

Z þ∞

−∞
dνω−ðcþiνÞFðcþ iνÞ ð2:23Þ

converges for any c ∈�a; b½, then it defines the inverse
Mellin transform fðωÞ≡M−1½FðΔÞ;ω� acting on FðΔÞ.
The Mellin transform of the plane waves (2.14), for

ω > 0, yields (see e.g. [66,68,70])

V�α
I ðΔ; w; w̄jXÞ ¼ lim

ϵ→0þ
ε�αI ðw; w̄Þ

Z þ∞

0

dωωΔ−1eiωq
μXμ−ϵω

¼ lim
ϵ→0þ

ε�αI ðw; w̄Þ iΔΓ½Δ�
ðqμXμ þ iϵÞΔ ; ð2:24Þ

where ϵ > 0 is a regulator that can be arbitrarily close to
zero. The computation of the integral (2.24) is made
particularly easy if one uses Ramanujan’s master theorem,
stating that if fðωÞ is a complex-valued function on the
positive real axis admitting a power-series expansion of the

form fðωÞ ¼ Pþ∞
k¼0

φðkÞ
k! ð−ωÞk in some neighborhood of

the origin, then its Mellin transform is simply given by
M½fðωÞ;Δ� ¼ Γ½Δ�φð−ΔÞ in a certain range of validity
Δ ∈ R ⊂ C. For the plane wave, the regulation of the
integral (2.24) by a decaying exponential function ∼e−ϵω
allows it to converge in the whole half complex plane
R ¼ fcþ iνjc > 0; ν ∈ Rg. Using the identity

Z þ∞

0

dωωiν−1 ¼ 2πδðνÞ; ð2:25Þ

one can show [70] that the statement that plane waves form
a delta-function normalizable basis for the Klein-Gordon
inner product translates, after Mellin transform, into requir-
ing that Δ lays on the principal continuous series of the
irreducible unitary representations of the Lorentz group,
i.e. Δ ¼ 1þ iν.
Let us first consider the expansion of the bulk field

(2.13), where we recall that the polarization is taken as
products of (2.5). In terms of the Mellin representatives
(2.24), such an expansion reads [110,119]

ϕðsÞ
I ðXÞ ¼ KðsÞ

32π4
X
α¼�

Z
dνd2w½aðsÞ2−Δ;αðw; w̄ÞV�α

I ðΔ; w; w̄jXÞ þ aðsÞ2−Δ;αðw; w̄Þ†Vα
I ðΔ; w; w̄jXÞ�; ð2:26Þ

where we defined the ladder operators in the Mellin basis as in [93]

aðsÞΔ;αðw; w̄Þ≡M½aðsÞα ðω; w; w̄Þ;Δ� ¼
Z þ∞

0

dωωΔ−1aðsÞα ðω; w; w̄Þ;

aðsÞΔ;αðw; w̄Þ† ≡M½aðsÞα ðω; w; w̄Þ†;Δ� ¼
Z þ∞

0

dωωΔ−1aðsÞα ðω; w; w̄Þ†: ð2:27Þ

These last relations can be inverted as
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aðsÞα ðω; w; w̄Þ ¼ 1

2π

Z þ∞

−∞
dνω−ΔaðsÞΔ;αðw; w̄Þ;

aðsÞα ðω; w; w̄Þ† ¼ 1

2π

Z þ∞

−∞
dνω−ΔaðsÞΔ;αðw; w̄Þ†: ð2:28Þ

Crucially, applying the Mellin transforms (2.27)–(2.20), it
has been observed that these operators transform as

a0ðsÞΔ;αðw0; w̄0Þ ¼
�
∂w0

∂w

�
−ΔþJ

2

�
∂w̄0

∂w̄

�
−Δ−J

2

aðsÞΔ;αðw; w̄Þ; ð2:29Þ

under the action of the Lorentz group, which is precisely
the definition of a conformal primary field of conformal
dimension Δ and 2d spin J ¼ αs (see e.g. [120]). The
action of the Poincaré translations in the Mellin basis is
given by [121]

a0ðsÞΔ;αðw0; w̄0Þ ¼ e−iq
μðw;w̄Þtμ∂̂ΔaðsÞΔ;αðw; w̄Þ ¼

Xþ∞

n¼0

ð−iqμðw; w̄ÞtμÞn
n!

aðsÞΔþn;αðw; w̄Þ ð2:30Þ

defining the discrete derivative operator b∂ΔFðΔÞ≡ FðΔþ 1Þ. The infinitesimal action of Poincaré transformations in the
Mellin basis reads as

δξðT ;YÞa
ðsÞ
Δ;αðw; w̄Þ ¼

�
−iT ∂̂Δ þ Yw

∂w þ Yw̄
∂w̄ þ Δþ J

2
∂wYw þ Δ − J

2
∂w̄Yw̄

�
aðsÞΔ;αðw; w̄Þ: ð2:31Þ

Remark—The functions Vα
I ðΔ; w; w̄jXÞ defined in (2.24) are not strictly speaking boost eigenstates since they do not

transform covariantly under the action of the Lorentz group; this is due to the transformation law of the polarization vector
(2.19). Instead, one can define the conformal primary wave functions [70] by rescaling the functions Vα

I ðΔ; w; w̄jXÞ and
performing a gauge transformation

Aα
I ðΔ; w; w̄jXÞ ¼ cðsÞðΔÞVα

I ðΔ; w; w̄jXÞ þ ∂ðμ1f
ðsÞα
μ2…μsÞðΔ; w; w̄jXÞ: ð2:32Þ

The precise expressions of scaling factor cðsÞðΔÞ and gauge parameter fðsÞαμ2…μsðΔ; w; w̄jXÞ will depend on the spin s (explicit
expressions for s ¼ 1, 2 can be found e.g. in [70,119]). It is convenient to use the compact form [112]

A�
I ðΔ; w; w̄jXÞ ¼ m�

μ1ðw; w̄jXÞ…m�
μsðw; w̄jXÞ

1

ðqνXνÞΔ ;

ð2:33Þ

for any (integer) spin s, where m�
μ ðw; w̄jXÞ represent the

modified polarization covectors

m�
μ ðw; w̄jXÞ≡ ε�μ ðw; w̄Þ −

ε�ν Xν

qρXρ qμðw; w̄Þ: ð2:34Þ

One can show that the set of functions (2.33) are actual
boost eigenstates, because now (2.34) transforms homo-
geneously under SLð2;CÞ transformations (2.17), i.e.

m0�
μ ðw0; w̄0jX0Þ ¼

�
∂w0

∂w

�∓1
2

�
∂w̄0

∂w̄

��1
2

Λμ
νm�

ν ðw; w̄jXÞ:

ð2:35Þ

While the basis elements Vα
I ðΔ; w; w̄jXÞ only satisfy the De

Donder gauge-fixing conditions (2.1) because qμε�μ ¼ 0, the

new basis functions Aα
I ðΔ; w; w̄jXÞ also satisfy the radial (or

Fock-Schwinger) gauge condition XμAα
μμ2…μsðΔ; w; w̄jXÞ ¼

0 becauseXμm�
μ ¼ 0 [70]. The price to pay for trading ε�μ for

m�
μ is thus the breaking of manifest invariance under trans-

lations, because the supplementary gauge fixing is sensitive
to the choice of an origin.Notice that the fixation of the radial
gauge is compatible with the De Donder gauge, as argued in
[122]. The so-called celestial operators are defined as [119]

O
ðsÞ
Δ;αðw; w̄Þ≡ hAα

I ðΔ; w; w̄jXÞ;ϕðsÞ
I ðXÞi; ð2:36Þ

where h·; ·i denotes the relevant spin-s inner product. For
scalar fields (s ¼ 0), it will be the usual Klein-Gordon inner
product; more involved expressions are needed for s ¼ 1, 2
which can be constructed from symplectic structures avail-
able in the literature (see [119] and references therein).

Notice that the operators O
ðsÞ
Δ;αðw; w̄Þ and aðsÞΔ;αðw; w̄Þ are

proportional to each other [93,119] (see also [123] for more
details). Hence, we will persist in using consistently the

Mellin ladder operators aðsÞΔ;αðw; w̄Þ in the rest of the paper.
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B. Boundary operators

1. From bulk to boundary: The large-r expansion

In this section, we review how to construct boundary operators by performing a large-r expansion around Iþ and
I − [13].
We first analyze the late-time behavior of free massless fields around Iþ; these will ultimately approximate outgoing

free fields of the S-matrix. We start from the Fourier expansion

ϕðsÞ
I ðXÞ ¼ KðsÞ

16π3

Z
ωdωd2w½ε�αI ðw; w̄ÞaðsÞα ðω; w; w̄ÞeiωqμXμ þ εαI ðw; w̄ÞaðsÞα ðω; w; w̄Þ†e−iωqμXμ � ð2:37Þ

and use retarded Bondi coordinates fu; r; z; z̄g with flat boundary representatives, as defined in Appendix A, to perform an
asymptotic expansion in r near Iþ ¼ fr → þ∞g. Rewriting Xμ as (A8) in terms of retarded Bondi coordinates one has
qμXμ ¼ −u − rjz − wj2. We now introduce polar coordinates in the complex plane as z − w ¼ ρeiϑ. The integration
measure becomes d2w → 2ρdρdϑ and altogether (2.37) can be rewritten as

ϕðsÞ
I ðXÞ ¼ KðsÞ

8π3

Z þ∞

0

dωω
Z þ∞

0

dρρ
Z

2π

0

dϑ½ε�αI ðw; w̄ÞaðsÞα ðω; w; w̄Þe−iωu−iωrρ2 þ h:c:�; ð2:38Þ

where “h.c.” stands for Hermitian conjugation. The expansion of (2.38) in the limit r → þ∞ (as approachingIþ) is given
by the stationary phase approximation of the ρ-integral around the point ρ ¼ 0 corresponding to the situation where q and x
are collinear. Evaluating the integral in ρ for large-r gives the property [113]

ρe−iωrρ
2 ¼ −

i
2rω

δðρÞ þOðr−2Þ: ð2:39Þ

In Bondi retarded coordinates, the expressions of the elements of the cotetrad N are

qμdXμ ¼ −du − jz − wj2dr − rðz̄ − w̄Þdz − rðz − wÞdz̄; nμdXμ ¼ −dr;

εþμ dXμ ¼ ðz̄ − w̄Þdrþ rdz̄; ε−μdXμ ¼ ðz − wÞdrþ rdz; ð2:40Þ

and, in the collinear limit w ¼ z, we have εþμ dXμ ¼ rdz̄ and ε−μdXμ ¼ rdz. Using (2.39), the leading components of ϕðsÞ
I ðXÞ

near Iþ are thus

ϕðsÞ
z…zðXÞ ¼ −

iKðsÞ
8π2

rs−1
Z þ∞

0

dω½aðsÞþ ðω; z; z̄Þe−iωu − aðsÞ− ðω; z; z̄Þ†eþiωu� þOðrs−2Þ; ð2:41Þ

and its complex-conjugated component ϕðsÞ
z̄…z̄ðXÞ as well as components of the form ϕðsÞ

rz…zðXÞ, ϕðsÞ
rrz…zðXÞ etc., all

generically of orderOðrs−1Þ as well. Indeed, the subleadingOðr−2Þ terms in (2.39) contribute in the radial component of in
(2.40), recalling that dr ¼ −r2dðr−1Þ, producing a contribution at leading order. One can extract the boundary value of the
field by

ϕ̄ðsÞ
z…zðu; z; z̄Þdz ⊗ � � � ⊗ dzþ ϕ̄ðsÞ

z̄…z̄ðu; z; z̄Þdz̄ ⊗ � � � ⊗ dz̄≡ lim
r→þ∞

ι�ðr1−sϕðsÞ
μ1…μsdX

μ1 ⊗ … ⊗ dXμsÞ; ð2:42Þ

where ι� denotes the pullback on the constant r hypersurfaces, hence deleting the leading radial components. Importantly,
the resulting fields are independent of the residual gauge ambiguity (2.11) and (2.12) as can be seen from the fact that
qμdXμ ¼ Oð1Þ in the collinear limit while ε�μ dXμ ¼ OðrÞ (for a discussion on this phenomenon, see [124]).
To summarize, the asymptotic behavior of the field ϕðsÞ

I ðXÞ is encoded by the boundary value (2.42): its Fourier
expansion can be directly read off from (2.41) as [13,125]

ϕ̄ðsÞ
z…zðu; z; z̄Þ ¼ −

iKðsÞ
8π2

Z þ∞

0

dω½aðsÞþ ðω; z; z̄Þe−iωu − aðsÞ− ðω; z; z̄Þ†eþiωu�; ð2:43Þ
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while the Fourier modes for ϕ̄ðsÞ
z̄…z̄ ¼ ðϕ̄ðsÞ

z…zÞ† are obtained

from (2.43) by exchanging aðsÞ� → aðsÞ∓ .
Remark—As stated below Eq. (2.42), boundary values

(2.43) of the fields are left invariant under residual gauge
transformations (2.3) whose parameters λμ2…μsðXÞ admit a
Fourier decomposition (2.11). Notice that there exist gauge
transformations which do not admit such Fourier decom-
position and do modify the boundary value of the
fields. For instance, picking s ¼ 1, the action of a gauge

transformation δλϕ
ð1Þ
μ ¼ ∂μλ of parameter λ satisfying

∂
μ
∂μλ ¼ 0, which is solved asymptotically by λðu;r;z; z̄Þ¼

λð0Þðz; z̄Þþu∂z∂z̄λð0Þr−1 lnrþOðr−1Þ, would shift the
boundary gauge field by

δλϕ̄
ð1Þ
z ðu; z; z̄Þ ¼ ∂zλ

ð0Þðz; z̄Þ: ð2:44Þ

Another point of view is to reinterpret this shift as
the following change in the zero mode of the ladder
operators

δSλa
ðsÞ
þ ðω; z; z̄Þ ¼ −δSλaðsÞ− ðω; z; z̄Þ† ≡ 8π2i

Kð1Þ
∂zλ

ð0Þðz; z̄ÞδðωÞ:

ð2:45Þ

Hence, the operator δSλ (where S stands for “soft”) only
affects the “Goldstone mode” (i.e. the zero-energy
mode transforming in a pure inhomogeneous way) but
leaves the bulk field (2.37) unchanged since ωδðωÞ ≃ 0
in the sense of distributions. Notice that this mode
has to be distinguished from the leading soft-photon
mode [126]

N ð0Þ
z ðz; z̄Þ≡

Z þ∞

−∞
du∂uϕ̄

ð1Þ
z ðu; z; z̄Þ ¼ ϕ̄ð1Þ

z ðu; z; z̄Þju→þ∞ − ϕ̄ð1Þ
z ðu; z; z̄Þju→−∞ ð2:46Þ

whose expression in terms of ladder operators is obtained using (2.43) and
Rþ∞
−∞ due�iωu ¼ 2πδðωÞ and gives

N ð0Þ
z ðz; z̄Þ ¼ −

Kð1Þ
8π

lim
ω→0þ

½ωaþðω; z; z̄Þ þ ωa−ðω; z; z̄Þ†�: ð2:47Þ

The nontriviality of the result corresponds to the presence of a pole in the ladder operators in Fourier space. The
discussion is easily extended to any spin s ≥ 1.
The commutation relation (2.15) implies (see e.g. [125–127])

½ϕ̄ðsÞ
z…zðu1; z1; z̄1Þ; ϕ̄ðsÞ

z̄…z̄ðu2; z2; z̄2Þ� ¼ −
i
4
K2

ðsÞsignðu1 − u2Þδð2Þðz1 − z2Þ;

½∂u1 ϕ̄ðsÞ
z…zðu1; z1; z̄1Þ; ϕ̄ðsÞ

z̄…z̄ðu2; z2; z̄2Þ� ¼ −
i
2
K2

ðsÞδðu1 − u2Þδð2Þðz1 − z2Þ: ð2:48Þ

In our notations, signðxÞ is the sign distribution related to the Heaviside and Dirac distributions ΘðxÞ, δðxÞ as

signðxÞ ¼ 2ΘðxÞ − 1; sign0ðxÞ ¼ 2δðxÞ; ð2:49Þ

for the particular choice Θð0Þ ¼ 1
2
. Owing to (2.18), the Fourier transform of (2.20) gives

ϕ̄0ðsÞ
z…zðu0; z0; z̄0Þ ¼

�
∂z0

∂z

�
−1þJ

2

�
∂z̄0

∂z̄

�
−1−J

2

ϕ̄ðsÞ
z…zðu; z; z̄Þ ð2:50Þ

in the collinear limit w ¼ z, where u0 ¼ j ∂z0
∂z jðu − qμðz; z̄ÞΛμ

νtνÞ and J ¼ s. The complex conjugated component ϕ̄ðsÞ
z̄…z̄

transforms in the same way but with the flipped helicity J ¼ −s. This translates infinitesimally into

δξðT ;YÞϕ̄
ðsÞ
z…zðu; z; z̄Þ ¼

�
T þ u

2
ð∂zYz þ ∂z̄Y z̄Þ

�
∂uϕ̄

ðsÞ
z…zðu; z; z̄Þ

þ
�
Yz

∂z þ Y z̄
∂z̄ þ

1þ J
2

∂zYz þ 1 − J
2

∂z̄Y z̄

�
ϕ̄ðsÞ
z…zðu; z; z̄Þ: ð2:51Þ
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The same analysis can be performed for operators in the
vicinity of past null infinity I −. The first step consists in
trading the retarded Bondi coordinates fu; r; z; z̄g for the
advanced Bondi coordinates fv; r0; z0; z̄0g, also with flat
boundary representative (see Appendix A) in order to
perform the large-r0 expansion around I − ¼ fr0 ¼ þ∞g.
According to the change of coordinates (A13), this amounts
effectively to make the permutation fu ↦ v; r ↦ −r0;

z ↦ z0g in all expressions. This induces a sign flip in the
polarization covectors ε�μ in (2.40). As now qμXμ ¼
−vþ r0jz0 − wj2, another global minus sign is induced by
the evaluation of the ðw; w̄Þ integral in (2.13) in the stationary
phase approximation around the collinear configuration
z0 ¼ w, see (2.39). Therefore, the large-r0 limit of the field
goes in a parallel way as before and provides the following
expansion of operators near I −:

ϕðsÞ
z…zðXÞ ¼ ð−1Þs iKðsÞ

8π2
r0s−1

Z þ∞

0

dω½aðsÞþ ðω; z0; z̄0Þe−iωv − aðsÞ− ðω; z0; z̄0Þ†eþiωv� þOðr0s−2Þ: ð2:52Þ

Because the considered coordinate systemsfu; r; z; z̄g andfv; r0; z0; z̄0g both interpolate betweenI − andIþ, themost natural
choice to extract the boundary value at I − is

ϕ̄ðsÞ
z…zðv; z; z̄Þdz ⊗ � � � ⊗ dzþ ϕ̄ðsÞ

z̄…z̄ðv; z; z̄Þdz̄ ⊗ � � � ⊗ dz̄≡ lim
r→−∞

ι�ðr1−sϕðsÞ
μ1…μsdX

μ1 ⊗ … ⊗ dXμsÞ ð2:53Þ

as before, where the primes on the z’s have been dropped because of (A13). This implies

ϕ̄ðsÞ
z…zðv; z; z̄Þ ¼ −

iKðsÞ
8π2

Z þ∞

0

dω½aðsÞþ ðω; z; z̄Þe−iωv − aðsÞ− ðω; z; z̄Þ†eiωv�; ð2:54Þ

and in particular ϕ̄ðsÞ
z…zðu; z; z̄Þ≡ ϕ̄ðsÞ

z…zðv; z; z̄Þ, which is also consistent with the change of coordinates (A13). This finally
shows that the boundary value at I − also transforms as (2.50) and (2.51) up to the mere replacement u ↦ v.

2. From boundary to bulk: The Kirchhoff-d’Adhémar formula

Up to this stage, we have reviewed how a bulk free field induces a boundary field in the asymptotic region. We now make
the link with the Kirchhoff-d’Adhémar formula [128,129] that describes how to reconstruct the bulk free field from its
boundary value via a boundary-to-bulk propagator.
Inverting the Fourier transform (2.43), we get

aðsÞþ ðω; z; z̄Þ ¼ 4πi
KðsÞ

Z þ∞

−∞
dueiωuϕ̄ðsÞ

z…zðu; z; z̄Þ;

aðsÞ− ðω; z; z̄Þ† ¼ −
4πi
KðsÞ

Z þ∞

−∞
due−iωuϕ̄ðsÞ

z…zðu; z; z̄Þ; ð2:55Þ

for ω > 0. Rewriting the expression for the field (2.13) as

ϕðsÞ
I ðXÞ ¼ KðsÞ

16π3

Z
ωdωd2wε�þI ðw; w̄Þ½aðsÞþ ðω; w; w̄ÞeiωqμXμ þ aðsÞ− ðω; w; w̄Þ†e−iωqμXμ � þ h:c: ð2:56Þ

and inserting (2.55) gives

ϕðsÞ
I ðXÞ ¼ i

4π2

Z
ωdωd2wε�þI ðw; w̄Þ

Z þ∞

−∞
dũ½eiωðqμXμþũÞ − e−iωðqμXμþũÞ�ϕ̄ðsÞ

z…zðũ; w; w̄Þ þ h:c:

¼ i
4π2

Z
d2wε�þI ðw; w̄Þ

Z þ∞

−∞
dũ

Z þ∞

−∞
dωωeiωðqμXμþũÞϕ̄ðsÞ

z…zðũ; w; w̄Þ þ h:c: ð2:57Þ

One concludes, making use of the identity
Rþ∞
−∞ dxxeipx ¼ −2πi∂pδðpÞ, that
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ϕðsÞ
I ðXÞ ¼ 1

2π

Z
d2wdũε�þI ðw; w̄Þ½∂ũδðũþ qμXμÞϕ̄ðsÞ

z…zðũ; w; w̄Þ� þ h:c: ð2:58Þ

In this sense, the boundary-to-bulk propagator is Pðũ; w; w̄jXÞ ¼ ∂ũδðqμXμ þ ũÞ. Integrating out the δ-distribution, we
obtain the Kirchhoff-d’Adhémar formula [128,129]

ϕðsÞ
I ðXÞ ¼ −

1

2π

Z
d2wε�þI ðw; w̄Þ∂ũϕ̄ðsÞ

z…zðũ ¼ −qμXμ; w; w̄Þ þ h:c: ð2:59Þ

which allows one to reconstruct the bulk field ϕðsÞ
I ðXÞ from its boundary value at Iþ. A similar relation holds for the

boundary value at I −.
Remark—Consistently with the remark of the previous section, we recover from (2.59) that a shift of the form (2.44)

does not alter the bulk field. Notice that, by contrast, changing the value of the pole in the Fourier transform aðsÞ� ðω; z; z̄Þ ↦
aðsÞ� ðω; z; z̄Þ þ Δηa

ðsÞ
� ðω; z; z̄Þ with

Δηa
ðsÞ
þ ðω; z; z̄Þ ¼ −ΔηaðsÞ− ðω; z; z̄Þ† ≡ −

4π

KðsÞ
ηðz; z̄Þ 1

ω
; ð2:60Þ

which corresponds to shifting the boundary field by Δηϕ̄
ðsÞ
z…zðu; z; z̄Þ ¼ 1

2
ηðz; z̄ÞsignðuÞ, does affect the bulk field as

Δηϕ
ðsÞ
I ðXÞ ¼ −

1

2π

Z
d2wε�þI ðw; w̄Þηðw; w̄ÞδðqμXμÞ þ h:c: ð2:61Þ

C. From null infinity to the celestial sphere

1. From position space to Mellin basis

Combining the results of the previous sections, we can construct a dictionary between boundary operators ϕ̄ðsÞ
z…zðu; z; z̄Þ

[respectively ϕ̄ðsÞ
z…zðv; z; z̄Þ] evolving in retarded (resp. advanced) time and the ladder operators in the Mellin basis aðsÞΔ;αðz; z̄Þ

and aðsÞΔ;αðz; z̄Þ† living on the celestial sphere. Injecting (2.55) into (2.27), and using (2.24) to compute the integral onω, yields

aðsÞΔ;þðz; z̄Þ ¼
4πi
KðsÞ

lim
ϵ→0þ

Z þ∞

0

dωωΔ−1
Z þ∞

−∞
dueiωu−ωϵϕ̄ðsÞ

z…zðu; z; z̄Þ

¼ 4π

KðsÞ
iΔþ1Γ½Δ� lim

ϵ→0þ

Z þ∞

−∞
duðuþ iϵÞ−Δϕ̄ðsÞ

z…zðu; z; z̄Þ; ð2:62Þ

where Δ ¼ cþ iν, c > 0. The integral transform (2.62) coincides with the one discussed in the extrapolate-style dictionary
presented in [93]. It essentially trades the time dependence u of the operators in position space for the conformal dimensionΔ
of the operators in Mellin space. This motivates introducing

B�½fðuÞ;Δ�≡ κ�Δ lim
ϵ→0þ

Z þ∞

−∞
duðu� iϵÞ−ΔfðuÞ ð2:63Þ

for any smooth functions f defined on Iþ, with κ�Δ ¼ 4πð�iÞΔþ1Γ½Δ�. The integral (2.63), here referred to as the B-
transform, is merely the composition of a Fourier transform (which maps u ↦ ω) and a Mellin transform (which maps
ω ↦ Δ), see (2.62). One should stress that theBþ-transform (resp.B−) alone is not invertible since it projects out the positive
(resp. negative) frequency modes of f, i.e. it annihilates the second (resp. first) term in the decomposition

fðuÞ ¼
Z þ∞

0

dω½fþðωÞe−iωu þ f−ðωÞeiωu�: ð2:64Þ

This is easily seen from the first line of (2.62) where the integral in u effectively gets rid of all positive frequency modes of

ϕ̄ðsÞ
z…zðu; z; z̄Þ. However Bþ (resp. B−) is invertible when restricted to functions with negative (resp. positive) frequency only.
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This comes from the fact that composing a Fourier and a Mellin transform is only possible if the integral over frequencies is
taken over Rþ, which amounts to use “unilateral” (hence improper) Fourier transforms that are also not invertible. The

physical meaning of this choice of integration domain is again that the asymptotic excitations of ϕðsÞ
I have strictly positive

energy, ω > 0.
Keeping this in mind, we have

aðsÞΔ;þðz; z̄Þ ¼
1

KðsÞ
Bþ½ϕ̄ðsÞ

z…zðu; z; z̄Þ;Δ�; aðsÞΔ;−ðz; z̄Þ† ¼
1

KðsÞ
B−½ϕ̄ðsÞ

z…zðu; z; z̄Þ;Δ�; ð2:65Þ

and

aðsÞΔ;−ðz; z̄Þ ¼
1

KðsÞ
Bþ½ϕ̄ðsÞ

z̄…z̄ðu; z; z̄Þ;Δ�; aðsÞΔ;þðz; z̄Þ† ¼
1

KðsÞ
B−½ϕ̄ðsÞ

z̄…z̄ðu; z; z̄Þ;Δ�: ð2:66Þ

One can write similar expressions at I − for ϕ̄ðsÞ
z…zðv; z; z̄Þ expanded as (2.54) by making the replacement u ↦ v.

2. From Mellin basis to position space

We now want to discuss how to reconstruct the boundary field ϕ̄ðsÞ
z…zðu; z; z̄Þ from the celestial operators aðsÞΔ;�ðz; z̄Þ. To

achieve this, let us first define

B−1
� ½FðΔÞ; u�≡ −

1

16π3
lim
ϵ→0þ

Z þ∞

−∞
dν

ð�iÞΔΓ½1 − Δ�
ðu ∓ iϵÞ1−Δ FðΔÞ: ð2:67Þ

These operators are effectively obtained by the successive action of two integral transforms

B−1
� ½FðΔÞ; u� ¼ ∓ i

16π3

Z þ∞

0

dωe∓iωu

Z þ∞

−∞
dνω−ΔFðΔÞ:

ð2:68Þ

The second integral in (2.68) is the inverse Mellin trans-
form (2.23), while the first integral means that functions in
the image of B−1þ (resp. B−1þ ) have negative (resp. positive)
frequencies only. Now, one always has

B�∘B−1
� ½FðΔÞ� ¼ FðΔÞ: ð2:69Þ

This relation can checked explicitly by providing a reali-
zation of the δ distribution on conformal weights as

lim
ϵ→0þ

Z þ∞

−∞
du

iΔΓ½Δ�
ðuþ iϵÞΔ

ð−iÞ1−Δ0Γ½1 − Δ0�
ðu − iϵÞ1−Δ0 ¼ 4π2δðν − ν0Þ;

ð2:70Þ

where Δ ¼ cþ iν and Δ0 ¼ cþ iν0. This identity is the
analog of (2.25) but adapted for the B-transform instead of
the Mellin transform; it can be derived by first rewriting
each of the fractions in the integrand of (2.70) as Mellin
transforms of plane waves, then performing the integral in u
to obtain a δ-function and concluding using (2.25).
However, as we already emphasized, the transforms B�

are not invertible. Rather, if we decompose fðuÞ in positive/
negative frequency modes as in (2.64), then

B−1
� ∘B�½fðuÞ� ¼

Z þ∞

0

dωe∓iωuf�ðωÞ; ð2:71Þ

i.e. B−1
� ∘B� are the projectors on negative/positive fre-

quency modes. This follows from

lim
ϵ→0þ

Z þ∞

−∞
dν

iΔΓ½Δ�
ðuþ iϵÞΔ

ð−iÞ1−ΔΓ½1 − Δ�
ðu0 − iϵÞ1−Δ

¼ 2π

Z þ∞

0

dωeiωðu−u0Þ; ð2:72Þ

which is not δðu − u0Þ because of the restricted domain of
integration. This is responsible for the fact that B−1

� ∘B� is a
projection rather than the identity map. Equation (2.72) can
be derived by rewriting the second fraction in the integrand
as the Mellin transform of a plane wave and recognizing the
resulting integral over ν as an inverse Mellin transform
acting on the first fraction.
From all these remarks, we conclude that the relations

(2.65) are inverted as follows:

ϕ̄ðsÞ
z…zðu; z; z̄Þ ¼ KðsÞB−1þ ½aðsÞΔ;þðz; z̄Þ; u�

þ KðsÞB−1
− ½aðsÞΔ;−ðz; z̄Þ†; u�: ð2:73Þ

with a similar expression for ϕ̄ðsÞ
z…zðv; z; z̄Þ obtained by

making the replacement u ↦ v.
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D. S-matrix in the three scattering bases

We now turn to the scattering of interacting massless
spin-s fields in flat spacetime. This discussion will be
repeated in the three scattering bases [113]: momentum
space, Mellin space and position space. Even though the
S-matrix is known to be trivial for higher spins s > 2
[130–134] (see e.g. [135] for a recent review), it will be
valuable to keep the spin arbitrary throughout to highlight
some general structure. In fact, some patterns of an infrared
triangle [13] have been shown to persist for higher-spin
theories [136–139], which makes the analysis for s > 2
interesting by itself. Moreover, there exist nontrivial (inter-
acting) chiral higher-spin theories [140–146] (see
[147,148] for the relevance of these theories in the context
of celestial OPEs). The presence of interactions in those
theories does not necessarily mean that the S-matrix is
nontrivial; typically, the usual theorems apply and, as a
result of the higher-spin symmetries, scattering amplitudes
vanish. However there are examples of chiral higher-spin
theories with a nontrivial S-matrix [149,150].

1. Asymptotically free fields for null scattering processes

As usual in the S-matrix picture, the interacting theory is
taken to be asymptotically free. More explicitly, in retarded

coordinates (A8), we suppose that the bulk operator ϕðsÞ
I of

the full interacting theory can be expanded around Iþ as

ϕðsÞ
I ðXÞ ¼ ϕðsÞ

I ðXÞout þOðrs−2Þ; ð2:74Þ

and in advanced coordinates (A11) around I − as

ϕðsÞ
I ðXÞ ¼ ϕðsÞ

I ðXÞin þOðrs−2Þ: ð2:75Þ

Here ϕðsÞ
I ðXÞout=in are the free fields discussed in the

previous sections and Oðrs−2Þ stands for the contributions
of the interactions in the bulk that are not seen near the
boundary.
Under these assumptions, the boundary values (2.43)

and (2.54) of the interacting field at Iþ and I − are finite

and coincide with the boundary values of ϕðsÞ
I ðXÞout=in,

ϕ̄ðsÞ
z…zðu; z; z̄Þout ¼ −

iKðsÞ
8π2

Z þ∞

0

dω½aðsÞoutþ ðω; z; z̄Þe−iωu − aðsÞout− ðω; z; z̄Þ†eiωu�; ð2:76Þ

ϕ̄ðsÞ
z…zðv; z; z̄Þin ¼ −

iKðsÞ
8π2

Z þ∞

0

dω½aðsÞinþ ðω; z; z̄Þe−iωv − aðsÞin− ðω; z; z̄Þ†eiωv�: ð2:77Þ

We therefore asymptotically end up with two free theories
related by a nontrivial interaction process. In the free
theory, our conventions (2.42)–(2.53) mean that incoming
and outgoing boundary values are equal, up to the mere
replacement u ↦ v. In presence of interactions, the antipo-
dal matching conditions of [126,151] read

ϕ̄ðsÞ
z…zðu; z; z̄ÞoutjIþ

−
¼ ϕ̄ðsÞ

z…zðv; z; z̄ÞinjI−
þ
; ð2:78Þ

where Iþ
− ¼fX∈Iþju→−∞g and I −þ ¼fX∈I −jv→

þ∞g. This is because the coordinates z ¼ z0 define
antipodal directions on the celestial sphere between I −

and Iþ.
In Sec. II C, three descriptions of these fields have been

presented: the direct interpretation in position space and
their decomposition in terms of ladder operators both in
Fourier and Mellin spaces. In the following, we relate the
asymptotic states in these three equivalent descriptions by
integral transforms.

2. Scattering amplitudes in momentum space

In momentum space, we can construct an incoming or
outgoing state, respectively denoted as jω; z; z̄; s; αi and

hω; z; z̄; s; αj, representing a particle of light-cone energy ω,
spin s and helicity J ¼ αs ¼ �s coming from or heading to
the point ðz; z̄Þ on the celestial sphere, by acting on the

respective vacua with the ladder operators aðsÞin=outα ðω; z; z̄Þ,
i.e.

hω; z; z̄; s; αj ¼ −
iKðsÞ
4π

h0jaðsÞoutα ðω; z; z̄Þ;

jω; z; z̄; s; αi ¼ iKðsÞ
4π

aðsÞinα ðω; z; z̄Þ†j0i: ð2:79Þ

The perhaps unusual choice of normalization of energy
eigenstates in (2.79) is inspired by the relations (2.55) and
will be motivated in Sec. II D 4. The scattering amplitudes
in momentum space involving N massless particles—n of
which are outgoing—are given by the S-matrix elements
ANðp1;…;pNÞ ¼ houtjinimom with

houtj ¼ hω1; z1; z̄1; s1; α1j ⊗ … ⊗ hωn; zn; z̄n; sn; αnj
ð2:80Þ
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and

jini ¼ jωnþ1; znþ1; z̄nþ1; snþ1; αnþ1i ⊗ … ⊗ jωN; zN; z̄N; sN; αNi: ð2:81Þ

3. Scattering amplitudes in Mellin space

Alternatively, as it was pointed out in [68,70] (see [111] for a review), one can express the S-matrix elements in Mellin
space using the change of representation discussed in Sec. II A 2. The Mellin transform (2.27) turns the in/out asymptotic
ladder operators in momentum space to asymptotic operators in the Mellin basis. Correspondingly, we obtain the
asymptotic states on the celestial sphere from the usual momentum eigenstates by

hΔ; z; z̄; s; αj ¼ −
iKðsÞ
4π

h0jaðsÞoutΔ;α ðz; z̄Þ ¼
Z þ∞

0

dωωΔ−1hω; z; z̄; s; αj ð2:82Þ

for outgoing particles, and

jΔ; z; z̄; s; αi ¼ iKðsÞ
4π

aðsÞinΔ;α ðz; z̄Þ†j0i ¼
Z þ∞

0

dωωΔ−1jω; z; z̄; s; αi ð2:83Þ

for incoming particles. Because of (2.29), states defined as (2.82) and (2.83) are boost eigenstates. The so-called “celestial
amplitudes” MN ¼ houtjiniboost involving N inserted particles on the celestial sphere are now obtained as (dropping the
spin indices)

MNðΔ1; z1; z̄1;…;ΔN; zN; z̄NÞ ¼
Z þ∞

0

dω1ω
Δ1−1
1 …

Z þ∞

0

dωNω
ΔN−1
N ANðp1;…;pNÞ: ð2:84Þ

4. Scattering amplitudes in position space

Finally, we can define the asymptotic quantum states directly in position space. Outgoing states at Iþ are naturally
defined as

hu; z; z̄; s;þj ¼ h0jϕ̄ðsÞ
z…zðu; z; z̄Þ ¼ 1

2π

Z þ∞

0

dωe−iωuhω; z; z̄; s;þj;

hu; z; z̄; s;−j ¼ h0jϕ̄ðsÞ
z̄…z̄ðu; z; z̄Þ ¼

1

2π

Z þ∞

0

dωe−iωuhω; z; z̄; s;−j; ð2:85Þ

because of (2.76) and (2.77). The boundary field ϕ̄ðsÞ
z…zðu; z; z̄Þ creates outgoing spin-s particles with positive helicity and

destroys outgoing spin-s particles with negative helicity, while ϕ̄ðsÞ
z̄…z̄ðu; z; z̄Þ ¼ ϕ̄ðsÞ

z…zðu; z; z̄Þ† acts in the opposite way. The
normalization of (2.79) allows us to represent the creation and annihilation operators in position space (2.85) without extra
normalization factors. Playing the same game at I −, we construct the incoming states in position space as

jv; z; z̄; s;þi ¼ ϕ̄ðsÞ
z…zðv; z; z̄Þ†j0i ¼ 1

2π

Z þ∞

0

dωeiωvjω; z; z̄; s;þi;

jv; z; z̄; s;−i ¼ ϕ̄ðsÞ
z̄…z̄ðv; z; z̄Þ†j0i ¼

1

2π

Z þ∞

0

dωeiωvjω; z; z̄; s;−i: ð2:86Þ

We then introduce “position space amplitudes” CN ¼ houtjinipos, which are obtained from the usual momentum
representation of the S-matrix as

CNðu1;z1;z̄1;…;un;zn;z̄n;vnþ1;znþ1;z̄nþ1;…;vN;zN;z̄NÞ¼
1

ð2πÞN
Yn
k¼1

Z þ∞

0

dωke−iωkuk
YN

l¼nþ1

Z þ∞

0

dωleiωlvlANðp1;…;pNÞ:

ð2:87Þ
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These amplitudes can be translated in the Mellin representation thanks to the B-transform (2.63) by noticing that

hΔ; z; z̄; s; αj ¼ 1

4πi
Bþ½hu; z; z̄; s; αj;Δ�; jΔ; z; z̄; s; αi ¼ −

1

4πi
B−½jv; z; z̄; s; αi;Δ�; ð2:88Þ

owing to the definitions (2.65), (2.82), and (2.83). Hence

MNðΔ1; z1; z̄1;…;ΔN; zN; z̄NÞ ¼
ð−1ÞN−n

ð4πiÞN BðN−nÞ
− ½BðnÞ

þ ½CNðu1; z1; z̄1;…; vN; zN; z̄NÞ; fΔ1;…;Δng�; fΔnþ1;…;ΔNg�;

ð2:89Þ

where BðkÞ
þ represents k successive applications of the B-transform.

5. Low-point amplitudes

Let us make more concrete the action of the various integral transforms introduced so far by considering propagation of
one particle, ignoring quantum-loop effects. In the momentum basis, the tree-level amplitude A2 is

A2ðω1; z1; z̄1;ω2; z2; z̄2Þ ¼ K2
ðsÞπ

δðω1 − ω2Þ
ω1

δð2Þðz1 − z2Þδα1;α2 ; ð2:90Þ

for ωi > 0. This simply describes the travel of a particle of helicity J ¼ αs inserted at I − crossing Minkowski spacetime
towards Iþ.
Recalling the definition (2.82) and (2.83) and using the transformation (2.84), the two-point amplitude in Mellin space

can be deduced from (2.90) and is given by [71]

M2ðΔ1; z1; z̄1;Δ2; z2; z̄2Þ ¼
Z þ∞

0

dω1ω
Δ1−1
1

Z þ∞

0

dω2ω
Δ2−1
2 A2ðω1; z1; z̄1;ω2; z2; z̄2Þ

¼ K2
ðsÞπ

Z þ∞

0

dωωΔ1þΔ2−3δð2Þðz1 − z2Þδα1;α2 ¼ 2π2K2
ðsÞδðν1 þ ν2Þδð2Þðz1 − z2Þδα1;α2 ; ð2:91Þ

where Δi ¼ 1þ iνi is assumed for the integral over ω to be converging, as prescribed by (2.25).
The position space amplitude C2 can also be computed from (2.90) as

C2ðu1; z1; z̄1; u2; z2; z̄2Þ ¼
1

4π2

Z þ∞

0

dω1

Z þ∞

0

dω2e−iω1u1eiω2u2A2ðω1; z1; z̄1;ω2; z2; z̄2Þ

¼
K2

ðsÞ
4π

Z þ∞

0

dω
ω

e−iωðu1−u2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡I0ðu1−u2Þ

δð2Þðz1 − z2Þδα1;α2 ; ð2:92Þ

owing to (2.87) and using (A13) to trade v for u. The integral I0ðu1 − u2Þ is divergent but can nevertheless be regulated
noticing that I0ðu1 − u2Þ ¼ limβ→0þ Iβðu1 − u2Þ with the definition

I βðxÞ ¼ lim
ϵ→0þ

Z þ∞

0

dωωβ−1e−iωx−ωϵ ¼ lim
ϵ→0þ

Γ½β�ð−iÞβ
ðx − iϵÞβ : ð2:93Þ

In the limit β → 0þ, we obtain

IβðxÞ ¼
1

β
−
�
γ þ ln jxj þ iπ

2
signðxÞ

�
þOðβÞ; ð2:94Þ

where γ is the Euler-Mascheroni constant. So (2.92) evaluates to
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C2ðu1; u2Þ ¼
K2

ðsÞ
4π

�
1

β
−
�
γ þ ln ju1 − u2j þ

iπ
2
signðu1 − u2Þ

��
δð2Þðz1 − z2Þδα1;α2 þOðβÞ: ð2:95Þ

We show in Sec. V D that (2.95) is a Poincaré invariant object as a consequence of (2.50); importantly, the pole in 1=β shall
be kept because it is essential to ensure boost invariance. Let us stress that, fundamentally, this divergence can be interpreted
as an infrared pole. Indeed, if we choose to regularize the integral I0ðxÞ as

I0ðxÞ ¼ lim
ϵ→0þ

Z þ∞

ϵ

dω
ω

e−iωx ≡ lim
ϵ→0þ

E1ðixϵÞ; ð2:96Þ

where E1ðzÞ represents the principal branch ArgðzÞ ∈� − π; π½ of the complex exponential integral, for any z ∉ R−, we have
the following series [152]:

E1ðzÞ ¼ −γ − ln z −
Xþ∞

k¼1

1

k!
ð−zÞk
k

⇒ I0ðxÞ ¼ ln
1

ϵ
− γ − ln jxj − signðxÞ iπ

2
þOðϵÞ ð2:97Þ

in the limit ϵ → 0þ. Boost invariance requires that lnðϵ−1Þ behaves around zero as the pole of the Euler gamma function,
hence β−1 ≃ lnðϵ−1Þ and both treatments of the divergence agree on the final result.
Let us now observe thanks to (2.85) and (2.86) that

C2ðu1; z1; z̄1;u2; z2; z̄2Þ≡ h0jϕ̄ðsÞ
z…zðu1; z1; z̄1Þϕ̄ðsÞ

z…zðu2; z2; z̄2Þ†j0i ð2:98Þ

picking α ¼ þ for definiteness (similar considerations apply, mutatis mutandis, for α ¼ −). In Sec. V, we will interpret this
object as a (holographic) boundary two-point function; it results from the double limit of the bulk two-point function where
one point is sent to Iþ and the other one to I −. Although (2.98) has an infrared divergence, we directly observe
from (2.94) that the difference Iβðu1 − u2Þ − Iβðu2 − u1Þ is finite in the limit β → 0þ and reproduces the commutation
relation (2.48), i.e.

h0j½ϕ̄ðsÞ
z…zðu1; z1; z̄1Þ; ϕ̄ðsÞ

z…zðu2; z2; z̄2Þ†�j0i ¼ lim
β→0þ

K2
ðsÞ
4π

½Iβðu1 − u2Þ − Iβðu2 − u1Þ�δð2Þðz1 − z2Þ

¼ −
iK2

ðsÞ
4

signðu1 − u2Þδð2Þðz1 − z2Þ: ð2:99Þ

The behavior (2.95) of the boundary two-point function (2.98) has also been established independently in [153].
Finally, let us close the loop by showing that applying twice the B-transform as prescribed in (2.89) gives us back the

celestial amplitude. Keeping (2.88) in mind, we first compute

Bþ½I0ðu1 − u2Þ;Δ1� ¼ 4πiΔ1þ1Γ½Δ1� lim
ϵ→0þ

Z þ∞

−∞

du1
ðu1 þ iϵÞΔ1

I0ðu1 − u2Þ

¼ 4πi lim
ϵ→0þ

Z þ∞

−∞
du1

Z þ∞

0

ωΔ1−1eiωu1−ωϵ
Z þ∞

0

dω0

ω0 e
−iω0ðu1−u2Þ

¼ 8π2i lim
ϵ→0þ

Z þ∞

0

dωωΔ1−2eiωu2−ωϵ ¼ 8π2i lim
ϵ→0þ

iΔ1−1Γ½Δ1 − 1�
ðu2 þ iϵÞΔ1−1

: ð2:100Þ

Computing the second B-transform leads to

B−½Bþ½I0ðu1 − u2Þ;Δ1�;Δ2� ¼ 32π3 lim
ϵ→0þ

Z þ∞

−∞
du2

iΔ1−1Γ½Δ1 − 1�
ðu2 þ iϵÞΔ1−1

ð−iÞΔ2Γ½Δ2�
ðu2 − iϵÞΔ2

¼ 128π5δðν1 þ ν2Þ; ð2:101Þ

as a corollary of (2.70) assuming Δi ¼ 1þ iνi. Therefore, using the dictionary (2.89),
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M2ðΔ1; z1; z̄1;Δ2; z2; z̄2Þ

¼ 1

ð4πÞ2 B−½Bþ½C2ðu1; z1; z̄1; u2; z2; z̄2Þ;Δ1�;Δ2�

¼ 2π2K2
ðsÞδðν1 þ ν2Þδð2Þðz1 − z2Þδα1;α2 ; ð2:102Þ

we recover (2.91) as it should.
A similar treatment could be applied to three-point

amplitudes but kinematic constraints imply that the latter
have to vanish in Lorentzian signature ð−;þ;þ;þÞ. This
issue can be circumvented by working in split signature
ð−;þ;−;þÞ in which z and z̄ are no longer related by
complex conjugation (see e.g. [154]) and the description of
amplitudes in position space can be adapted to this
framework. These considerations, as well as the computa-
tion of the higher-point amplitudes (N ≥ 4) will be dis-
cussed elsewhere.

6. The three bases for scattering amplitudes
in flat spacetime

From the above discussion, it follows that one can work
in three different spaces to discuss the boundary fields:

(i) The position space involving the boundary field
ϕ̄ðsÞðu=v; z; z̄Þ,

(ii) The Fourier space providing the usual description by

ladder operators aðsÞout=in� ðω; z; z̄Þ,
(iii) The Mellin space with the celestial ladder opera-

tors aðsÞout=inΔ;� ðz; z̄Þ,
see Fig. 3 for a summary. This observation was already
pointed out in [113] where it was argued that the three
spaces, or “bases,” are useful, depending on the question of
interest. For instance, to discuss infrared issues, Fourier
space will be suited to write the soft theorems, Mellin space
will be more convenient to discuss symmetries through
some Ward identities, and position space will be appro-
priate to highlight the memory effects.
We observe that the S-matrix is holographic by nature, in

the sense that its elements can be reinterpreted as corre-
lations between boundary operators. Interestingly, as we

will argue in Sec. V, the boundary operators in position
space can be interpreted as operators sourcing a dual
Carrollian CFT. The S-matrix elements are then just seen
as correlation functions for these operators. This points
towards the Carrollian approach of flat space holography.
Similarly, the boundary operators in Mellin space can be
interpreted as operators in the CCFT, pointing towards the
celestial holography proposal. Therefore, one can already
deduce that the B-transform discussed in Sec. II C relates
the Carrollian CFT and the CCFT. It trades the null time
dependence of the Carrollian operators for the conformal
dimension of the CCFT operators. We will come back to
this observation in Sec. VI when discussing the link
between Carrollian and celestial holographies.

III. ASYMPTOTIC SYMMETRIES
IN FLAT SPACETIME

This section reviews the asymptotic symmetry analysis
of electrodynamics and gravity. This allows us to fix the
notations and conventions that will be useful in order to
discuss the holographic Carrollian correspondence in
Sec. V. The BMS asymptotic symmetries of gravity will
play the role of global spacetime symmetries in the dual
Carrollian CFT, while the Uð1Þ asymptotic symmetries of
electrodynamics will provide an example of global internal
symmetry.

A. Scalar electrodynamics

We start by reviewing the asymptotic symmetry structure
of electrodynamics on a flat background (see [126,155] for
the original references and [13] for a review). We denote the
electromagnetic potential as AμðXÞ and the matter current
as J μðXÞ. For definiteness, we focus on complex scalar
matter field ϕðXÞ carrying a chargeQe, whereQ ∈ R and e
is the elementary charge. The electromagnetic current is
thus

J μ ¼ iQeðϕ�
∂μϕ − ϕ∂μϕ

�Þ: ð3:1Þ

In the retarded coordinates fu; r; z; z̄g, radiative boundary
conditions for the potential Aμ near future null infinity are

Azðu; r; z; z̄Þ ¼ Að0Þ
z ðu; z; z̄Þ þOðr−1Þ;

Arðu; r; z; z̄Þ ¼Oðr−2Þ; Auðu; r; z; z̄Þ ¼Oðr−1Þ; ð3:2Þ

consistently with Sec. II. Comparing with (2.43), the role of

the boundary field is played here by Að0Þ
z ðu; z; z̄Þ. These

boundary conditions are preserved by gauge transforma-
tions with λðu; r; z; z̄Þ ¼ λð0Þðz; z̄Þ þOðr−1Þ such that

δλA
ð0Þ
z ¼ ∂zλ

ð0Þ. On the matter side, the massless scalar
field decays as

FIG. 3. Interplay between the three bases of scattering in flat
spacetime.
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ϕðu; r; z; z̄Þ ¼ ϕð0Þðu; z; z̄Þ
r

þOðr−2Þ ð3:3Þ

at future null infinity. The boundary field ϕð0Þðu; z; z̄Þ is left
unconstrained by the massless Klein-Gordon equation and
transforms as

δλϕ
ð0Þðu; z; z̄Þ ¼ −iλð0Þðz; z̄ÞQeϕð0Þðu; z; z̄Þ ð3:4Þ

under the gauge symmetry.
Expanding the field strength Fμν ¼ ∂μAν − ∂νAμ and

current J μ in 1=r near Iþ taking (3.2) into account,
we have

Fuzðu; r; z; z̄Þ ¼ Fð0Þ
uz ðu; z; z̄Þ þOðr−1Þ;

Fruðu; r; z; z̄Þ ¼ Fð2Þ
ru ðu; z; z̄Þr−2 þOðr−3Þ;

Fzz̄ðu; r; z; z̄Þ ¼ Fð0Þ
zz̄ ðu; z; z̄Þ þOðr−1Þ;

J uðu; r; z; z̄Þ ¼ J ð2Þ
u ðu; z; z̄Þr−2 þOðr−3Þ: ð3:5Þ

In addition, one requires that the magnetic field is vanishing
at Iþ

� (see [156] for a consideration of magnetic contri-
butions at Iþ

�), i.e.

Fð0Þ
zz̄ jIþ

�
¼ ð∂zAð0Þ

z̄ − ∂z̄A
ð0Þ
z ÞjIþ

�
¼ 0: ð3:6Þ

The leading equation of motion is

∂uF
ð2Þ
ru þ ∂z̄F

ð0Þ
uz þ ∂zF

ð0Þ
uz̄ þ e2J ð2Þ

u ¼ 0: ð3:7Þ

The surface charges associated with the residual gauge
symmetry driven by λð0Þ can be derived as [13,126,155]

Qλ½A� ¼ −
1

e2

Z
Σ
d2zλð0Þðz; z̄ÞFð2Þ

ru ðu; z; z̄Þ; ð3:8Þ

where Σ is a fu ¼ const:g cut of Iþ. As retarded time
evolves alongIþ, these charges are not conserved because
of the presence of electromagnetic radiation, encoded in the

leading of piece of the Maxwell field Að0Þ
z , and the null

matter current J ð2Þ
u . Indeed, using (3.7), one has the

following flux-balance law:

dQλ

du
¼ 1

e2

Z
Σ
d2zλð0Þð∂z̄Fð0Þ

uz þ∂zF
ð0Þ
uz̄ þe2J ð2Þ

u Þ≡
Z
Σ
d2zFλ:

ð3:9Þ

In order to distinguish between hard (finite energy) and
soft (zero energy) radiative excitations of the gauge field,
one can split it as [126]

Að0Þ
z ðu; z; z̄Þ ¼ Ãð0Þ

z ðu; z; z̄Þ þ ∂zχðz; z̄Þ; ð3:10Þ

where χðz; z̄Þ is related to the early and late-time values of
the boundary field as

∂zχðz; z̄Þ ¼
1

2
ðAð0Þ

z jIþ
þ
þ Að0Þ

z jIþ
−
Þ: ð3:11Þ

Because χðz; z̄Þ transforms by an inhomogeneous shift
(δλχ ¼ λð0Þ), it is interpreted as the Goldstone mode of

asymptotic symmetry breaking while Ãð0Þ
z ðu; z; z̄Þ is taken

to be gauge-invariant (i.e. δλÃ
ð0Þ
z ¼ 0). The latter encodes

the hard modes of the boundary value Að0Þ
z of the gauge

field Aμ, which are captured by the Fourier expansion
(2.43) for s ¼ 1. In particular, it transforms as (2.51) with

J ¼ 1 under Poincaré symmetries. Defining N ð0Þ
z ≡Rþ∞

−∞ duFð0Þ
uz and recalling the boundary condition (3.6),

we have

∂zN
ð0Þ
z̄ −∂z̄N

ð0Þ
z ¼

Z þ∞

−∞
du∂uF

ð0Þ
zz̄ ¼Fð0Þ

zz̄ jIþ
þ
−Fð0Þ

zz̄ jIþ
−
¼ 0;

ð3:12Þ

where we used the Bianchi identity ∂½μFνρ� ¼ 0 expressed
for the leading components of the Faraday tensor. This
equation is solved if there exists a scalar field Nðz; z̄Þ such
that

∂zNðz;z̄Þ≡ 1

e2

Z þ∞

−∞
duFð0Þ

uz ðu;z;z̄Þ¼ 1

e2
ðAð0Þ

z jIþ
þ
−Að0Þ

z jIþ
−
Þ:

ð3:13Þ

Notice that the so-defined Nðz; z̄Þ, referred to as the
memory mode, is gauge invariant. Hence the radiative
variables are organized in hard and soft fields as

ΓH ¼ fÃð0Þ
z ; ∂uÃ

ð0Þ
z ; Ãð0Þ

z̄ ; ∂uÃ
ð0Þ
z̄ g;

ΓS ¼ f∂zχ; ∂zN; ∂z̄χ; ∂z̄Ng: ð3:14Þ

The evaluation of the symplectic structure at the boundary
Iþ has been detailed e.g. in [13,126] and gives rise to the
following Poisson brackets:

f∂u1 Ãð0Þ
z1 ðu1; z1; z̄1Þ; Ãð0Þ

z̄2 ðu2; z2; z̄2Þg

¼ −
e2

2
δðu1 − u2Þδð2Þðz1 − z2Þ; ð3:15Þ

f∂z1Nðz1; z̄1Þ; ∂z̄2χðz2; z̄2Þg ¼ −
1

2
δð2Þðz1 − z2Þ; ð3:16Þ

for the hard and soft symplectic pairs ðÃð0Þ
z ; ∂uÃ

ð0Þ
z̄ Þ and

ð∂zχ; ∂z̄NÞ. The quantum version of the bracket (3.15) is
nothing but (2.48) for the choice of normalization (2.9).
Because the theory is linear, the hard flux only
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encompasses matter contributions while the flux terms
depending on the gauge field are soft, i.e.

FH
λ ¼

Z
Iþ

dud2zλð0ÞJ ð2Þ
u ; ð3:17Þ

F S
λ ¼

1

e2

Z
Iþ

dud2zλð0Þð∂z̄Fð0Þ
uz þ ∂zF

ð0Þ
uz̄ Þ

¼ 2

Z
Σ
d2zλð0Þ∂z∂z̄N; ð3:18Þ

where the second equality of (3.18) holds because of
(3.12) and (3.13). From (3.15) and (3.16) together with
the canonical commutation relation fϕð0Þðu; z; z̄Þ;
∂u0ϕ

ð0Þðu0; z0; z̄0Þg ¼ δðu − u0Þδð2Þðz − z0Þ for the matter
field, one deduces the very important properties

fFH
λ ;ΓSg ¼ 0 ¼ fF S

λ ;ΓHg;
fFH

λ ; Ã
ð0Þ
z g ¼ 0; fF S

λ ; ∂zχg ¼ ∂zλ
ð0Þ;

fFH
λ ;ϕ

ð0Þg ¼ δλϕ
ð0Þ; fF S

λ ;ϕ
ð0Þg ¼ 0: ð3:19Þ

Because N and J μ are gauge-invariant, we also have that
hard and soft fluxes represent separately the Uð1Þ algebra,
i.e. δλ1F

H=S
λ2

¼ fFH=S
λ1

;FH=S
λ2

g ¼ 0.
A similar analysis can be performed atI −, choosing the

advanced Bondi coordinates fv; r; z; z̄g as defined in
Appendix A. The equation of motion (3.7) becomes

−∂vF
ð2Þ
rv þ ∂z̄F

ð0Þ
vz þ ∂zF

ð0Þ
vz̄ þ e2J ð2Þ

v ¼ 0: ð3:20Þ

The induced surface charges are

Qλ½A� ¼ −
1

e2

Z
Σ
d2zλð0Þðz; z̄ÞFð2Þ

rv ðv; z; z̄Þ; ð3:21Þ

with no sign change with respect to (3.8). The fluxes get a
sign flip because of the corresponding sign flip in the
equation of motion (3.20), i.e.

dQλ

dv
¼ −

1

e2

Z
Σ
d2zλð0Þð∂z̄Fð0Þ

vz þ ∂zF
ð0Þ
vz̄ þ e2J ð2Þ

v Þ

¼
Z
Σ
d2zFλ: ð3:22Þ

Using an homologous split between hard and soft modes in

the boundary value Að0Þ
z ðv; z; z̄Þ of the gauge field, it can be

shown that the property (3.19) also holds at past null infinity
without any relative change of sign. Notice finally that the

convention (2.78) implies Að0Þ
z ðu → −∞; z; z̄Þ ¼ Að0Þ

z ðv →
þ∞; z; z̄Þ, i.e. the antipodal matching condition around
spatial infinity as stated in [157].

B. Gravity

We now switch to gravity in 4d asymptotically flat
spacetimes. We follow the same notations and conventions
than [60,158,159]. In retarded Bondi coordinates
fu; r; xAg, xA ¼ ðz; z̄Þ, the solution space of four-
dimensional asymptotically flat metrics reads as

ds2 ¼
�
2M
r

þOðr−2Þ
�
du2 − 2ð1þOðr−2ÞÞdudrþ ðr2q∘AB þ rCAB þOðr0ÞÞdxAdxB

þ
�
1

2
∂
BCAB þ 2

3r

�
NA þ 1

4
CAB∂CCBC

�
þOðr−2Þ

�
dudxA; ð3:23Þ

where q
∘
ABdxAdxB ¼ 2dzdz̄ is the flat metric on the punctured complex plane C�. The topology of future null infinity is

taken to be Iþ ≃R × C� in order to allow meromorphic superrotations among the set of asymptotic symmetries (see

e.g. [158,160,161] for details on the precise setup). Indices A, B are lowered and raised by q
∘
AB and its inverse. The

asymptotic shear CAB is a symmetric trace-free tensor (q
∘ABCAB ¼ 0). The Bondi mass aspect Mðu; z; z̄Þ and the angular

momentum aspect NAðu; z; z̄Þ satisfy the time evolution/constraint equations

∂uM ¼ −
1

8
NABNAB þ 1

4
∂A∂BNAB − 4πGTmð2Þ

uu ;

∂uNA ¼ ∂AM þ 1

16
∂AðNBCCBCÞ − 1

4
NBC

∂ACBC − 8πGTmð2Þ
uA

−
1

4
∂BðCBCNAC − NBCCACÞ −

1

4
∂B∂

B
∂
CCAC þ 1

4
∂B∂A∂CCBC; ð3:24Þ

with NAB ¼ ∂uCAB the Bondi news tensor encoding the outgoing radiation and Tm
μν the null matter stress tensor whose

expansion near null infinity is taken to be
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Tm
uuðu; r; z; z̄Þ ¼ Tmð2Þ

uu ðu; z; z̄Þ 1
r2

þOðr−3Þ;

Tm
uAðu; r; z; z̄Þ ¼ Tmð2Þ

uA ðu; z; z̄Þ 1
r2

þOðr−3Þ: ð3:25Þ

The diffeomorphisms preserving the solution space
(3.23) are generated by vectors fields ξ ¼ ξu∂u þ ξz∂z þ
ξz̄∂z̄ þ ξr∂r whose leading-order components read

ξu ¼ T þ u
2
ð∂zYz þ ∂z̄Y z̄Þ;

ξz ¼ Yz þOðr−1Þ; ξz̄ ¼ Y z̄ þOðr−1Þ;
ξr ¼ −

r
2
ð∂zYz þ ∂z̄Y z̄Þ þOðr0Þ; ð3:26Þ

where T ¼ T ðz; z̄Þ is the supertranslation parameter and
Yz ¼ YzðzÞ, Y z̄ ¼ Y z̄ðz̄Þ are the superrotation parameters
satisfying the conformal Killing equation

∂z̄Yz ¼ 0; ∂zY z̄ ¼ 0: ð3:27Þ

Using the modified Lie bracket ½ξ1; ξ2�⋆ ≡ ½ξ1; ξ2�−
δξ1ξ2 þ δξ2ξ1, where the last two terms take into account
the field-dependence of (3.26) at subleading orders in
r [12], these asymptotic Killing vectors satisfy the com-
mutation relations

½ξðT 1;Y
z
1;Y

z̄
1Þ; ξðT 2;Y

z
2;Y

z̄
2Þ�⋆ ¼ ξðT 12;Y

z
12;Y

z̄
12Þ;

ð3:28Þ

with

T 12 ¼ Yz
1∂zT 2 −

1

2
∂zY

z
1T 2 þ c:c: − ð1 ↔ 2Þ;

Yz
12 ¼ Yz

1∂zY
z
2 − ð1 ↔ 2Þ; Y z̄

12 ¼ Y z̄
1∂z̄Y

z̄
2 − ð1 ↔ 2Þ:

ð3:29Þ

This corresponds to the (extended) BMS algebra
[12,162,163]. The six globally well-defined solutions of
(3.27) and the four linearly-independent solutions of
ð∂A∂BT ÞTF ¼ 0 generate the Poincaré subgroup. The latter
condition, where TF means the trace-free part with respect

to the boundary metric q
∘
AB, is generally solved as

T ðz; z̄Þ ¼ bμqμðz; z̄Þ where bμ are the constant parameters
of an infinitesimal bulk translation in Cartesian coordinates.
The infinitesimal transformation of the solution space is

induced by the Lie derivative of the bulk metric along BMS
generators (3.26). The most crucial transformation for the
purpose of this paper is the variation of the asymptotic
shear, which reads as

δξCzz ¼ δHξ Czz þ δSξCzz;

δHξ Czz ¼
��

T þ u
2
ð∂zYz þ ∂z̄Y z̄Þ

�
∂u þ Yz

∂z þ Y z̄
∂z̄ þ

3

2
∂zYz −

1

2
∂z̄Y z̄

�
Czz;

δSξCzz ¼ −2∂2zT − u∂3zYz; ð3:30Þ

together with the complex conjugate relations for Cz̄ z̄. The hard and soft parts of the transformation are denoted by δHξ CAB

and δSξCAB, respectively, and are built up from the respective homogeneous and inhomogeneous terms appearing in the
induced variation.
Following the discussion of [62,65,102,103,158,159,164–166], the BMS charges are taken to be

Qξ½g� ¼
1

16πG

Z
Σ
d2zð4T M̄ þ 2YAN̄AÞ; ð3:31Þ

where the redefined mass M̄ and angular momentum aspect N̄A are given by

M̄ ¼ M þ 1

8
NABCAB;

N̄A ¼ NA − u∂AM̄ þ 1

4
CAB∂CCBC þ 3

32
∂AðCBCCBCÞ

þ u
4
∂
B

��
∂B∂C −

1

2
NBC

�
CA

C

�
−
u
4
∂
B

��
∂A∂C −

1

2
NAC

�
CB

C

�
: ð3:32Þ

The latter can be rewritten in a more elegant way in terms of Newman-Penrose coefficients [167,168] as the compact
expressions M̄ ¼ − 1

2
ðΨ0

2 þ Ψ̄0
2Þ, N̄z ¼ −Ψ0

1 þ u∂zΨ0
2 and N̄z̄ ¼ N̄�

z ; see [159]. Using the time evolution/constraint
equations (3.24), these charges satisfy the flux-balance laws
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dQξ

du
¼

Z
Σ
d2zFξðT ;YÞ; ð3:33Þ

where the local fluxes (respectively associated with supertranslations and superrotations) read as

FξðT ;0Þ ¼
1

16πG
T
�
∂
2
zNz̄ z̄ þ

1

2
Cz̄ z̄∂uNzz þ c:c:

�
− T Tmð2Þ

uu ; ð3:34Þ

Fξð0;YÞ ¼
1

16πG
Yz

�
−u∂3zNz̄ z̄ þ Czz∂zNz̄ z̄ −

u
2
∂zCzz∂uNz̄ z̄ −

u
2
Czz∂z∂uNz̄ z̄

�
− YzTmð2Þ

uz þ u
2
Yz

∂zT
mð2Þ
uu þ c:c: ð3:35Þ

As in electrodynamics, a careful split between hard and soft boundary degrees of freedom can be performed, taking into
account the factorization of the radiative phase space between hard and soft sectors [159,165,169]. At quantum level, this
split allows for the BMS Ward identities to correctly reproduce the leading and subleading soft theorems [125,170] at all
orders of perturbation [159,171]. For completeness, we provide here a mere summary of the construction and refer to [159]
for details.
For the analysis of the radiative phase spaces including superrotations, the following early and late time behavior of the

radiative fields are imposed [62,65,158,165,169]:

CABjIþ
�
¼ ðuþ C�ÞNvac

AB − 2ð∂A∂BC�ÞTF þ oðu−1Þ; NAB ¼ Nvac
AB þ oðu−2Þ; ð3:36Þ

where C�ðz; z̄Þ correspond to the values of the supertranslation field for u → �∞ and whose difference encodes the
displacement memory effect, and Nvac

ABðz; z̄Þ is the vacuum news tensor [164,172], identified with the trace-free part of the
Geroch tensor [165,173,174]. The latter can be expressed as

Nvac
zz ¼ 1

2
ð∂zφÞ2 − ∂

2
zφ; Nvac

z̄ z̄ ¼ 1

2
ð∂z̄φ̄Þ2 − ∂

2
z̄ φ̄; ð3:37Þ

where φðzÞ, φ̄ðz̄Þ are the holomorphic superboost fields encoding the velocity kick (or refraction) memory effect [164]. For
conformal primary fields ψk;k̄ðz; z̄Þ of weights ðk; k̄Þ that transform as

δYψ ðk;k̄Þðz; z̄Þ ¼ ðYz
∂z þ Y z̄

∂z̄ þ k∂zYz þ k̄∂z̄Y z̄Þψ ðk;k̄Þðz; z̄Þ ð3:38Þ

under meromorphic superrotations, it is convenient to introduce the conformally covariant derivative operators [160,165]

Dz∶ ðk; k̄Þ → ðkþ 1; k̄Þ∶ψ ðk;k̄Þ ↦ Dzψ ðk;k̄Þ ¼ ½∂z − k∂zφ�ψ ðk;k̄Þ;

D z̄∶ðk; k̄Þ → ðk; k̄þ 1Þ∶ψ ðk;k̄Þ ↦ D z̄ψ ðk;k̄Þ ¼ ½∂z̄ − k̄∂z̄φ̄�ψ ðk;k̄Þ; ð3:39Þ

satisfying ½Dz;D z̄�ψ ðk;k̄Þ ¼ 0. With these definition, the split between hard and soft variables works as follows. Defining

Czz ≡ uNvac
zz þ Cð∘Þ

zz þ C̃zz; Nzz ¼ Nvac
zz þ Ñzz; ð3:40Þ

where Cð∘Þ
zz ðz; z̄Þ ¼ −2D2

zCð∘Þðz; z̄Þ for Cð∘Þ ¼ 1
2
ðCþ þ C−Þ, the Goldstone mode of supertranslation. The falloff conditions

(3.36) imply that Ñzz ¼ ∂uC̃zz ¼ oðu−2Þ and that the asymptotic shear is “purely electric” at early and late times

ðD2
zCz̄ z̄ −D2

z̄CzzÞjIþ
�
¼ 0 ⇒ ðD2

zC̃z̄ z̄ −D2
z̄ C̃zzÞjIþ

�
¼ 0: ð3:41Þ

The implication comes from the fact that Dz and D z̄ commute, hence DzC
ð∘Þ
z̄ z̄ −D z̄C

ð∘Þ
zz ¼ 0 and by definition

DzNvac
z̄ z̄ ¼ 0 ¼ D z̄Nvac

zz . The condition (3.41) is the analog of (3.12) for gravity and is solved by

C̃zzjIþ
�
¼∓ 2D2

zNð∘Þ; Nð∘Þðz; z̄Þ ¼ 1

2
ðCþ − C−Þ: ð3:42Þ
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The hard variables of the radiative phase space are collectively denoted as

ΓH ¼ fC̃zz; Ñzz; C̃z̄ z̄; Ñz̄ z̄g: ð3:43Þ

On the other hand, soft variables are identified as

ΓS ¼ fCð∘Þ
zz ; C

ð∘Þ
z̄ z̄ ;N

ð0Þ
zz ;N

ð0Þ
z̄ z̄ ;Πzz;Πz̄ z̄; Nvac

zz ; Nvac
z̄ z̄ g; Πzz ≡ 2N ð1Þ

zz þ Cð0ÞN ð0Þ
zz ; ð3:44Þ

where N ð0Þ
zz and N ð1Þ

zz are respectively the leading and subleading soft news [125,170] given by

N ð0Þ
zz ðz; z̄Þ≡

Z þ∞

−∞
duÑzzðu; z; z̄Þ; N ð1Þ

zz ðz; z̄Þ≡
Z þ∞

−∞
duuÑzzðu; z; z̄Þ: ð3:45Þ

The boundary condition ÑAB ¼ oðu−2Þ implies that both integrals converge and in particular N ð0Þ
zz ðz; z̄Þ ¼ −4D2

zNð∘Þðz; z̄Þ
because of (3.42). The transformations of all these objects, which can be worked out from (3.30), are reproduced in Eq. (3.6)
of [159]. The fields in (3.43) are functions of ðu; z; z̄Þ and transform homogeneously under the action of extended BMS
symmetries. For instance,

δξðT ;YÞC̃zz ¼
�
T þ u

2
ð∂zYz þ ∂z̄Y z̄

�
Ñzz þ

�
Yz

∂z þ Y z̄
∂z̄ þ

3

2
∂zYz −

1

2
∂z̄Y z̄

�
C̃zz: ð3:46Þ

The quantized modes of C̃zzðu; z; z̄Þ are simply captured by the expansion (2.43) for s ¼ 2. The fields in (3.44), on the other
hand, are functions of ðz; z̄Þ only, defined at the corners of Iþ and their transformation laws

δξðT ;YÞC
ð∘Þ
zz ¼

�
Yz

∂z þ Y z̄
∂z̄ þ

3

2
∂zYz −

1

2
∂z̄Y z̄

�
Cð∘Þ
zz − 2D2

zT ; ð3:47Þ

δξðT ;YÞNvac
zz ¼ ðYz

∂z þ 2∂zYzÞNvac
zz − ∂

3
zYz; ð3:48Þ

account for the inhomogeneous pieces in (3.30). As shown in [159,169], (3.43) and (3.44) constitute Darboux variables
parametrizing the radiative phase space of asymptotically flat gravity atIþ. Using them, the suitable split of the integrated
BMS fluxes F ξðT ;YÞ ¼

R
Iþ dud2zFξðT ;YÞ computed from (3.34) and (3.35) into pure hard and soft parts has been proposed

to be

FH
ξðT ;0Þ ¼ −

1

16πG

Z
Iþ

dud2zT ½ÑzzÑz̄ z̄� −
Z
Iþ

dud2zT Tmð2Þ
uu ;

F S
ξðT ;0Þ ¼

1

8πG

Z
Σ
d2zT ½D2

zN
ð0Þ
z̄ z̄ �;

FH
ξð0;YÞ ¼

1

16πG

Z
Iþ

dud2zYz

�
3

2
C̃zz∂zÑz̄ z̄ þ

1

2
Ñzz∂zC̃zz þ

u
2
∂zðÑzzÑz̄ z̄Þ

�
−
Z
Iþ

dud2zYz

�
Tmð2Þ
uz þ u

2
∂zYzTmð2Þ

uu

�
þ c:c:;

F S
ξð0;YÞ ¼

1

16πG

Z
Σ
d2zYz

�
−D3

zN
ð1Þ
z̄ z̄ þ 3

2
Cð∘Þ
zz DN ð0Þ

z̄ z̄ þ 1

2
N ð0Þ

z̄ z̄DzC
ð∘Þ
zz

�
þ c:c:; ð3:49Þ

where (3.41) was used to simplify the expressions of soft fluxes. Unlike the case of electromagnetism, the nonlinearity of
Einstein theory implies that hard fluxes do include pure gravitational terms, notably the first term in FH

ξð1;0Þ, responsible for
the Bondi mass loss. Inverting the symplectic structure yields the following Poisson brackets

fÑz1z1ðu1; z1; z̄1Þ; C̃z̄2 z̄2ðu2; z2; z̄2Þg ¼ −16πGδðu1 − u2Þδð2Þðz1 − z2Þ;
fN ð0Þ

z1z1ðz1; z̄1Þ; Cð0Þ
z̄2 z̄2ðz2; z̄2Þg ¼ −16πGδð2Þðz1 − z2Þ; ð3:50Þ
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fΠz1z1ðz1; z̄1Þ; Nvac
z̄2 z̄2ðz2; z̄2Þg ¼ −16πGδð2Þðz1 − z2Þ; ð3:51Þ

from which one can derive the very important property that the hard and soft parts of the fluxes act independently on (3.43)
and (3.44) as

fFH
ξðT ;YÞ;Γ

Hg ¼ δξðT ;YÞΓH; fFH
ξðT ;YÞ;Γ

Sg ¼ 0;

fF S
ξðT ;YÞ;Γ

Sg ¼ δξðT ;YÞΓS; fF S
ξðT ;YÞ;Γ

Hg ¼ 0; ð3:52Þ

and form separately two representations of the extended BMS algebra (3.28) and (3.29) [158,159].
As usual, a similar analysis can be performed at past null infinityI − by trading the retarded coordinates for the advanced

ones. At the vicinity of I −, the solution space is expanded as

ds2 ¼
�
2Mð−Þ

r0
þOðr0−2Þ

�
dv2 þ 2ð1þOðr0−2ÞÞdvdr0 þ ðr02q∘AB þ r0Cð−Þ

AB þOðr00ÞÞdxAdxB

−
�
−
1

2
∂
BCð−Þ

AB −
2

3r0

�
Nð−Þ

A þ 1

4
Cð−Þ
AB ∂CC

BC
ð−Þ

�
þOðr0−2Þ

�
dvdxA; ð3:53Þ

still denoting xA ¼ ðz0; z̄0Þ ¼ ðz; z̄Þ. The Bondi time evolution/constraint equations for the Bondi mass aspect Mð−Þðv; z; z̄Þ
and the angular momentum aspect Nð−Þ

A ðv; z; z̄Þ at I − read as

∂vMð−Þ ¼ 1

8
Nð−Þ

ABN
AB
ð−Þ þ

1

4
∂A∂BNAB

ð−Þ þ 4πGTmð2;−Þ
vv ;

∂vN
ð−Þ
A ¼ −DAMð−Þ þ 1

16
∂AðNð−Þ

BCC
BC
ð−ÞÞ −

1

4
NBC

ð−ÞDAC
ð−Þ
BC − 8πGTmð2;−Þ

vA

−
1

4
∂BðCBC

ð−ÞN
ð−Þ
AC − NBC

ð−ÞC
ð−Þ
AC Þ þ

1

4
∂B∂

B
∂
CCð−Þ

AC −
1

4
∂B∂A∂CCBC

ð−Þ; ð3:54Þ

with the (past) Bondi news tensor Nð−Þ
AB ¼ ∂vC

ð−Þ
AB encoding the incoming radiation. Under the BMS symmetries acting

at I −

ξjI− ¼
�
T ðz; z̄Þ þ v

2
ð∂zYz þ ∂z̄Y z̄Þ

�
∂v þ YzðzÞ∂z þ Y z̄ðz̄Þ∂z̄; ð3:55Þ

the variation of the shear is still given by (3.30) with u ↦ v
and a sign flip in δSξCzz. The covariant phase-space analysis
and a similar split between hard and soft boundary degrees of
freedom yield again (3.52). Around spatial infinity, the
requirement (2.78) now implies Czzðu → −∞; z; z̄Þ ¼
−Cð−Þ

zz ðv → þ∞; z; z̄Þ, where the minus sign is due to r0 ¼
−r and the convention (2.53). This agrees with the antipodal
matching in the sense of [151,170].

IV. SOURCED QUANTUM FIELD THEORY

As discussed in Sec. III the charges associated with the
asymptotic symmetries are not conserved due to the radiation
leaking throughI . We argued in [60] (see also Sec. V) that
the nonconservation of the bulk charges can be holograph-
ically interpreted as a coupling of the dual theory with some
external sources. In this section, we discuss a general

framework that allows us to dealwith symmetries in presence
of external sources. The details on the newly introduced
notions and the resulting constructionwill be presented in the
upcoming paper [175] (see also [176,177]).We argue that, at
the classical level, the inclusion of external sources in field
theories allows us to derive a generalized version of
Noether’s theorem giving an interpretation of flux-balance
laws for the Noether currents from symmetry principle. We
then obtain the quantumanalogue of this result bywriting the
sourced Ward identities using a path integral formulation.
Finally, we exemplify these sourced Ward identities for a
sourced theory exhibiting Uð1Þ symmetries and BMS
symmetries.

A. Generalized Noether symmetries

In this section, we briefly discuss a generalization
of Noether’s theorem that allows us to write some

DONNAY, FIORUCCI, HERFRAY, and RUZZICONI PHYS. REV. D 107, 126027 (2023)

126027-24



flux-balance laws associated with (generalized) symmetries
in presence of external sources. We consider a theory living
on a n-dimensional manifold M with coordinates xa and
boundary ∂M. The dynamical fields are denoted by ΨiðxÞ
and the external sources by σmðxÞ. The latter are defined as
local functions with no associated equations of motion,
contrarily to ΨiðxÞ. The action reads as

S½Ψjσ� ¼
Z
M

dnxL½Ψjσ�: ð4:1Þ

To derive flux-balance laws for the Noether charges from
first principles, it will be useful to allow variations of the
sources on the phase space. The variation of the action
reads as

δS ¼
Z
M

dnx
δS
δΨi δΨ

i þ
Z
M

dnx
δS
δσm

δσm; ð4:2Þ

discarding the boundary terms if the fields and sources are
sufficiently decaying while approaching ∂M . For a fixed
set of sources σmðxÞ, the action is stationary for arbitrary
variations δΨi if and only if the equations of motion δS

δΨi ¼ 0

are obeyed by the dynamical fields ΨiðxÞ.
If the theory admits some Noether symmetries δKΨi ¼

Ki½Ψ� in absence of external sources, turning on the sources
will usually break these symmetries. However, the
Noetherian symmetries δKΨi ¼ Ki½Ψ� of the theory with-
out source can be promoted to generalized symmetries of
the sourced theory in the sense of [176] (notice that the
present notion of generalized symmetries shall not be
confused with the concept of higher-form symmetries
discussed in quantum field theory and that goes under
the same name, see e.g. [178]). The detailed analysis of the
implications of the existence of such symmetries requires
some care in the definition of a generalized symmetry and
is beyond the scope of this article. This analysis will be
presented elsewhere [175]. For the purpose of the present
work we will only rely on the following features, which we
will take as a naive definition for a generalized symmetry;
the joint action on both the fields and sources

δKΨi ¼ Ki½Ψjσ�; δKσ
m ¼ Km½σ� ð4:3Þ

is then a symmetry in the sense that it is required to be a
symmetry of the sourced equations of motion

δS
δΨi ¼ 0 ⇒ δK

�
δS
δΨi

�
¼ 0 ð4:4Þ

but is not required to preserve the action

δKL ¼ ∂aBa
K þ VK½σ�; VK½σ ¼ 0� ¼ 0: ð4:5Þ

As the second equation of (4.3) expresses that the external
sources transform among themselves, this translates into
the fact that the generalized symmetries break the invari-
ance of the action in (4.5) only by terms depending on the
sources which vanish when σ ¼ 0. Consequently, in the
absence of source (σ ¼ 0), the symmetries are fully
restored as rightful variational or Noether symmetries.
Hence one can say that generalized symmetries are sym-
metries of the sourced equations of motion extending the
Noetherian symmetries of the source-free action. In this
framework, writing the usual Noether current as
jK ¼ jaKðdn−1xÞa, the following relation can be obtained

∂ajaK ¼ Ki δS
δΨi þ FK; ð4:6Þ

where FK ¼ FKðdnxÞ is a flux term whose explicit form is
given by [175]

FK ¼ Km δL
δσm

− VK: ð4:7Þ

On shell, (4.6) leads to the flux-balance law,

djK ¼ FK½Ψjσ�: ð4:8Þ

The latter generalizes the first Noether theorem in presence
of external sources: the conservation of the Noether current
jK associated with a symmetry of characteristics K is
broken by the flux term FK. If one turns off the sources,
we have FK½Ψjσ ¼ 0� ¼ 0 and one recovers the standard
conservation law djK ¼ 0.

B. Sourced Ward identities

Let us now derive Ward identities associated with the
generalized symmetries (4.3). The derivation follows the
usual steps by properly taking into account the presence of
external sources (see e.g. [120] for the standard derivation
ofWard identities from the path integral). For a fixed source
σ, the partition function reads as

Zσ½Ji� ¼
Z

D½Ψ�σ exp
i
ℏ
ðS½Ψjσ� þ JAΨAÞ; ð4:9Þ

where we allow the path integral measure D½Ψ�σ to depend
upon the sources σm and we use the convenient notation
JAΨA ≡ R

M dnxJiðxÞΨiðxÞ. Here JiðxÞ are classical
sources introduced in the definition of the partition func-
tion. They are not meant to be quantized and will be sent to
zero when evaluating the correlation function. We stress
that they should be distinguished from the sources σm that
have a physical meaning and break the conservation of
Noether currents: the sources σm will be integrated in the
final path integral and will generate a flux.
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Then, we suggest to consider that the partition function
of the full sourced quantum theory should be computed by
integrating (4.9) over the sources as

Z½Ji; Jm� ¼
Z

D½σ�Zσ½Ji� exp
i
ℏ
JMσM: ð4:10Þ

We used again the shorthand JMσM ≡ R
M dnxJmðxÞσmðxÞ

and introduced a second bunch of classical sources Jm as
part of the definition of the partition function. The sources
σm are therefore promoted as source operators and will
play an important role in the Carrollian holographic
correspondence discussed in Sec. V B. A very similar

procedure was adopted in [179] in the AdS=CFT context
where the path integral was performed over the boundary
sources. We will further comment on this in the discussion
closing the paper (Sec. VII). Notice that, even though the
source operators σm and field operators Ψi seem on the
same footing in (4.10), they are distinguished by their
role played in the generalized symmetries introduced
in Sec. IVA. In the absence of source, the symmetries
of the partition functions are restored. We now investigate
the implications of generalized symmetries on the
correlation functions when the sources are turned on.
Inserting the off shell relation (4.6) in the path integral,
we get

∂

∂xa

Z
D½σ�

Z
D½Ψ�σjaKðxÞ exp

i
ℏ
ðS½Ψjσ� þ JAΨA þ JMσMÞ

¼
Z

D½σ�
Z

D½Ψ�σ
�
Ki½ΨðxÞjσðxÞ� δS

δΨiðxÞ þ FKðxÞ
�
exp

i
ℏ
ðS½Ψjσ� þ JAΨA þ JMσMÞ: ð4:11Þ

The first term in the right-hand side can be reworked by noticing that

ℏ
i

δ

δΨiðxÞ exp
i
ℏ
ðS½Ψjσ� þ JAΨA þ JMσMÞ

¼ δ

δΨiðxÞ ðS½Ψjσ� þ JAΨAÞ exp i
ℏ
ðS½Ψjσ� þ JAΨA þ JMσMÞ

¼
�

δS
δΨiðxÞ þ JiðxÞ

�
exp

i
ℏ
ðS½Ψjσ� þ JAΨA þ JMσMÞ; ð4:12Þ

and assuming that δð0Þ ¼ 0 and the path integral is invariant under field translation, i.e. D½Ψþ δΨ�σ ¼ D½Ψ�σ for any
variation δΨi: Z

D½σ�
Z

D½Ψ�σ
�
Ki½ΨðxÞjσðxÞ� δS

δΨiðxÞ
�
exp

i
ℏ
ðS½Ψjσ� þ JAΨA þ JMσMÞ

¼ −
Z

D½σ�
Z

D½Ψ�σJiðxÞKi½ΨðxÞjσðxÞ� exp i
ℏ
ðS½Ψjσ� þ JAΨA þ JMσMÞ: ð4:13Þ

As a conclusion, (4.11) is simply

∂

∂xa

Z
D½σ�

Z
D½Ψ�σjaKðxÞ exp

i
ℏ
ðS½Ψjσ� þ JAΨA þ JMσMÞ

¼
Z

D½σ�
Z

D½Ψ�σ½−JiðxÞKi½ΨðxÞjσðxÞ� þ FKðxÞ� exp
i
ℏ
ðS½Ψjσ� þ JAΨA þ JMσMÞ: ð4:14Þ

Acting on the left-hand side with N successive derivatives with respect to JiðxÞ and setting JiðxÞ ¼ 0 ¼ JmðxÞ afterwards
gives

∂

∂xa
hjaKðxÞXΨ

Ni ¼
ℏ
i

XN
k¼1

δðnÞðx − xkÞδKik hXΨ
Ni þ hFKðxÞXΨ

Ni; ð4:15Þ

where we have introduced
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XΨ
N ≡Ψi1ðx1Þ…ΨiN ðxNÞ;

δKik XΨ
N ¼ Ψi1ðx1Þ…Kik ½ΨðxkÞ�…ΨiN ðxNÞ ð4:16Þ

to denote a collection of N quantum insertions and their
transformation under the symmetry of characteristics K
and recalled that, by definition,

hXΨ
Ni≡

�
ℏ
i

�
N δ

δJi1ðx1Þ
� � � δ

δJiN ðxNÞ
Z½J�

����
J¼0

: ð4:17Þ

Now acting on the left-hand side of (4.14) with N
successive derivatives with respect to the other JmðxÞ
yields

∂

∂xa
hjaKðxÞXσ

Ni ¼ hFKðxÞXσ
Ni; ð4:18Þ

where

Xσ
N ≡ σm1ðx1Þ…σmN ðxNÞ ð4:19Þ

denotes a collection of N insertions of quantum sources.
Equations (4.15) and (4.18) are the local version of the
infinitesimal Ward identities in presence of external
sources. With no field insertion in the correlators, one
finds

∂ahjaKðxÞi ¼ hFKðxÞi; ð4:20Þ

which reproduces the classical flux-balance equation (4.8).
Integrating (4.15) on the whole manifold M with boun-
dary ∂M gives

XN
k¼1

δKik hXΨ
Ni ¼

i
ℏ

	�Z
M

FK −
Z
∂M

jK

�
XΨ
N



: ð4:21Þ

The standard textbook result is recovered by setting the
sources to zero and assuming that the Noether currents
vanish at the boundary, so that the right-hand side of
(4.21) vanishes. Finally integrating (4.18) on M leads to

	�Z
M

FK −
Z
∂M

jK

�
Xσ
N



¼ 0: ð4:22Þ

Remark—At this stage, and since the partition function
(4.10) can be rewritten as

Z½Ji;Jm�¼
Z

D½σ�
Z

D½Ψ�σ exp
i
ℏ
ðS½Ψjσ�þJAΨAþJMσMÞ;

ð4:23Þ

one might wonder what is responsible for the asymmetry
between the Ward identities for the fields (4.15) and the
sources (4.18). In the following lines, we wish to highlight
that, besides a possible dependence of the measure D½Ψ�σ
in the sources, this asymmetry can ultimately be traced
back to the fact that the generalized symmetries treat fields
and sources differently. To convince oneself of this point, it
is instructive to consider the subcase where the measures
D½σ� and D½Ψ� are assumed to commute and use this
property to rewrite the Ward identities in a form that puts
sources and fields on an equal footing. To achieve this, we
only need to reintroduce the explicit form of the flux (4.7),
which has not yet been used in the derivation of the local
version of the Ward identities (4.15) and (4.18). Injecting
(4.7) into (4.14), we have

∂

∂xa

Z
D½σ�

Z
D½Ψ�σjaKðxÞ exp

i
ℏ
ðS½Ψjσ� þ JAΨA þ JMσMÞ

¼
Z

D½σ�
Z

D½Ψ�σ
�
−Ki½ΨðxÞjσðxÞ�JiðxÞ þ Km½σðxÞ� δS

δσmðxÞ − VK½σðxÞ�
�
× � � �

× exp
i
ℏ
ðS½Ψjσ� þ JAΨA þ JMσMÞ: ð4:24Þ

Assuming that one can commute the measures D½σ� and D½Ψ� and that the path integral for the sources is invariant under
translation as well, i.e. D½σ þ δσ� ¼ D½σ�, the second term in the right-hand side can be reworked as

∂

∂xa

Z
D½σ�

Z
D½Ψ�σjaKðxÞ exp

i
ℏ
ðS½Ψjσ� þ JAΨA þ JMσMÞ

¼
Z

D½σ�
Z

D½Ψ�σð−Ki½ΨðxÞjσðxÞ�JiðxÞ − Km½σðxÞ�JmðxÞ − VK½σðxÞ�Þ × � � �

× exp
i
ℏ
ðS½Ψjσ� þ JAΨA þ JMσMÞ: ð4:25Þ
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Deriving N times with respect to JiðxÞ and then setting
Jm ¼ 0 ¼ Ji gives

∂

∂xa
hjaKðxÞXΨ

Ni¼
ℏ
i

XN
k¼1

δðnÞðx−xkÞδKik hXΨ
Ni− hVKðxÞXΨ

Ni:

ð4:26Þ

Similarly, deriving N times with respect to JmðxÞ and then
setting Jm ¼ 0 ¼ Ji gives

∂

∂xa
hjaKðxÞXσ

Ni¼
ℏ
i

XN
k¼1

δðnÞðx−xkÞδKmk hXσ
Ni− hVKðxÞXσ

Ni:

ð4:27Þ

Under the above assumptions, these expressions are equiv-
alent to (4.15) and (4.18) respectively. They highlight that

the asymmetry between fields and sources in the treatment
of generalized symmetries is always present as a result of
the appearance of VK½σðxÞ� in the right-hand sides. In
particular, these Ward identities are distinctly different from
the usual Ward identities of a Noetherian symmetry.

C. Sourced Uð1Þ Ward identities

As a warm-up, we apply the above framework to the
simple case of a field theory exhibiting a Uð1Þ symmetry.
We assume that the fields ΨQ inserted in the correlators
transform as

δλΨQ ¼ −iλQΨQ ð4:28Þ

under the Uð1Þ symmetry parametrized by some arbitrary
function λðxÞ. The infinitesimal Ward identity (4.15) in
presence of external sources then simply reads as

∂

∂xa
hjaλðxÞΨi1

Qi1
ðx1Þ…ΨiN

QiN
ðxNÞi − ℏ

XN
k¼1

λðxkÞQiδ
ðnÞðx − xkÞhΨi1

Qi1
ðx1Þ…ΨiN

QiN
ðxNÞi

¼ hFλðxÞΨi1
Qi1

ðx1Þ…ΨiN
QiN

ðxNÞi: ð4:29Þ

While this example is quite trivial, it will be relevant when
discussing electrodynamics from the Carrollian holo-
graphic perspective.

D. Sourced conformal Carrollian Ward identities

We now make the same exercise for the case of 3d
conformal Carrollian field theory. After reviewing con-
formal Carrollian symmetries and introducing associated
primary fields, we write the sourced Ward identities
involving the Carrollian momenta. Notice importantly that
we make here a slight abuse of terminology, as the very
meaning of what exactly is a quantum Carrollian field
theory is still largely unknown. For us, this term will refer
to a 3d theory which enjoys conformal Carrollian
symmetries.

1. Conformal Carrollian symmetries

ACarrollian structure [16,173,180–191] on a 3dmanifold
I is a couple ðqab; naÞ, whereqab is a degeneratemetricwith
signature ð0;þ;þÞ andna is a vector field in the kernel of the
metric, i.e. qabna ¼ 0. For convenience, we choose coor-
dinates ðu; z; z̄Þ onI such that qabdxadxb ¼ 0du2 þ 2dzdz̄
and na∂a ¼ ∂u. We still denote xA ¼ ðz; z̄Þ, A ¼ 1, 2. The
conformal Carrollian symmetries are generated by vector
fields ξ̄ ¼ ξ̄a∂a satisfying

L ξ̄qab ¼ 2αqab; L ξ̄n
a ¼ −αna; ð4:30Þ

where α is a function on I . The solution ξ̄ of (4.30) is
given by

ξ̄ ¼
�
T þ u

2
ð∂zYz þ ∂z̄Y z̄Þ

�
∂u þ Yz

∂z þ Y z̄
∂z̄; ð4:31Þ

with T ¼ T ðz; z̄Þ, Yz ¼ YzðzÞ and Y z̄ ¼ Y z̄ðz̄Þ. These
vector fields are called conformal Carrollian Killing vectors
and α ¼ 1

2
ð∂zYz þ ∂z̄Y z̄Þ. They precisely coincide with the

restriction toI of the asymptoticKilling vector fields (2.26).
Furthermore, their standard Lie bracket on I ,
½ξ̄ðT 1;Y

z
1;Y

z̄
1Þ; ξ̄ðT 2;Y

z
2;Y

z̄
2Þ� ¼ ξ̄ðT 12;Y

z
12;Y

z̄
12Þ, repro-

duces (3.29). This shows that the conformal Carroll algebra
in 3d is isomorphic to the BMS algebra in 4d [16,182].
We will call the global conformal Carrollian algebra the

subalgebra generated by
(1) Carrollian translations,Pa ¼ ∂a orP0 ≡ ∂u, P1 ¼ ∂z,

P2 ¼ ∂z̄.
(2) Carrollian rotation, J ≡ x1∂2 − x2∂1 ¼ −z∂z þ z̄∂z̄.
(3) Carrollian boosts, BA≡xA∂u or B1 ¼ z̄∂u, B2 ¼ z∂u.
(4) Carrollian dilatation, D≡xa∂a or D¼u∂uþz∂zþz̄∂z̄.
(5) Carrollian special conformal transformations, K0≡

−xAxA∂u ¼ −2zz̄∂u, and KA ≡ 2xAD − xBxB∂A, or
K1 ¼ 2uz̄∂u þ 2z̄2∂z̄ and K2 ¼ 2uz∂u þ 2z2∂z.

Here, xA ¼ qABxB. In this basis, the commutation relations
(3.29) for the global conformal Carrollian subalgebra
[192,193] can be split as follows: first, one easily checks
that B1, B2 P0 and K0 form an Abelian subalgebra
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½BA;BB� ¼ 0; ½BA;P0� ¼ ½BA;K0� ¼ 0; ½K0;P0� ¼ 0: ð4:32Þ

The six remaining generators form a Lorentz subalgebra, however in an unusual basis:

½D;P0;A� ¼ −P0;A; ½D;K0;A� ¼ K0;A; ½D;BA� ¼ ½D; J� ¼ 0;

½J;GA� ¼ q2AG1 − q1AG2; G ∈ fP;B;Kg; ½J; P0� ¼ ½J; K0� ¼ 0;

½BA; PB� ¼ −qABP0; ½BA;KB� ¼ −qABK0;

½K0; PA� ¼ 2BA; ½KA; P0� ¼ −2BA; ½KA; PB� ¼ −2qABD − 2Jδ1;½AδB�;2: ð4:33Þ

We present in Appendix B the concrete relations defining
the isomorphism between the global conformal Carrollian
algebra in 3d and the Poincaré algebra in 4d.
In conformal field theory, primary fields are required to

transform consistently under the action of the infinite-
dimensional Witt algebra Witt. Quasiprimaries on the
other hand only need to behave well under the action of the
finite-dimensional subalgebra of Möbius transformations
slð2;CÞ (the “global” conformal algebra). The BMS
algebra bms4 should play in the Carrollian context a role
similar to the Witt algebra of conformal field theory with
the Poincaré algebra isoð3; 1Þ (the “global” conformal
Carrollian algebra in 3d) playing the role of Möbius
transformations. Crucially, the embeddings of the
Poincaré (resp. Möbius) algebra inside the BMS (resp.
Witt) algebra are not unique and correspond to an extra
piece of geometry. In the asymptotically flat case, these are
the gravity vacua discussed in [172,181]. These embed-
dings can be locally realized by a choice of Poincaré
operators [187,189] (generalizing Möbius operators [194]
of conformal geometry) with vanishing “curvature” (cor-
responding to the curvature of a Cartan connection). From
these considerations, we will say that a field is a conformal
Carrollian primary (also referred to as Carrollian tensor
[34,40,166,185]) if it transforms infinitesimally as

δξ̄Φðk;k̄Þ ¼
��

T þ u
2
ð∂zYz þ ∂z̄Y z̄Þ

�
∂u þ Yz

∂z

þ Yz
∂z̄ þ k∂zYz þ k̄∂z̄Y z̄

�
Φðk;k̄Þ ð4:34Þ

under full conformal Carroll symmetries (4.30). Here the
Carrollian weights ðk; k̄Þ are some integers or half-integers.
Quasiconformal Carrollian primary fields are only required
to transform properly as (4.34) under the global subalgebra
displayed above. Importantly, recalling that ∂uξ̄

u ¼

1
2
ð∂zYz þ ∂z̄Y z̄Þ and ½δξ̄; d� ¼ 0, it can be deduced from

(4.34) that ∂uΦðk;k̄Þðu; z; z̄Þ is also transforming as a

conformal Carrollian primary with weights ðkþ 1
2
; k̄þ 1

2
Þ.

2. Classical flux-balance laws

Let us now specify the flux-balance law (4.8) for a 3d
conformal Carrollian field theory. We assume that Noether
currents associated with the global conformal Carrollian
symmetries (4.31) take the following Brown-York expres-
sion [195,196]

ja
ξ̄
¼ Cabξ̄b; ð4:35Þ

where Cab is the Carrollian stress tensor. Its components are
called the Carrollian momenta [34,39–41,102,166,196–
199] and denoted as

Cab ¼
�
M N B

BA AA
B

�
: ð4:36Þ

If the conformal Carrollian field theory under consideration
is sourced, the currents (4.35) are no longer meant to be
conserved but still obey some flux-balance laws as in (4.8)
or in coordinates

∂ajaξ̄ ¼ Fa½σ�ξ̄a; ð4:37Þ

where σ denotes again the external sources coupled to the
theory. Here we assumed that the flux can be written as
Fξ̄ ¼ Faξ̄

a, which is sufficient for the holographic pur-
poses discussed in this paper. The flux-balance law (4.37) is
obeyed for the generators of the global Carroll subalgebra
(isomorphic to Poincaré algebra) if and only if Cab satisfies
the following constraints:
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Generator Constraint

Carrollian translations ∂a ∂aCab ¼ Fb

Carrollian rotation −z∂z þ z̄∂z̄ Czz − Cz̄z̄ ¼ 0

Carrollian boosts xA∂u CAu ¼ 0

Carrollian dilatation xa∂a Caa ¼ 0

ð4:38Þ

In Appendix C, we show that the Carrollian special
conformal transformations K0; KA do not impose further
constraints. Furthermore, the above global conformal
Carrollian symmetries are enough to completely constrain
Cab, i.e. (4.37) is automatically satisfied by the super-
translation (and superrotation) currents provided (4.38)
holds. Notice also that the term Cab∂aξ̄b does not contribute
to the left-hand side of (4.37) as a consequence of (4.31)
and (4.38); this is in line with the hypothesis of flux being
linear in the symmetry parameters.
In terms of the Carrollian momenta (4.36), the con-

straints (4.38) read as

∂uM¼ Fu; BA ¼ 0;

∂uN z − 1
2
∂zMþ ∂z̄Az̄

z ¼ Fz; Az
z þ 1

2
M¼ 0;

∂uN z̄ − 1
2
∂z̄Mþ ∂zAz

z̄ ¼ Fz̄; Az̄
z̄ þ 1

2
M¼ 0;

ð4:39Þ

In the left column, the constraints take the form of flux-
balance equations for the Carrollian momenta M and N A
that are sourced by the fluxes Fa. In the right column, the
constraints completely fix the Carrollian momenta BA, Az

z

and Az̄
z̄. Notice that Az

z̄ and Az̄
z are not fixed by the

symmetries.

3. Sourced Ward identities

At the quantum level, the analog of the constraints (4.38)
will be provided by the sourced infinitesimal Ward iden-
tities (4.15) for the specific case of a 3d conformal
Carrollian field theory. Similarly to the 2d CFT case
(see for instance [120]), the Ward identities of a 3d
conformal Carrollian field theory can be rewritten very
simply in terms of Cab. We assume that the operators ΨiðxÞ
inserted in the correlators are (quasi-)conformal Carrollian
primary fields transforming as (4.34). The sourced Ward
identities (4.15) for the (global) conformal Carrollian
symmetries imply

∂ahCabXΨ
Ni þ

ℏ
i

X
i

δð3Þðx − xiÞ
∂

∂xbi
hXΨ

Ni ¼ hFbXΨ
Ni;

hðCzz − Cz̄z̄ÞXΨ
Ni þ

ℏ
i

X
i

δð3Þðx − xiÞðki − k̄iÞhXΨ
Ni ¼ 0;

hCAuXΨ
Ni ¼ 0;

hCaaXΨ
Ni þ

ℏ
i

X
i

δð3Þðx − xiÞðki þ k̄iÞhXΨ
Ni ¼ 0; ð4:40Þ

where XΨ
N is defined in (4.16). The derivation of (4.40) is

pretty similar to the classical case (4.38) (see Appendix C)
and will not be repeated. Now, taking linear combinations
of (4.40), we express the Ward identities in terms of the
Carrollian momenta:

∂uhMXΨ
Ni þ ℏ

i

P
i
δð3Þðx − xiÞ∂uihXΨ

Ni ¼ hFuXΨ
Ni;

∂uhN zXΨ
Ni − 1

2
∂zhMXΨ

Ni þ ∂z̄hAz̄
zXΨ

Ni þ ℏ
i

P
i
½δð3Þðx − xiÞ∂zihXΨ

Ni − ∂zðδð3Þðx − xiÞkihXΨ
NiÞ� ¼ hFzXΨ

Ni;

∂uhN z̄XΨ
Ni − 1

2
∂z̄hMXΨ

Ni þ ∂zhAz
z̄XΨ

Ni þ ℏ
i

P
i
½δð3Þðx − xiÞ∂z̄ihXΨ

Ni − ∂z̄ðδð3Þðx − xiÞk̄ihXΨ
NiÞ� ¼ hFz̄XΨ

Ni;

hBAXΨ
Ni ¼ 0;	�

Az
z þ 1

2
M

�
XΨ
N



þ ℏ

i

P
i
δð3Þðx − xiÞkihXΨ

Ni ¼ 0;	�
Az̄

z̄ þ 1
2
M

�
XΨ
N



þ ℏ

i

P
i
δð3Þðx − xiÞk̄ihXΨ

Ni ¼ 0:

ð4:41Þ

With no field insertion in the correlators, the expectation values of the operators reproduce the classical relations (4.39).
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V. HOLOGRAPHIC CONFORMAL CARROLLIAN
FIELD THEORY

In this section, we discuss the main ingredients needed
for a holographic description of asymptotically flat space-
time in terms of a dual sourced conformal Carrollian field
theory. First, we argue that the dual theory lives on Î ¼
I −⊔Iþ where the gluing between I − and Iþ is
obtained by identifying antipodally Iþ

− and I −þ. We will
make this gluing precise by introducing the geometry of
time-ordered conformal Carrollian manifolds. We then
propose an identification between scattering elements in
position space and Carrollian correlation functions by
relating the bulk quantities introduced in Sec. III and the
boundary objects discussed in Sec. IV. Eventually, we
deduce the explicit form of low-point correlation functions
of a Carrollian CFT. In particular, we find a new branch of
solutions of the two-point function and argue that this is the
appropriate one for holographic purposes.

A. Time-ordered conformal Carrollian manifolds

In this section, we introduce some geometrical descrip-
tion of the manifold on which the dual sourced Carrollian
CFT is living. As reviewed in Sec. IV D 1, a Carrollian
structure on a manifold M is made of a pair ðqab; naÞ
where qabnb ¼ 0 and L nqab ∝ qab. A conformal
Carrollian structure is then defined as an equivalence class
½qab; na� for the equivalence relation ðqab; naÞ ∼
ðΩ2qab;Ω−1naÞ where Ω is a nowhere vanishing function
on M . Equipped with such a structure, ðM ; ½qab; na�Þ is
called a conformal Carrollian manifold.
To obtain the universal structure [173,181] at, say, future

null infinity, we would need to add two hypotheses to our
definition of conformal Carrollian manifold. First, fix the
topology ofM asR × ΣwhereR is spanned by the flow of
na and Σ is the space of null generators (for our purpose, we
choose Σ to be the one-puncture complex plane, see e.g.
[158,160]). Second, require that the vector field na is
complete and nowhere vanishing. However, as we will
argue later, the Carrollian CFT is not living at Iþ or I −

separately, but should really be seen as living on the whole
conformal boundary of asymptotically flat spacetimes.
Therefore, we would like to give a geometrical notion of
“past” and “future” null infinity after gluing I − with Iþ.
The idea is to single out the separating surface Σ0 ≃ Σ as the
unique locus where the Carrollian vector na vanishes. This
provides a definition of “time-ordered” conformal
Carrollian manifold, which is a conformal Carrollian
manifold ðM ; ½qab; na�Þ satisfying all the hypotheses above
except that na now vanishes on a codimension one surface
Σ0. For a chosen connection ∇a defined on M (nothing
will in fact depend on this choice), we demand

∇anbjΣ0
¼ 0; ∇a∇bncjΣ0

≠ 0: ð5:1Þ

Now, around Σ0, we can always choose local coordinates
ðs; xAÞ such that

sjΣ0
¼ 0; na∂a ¼ f̃ðs; xAÞ∂s ð5:2Þ

for some function f̃. Since na vanishes on Σ0, the
constraints (5.1) only involves partial derivatives in the
coordinates and are satisfied if ∂sf̃ → 0 and ∂

2
s f̃ → 2fðxAÞ

as s → 0 for some other function f on Σ. The latter
condition is solved by f̃ðs; xAÞ ¼ s2fðxAÞ þOðs3Þ and
we have

na∂a ¼ ðs2f þOðs3ÞÞ∂s: ð5:3Þ

Notice that the orientation of na does not change across Σ0.
This provides a notion of global ordering of the points in
M : points are “in the past” of M if the flow generated by
na takes them towards the separating surface Σ0 and “in the
future” if the flow takes them away from it. Points of Σ0 are
fixed points of the flow of na, they are neither in the past
nor in the future of M .
Going back to the conformal boundary of asymptotically

flat spacetimes, we are led to consider

Î ≡I −⊔Iþ ð5:4Þ

as conformal Carrollian manifoldM , where ⊔ represents a
union by gluing of the two conformal boundaries.
According to the above discussion, we will take Î to
be a three-dimensional time-ordered conformal Carrollian
manifold. The separating surface along which the gluing is
performed is

Σ0 ≃Iþ
− ≃I −þ; ð5:5Þ

i.e.Iþ is glued toI − by identifying continuously the past
surface Iþ

− of Iþ and the future surface I −þ of I −

around spatial infinity. OnIþ, we can always choose local
coordinates ðu; xAÞ such that u is the retarded time and
na∂a ¼ ∂u. Analogously on I −, there exists a local
coordinate system ðv; xAÞ such that v is the advanced time
and na∂a ¼ ∂v. Let us recall that our coordinate choices are
such that the angular coordinates xA ¼ ðz; z̄Þ are antipo-
dally identified between Iþ and I − (see Appendix A).
Since n vanishes on Σ0 (defined as the transverse Σ in the
limit u → −∞ or v → þ∞), both coordinate systems
cannot be extended on the whole Î . On both sides, we
parametrize�

u ¼ tanðπðs − 1
2
ÞÞ; s > 0 on Iþ;

v ¼ tanðπðs − 1
2
ÞÞ; s < 0 on I −:

ð5:6Þ

Figure 4 depicts the situation.
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The time reparametrizations (5.6) define a global “time”
coordinate

s∶ Î →� − 1;þ1½; ð5:7Þ

where the separating surface is located at Σ0 ¼ fs ¼
0g ⊂ Î . We have s ¼ −π−1arccotu (and similarly for v),
hence the Carrollian vector reads now as

na∂a ¼
1

π
sin2ðπsÞ∂s: ð5:8Þ

In this coordinate system, it is manifest that n≡ 0 if and
only if s ¼ 0 (i.e. on the separating surface) on Î . On Iþ
and I −, conformal Carrollian automorphisms act infini-
tesimally as (4.31) or

(
ξ̄þðu; xAÞ ¼ ðT þ þ u

2
∂BYBþÞ∂u þ YAþ∂A; on Iþ;

ξ̄−ðv; xAÞ ¼ ðT − þ v
2
∂BYB

−Þ∂v þ YA
−∂A; on I −:

ð5:9Þ

Using (5.6) and (5.8), we can define the unique global
smooth infinitesimal automorphism of the time-ordered
geometry Î as

ξ̄ðs; xAÞ ¼ 1

π

�
T −

1

2
cot ðπsÞ∂BYB

�
sin2ðπsÞ∂s þ YA

∂A;

ð5:10Þ

where T ðxAÞ, YAðxBÞ are smooth functions on the 2-sphere
such that

T ðxAÞ ¼ T þðxAÞ ¼ T −ðxAÞ;
YAþðxBÞ ¼ YAðxBÞ ¼ YA

−ðxBÞ: ð5:11Þ

In this picture, the antipodal matching for BMS generators
advocated in [125,151,170] and confirmed later in
[14,15,200–205] by a phase space analysis at spacelike
infinity, corresponds to the requirement that ξ̄ given by
(5.10) is smooth at Σ0. A final remark is that the diagonal
BMS group selected in this way preserves the location of
the separating surface since

ξ̄jΣ0
¼ ξ̄ðs ¼ 0; xAÞ ¼ YA

∂A ∈ diffðΣ0Þ: ð5:12Þ

For the sake of simplicity, in what follows, we will keep the
coordinate u (resp. v) to denote the Carrollian time on Iþ
(resp. I −). It will be important to remember that combi-
nations such as u − v are in fact invariant under the action
of the diagonal BMS group (5.11).

B. Carrollian holographic correspondence

Having discussed the geometry of the conformal boun-
dary, we are now ready to develop our proposal on how a
putative conformal Carrollian theory living on Î can
encode a scattering of massless particles.

1. Boundary operators as conformal Carrollian fields

As already anticipated in Sec. II D 6, we will argue that
S-matrix elements written in position space can naturally
be interpreted as correlation functions of operators sourcing
the Carrollian CFT living on Î . The latter will be taken as
the source operators σmðxÞ introduced in Sec. IV B,
assumed to transform as conformal Carrollian primaries
(4.34), namely

FIG. 4. Time-ordered conformal boundary Î of asymptotically flat spacetimes.
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δξ̄σðk;k̄ÞðxÞ ¼
��

T þ u
2
ð∂zYz þ ∂z̄Y z̄Þ

�
∂u þ Yz

∂z þ Yz
∂z̄ þ k∂zYz þ k̄∂z̄Y z̄

�
σðk;k̄ÞðxÞ: ð5:13Þ

For instance, it is suggestive to write boundary correlators in the form

hσoutðk1;k̄1Þðx1Þ…σoutðkn;k̄nÞðxnÞσ
in
ðknþ1;k̄nþ1Þðxnþ1Þ…σinðkN;k̄NÞðxNÞi; ð5:14Þ

where σoutðk1;k̄1Þðx1Þ…σoutðkn;k̄nÞðxnÞ are n insertions of source operators at Iþ and σinðknþ1;k̄nþ1Þðxnþ1Þ…σinðkN;k̄NÞðxNÞ are N − n

insertions at I −. For outgoing insertions, xi ¼ ðui; zi; z̄iÞ while for incoming insertions, xj ¼ ðvj; zj; z̄jÞ. The boundary
values (2.43) and (2.54) of the operators in position space introduced in Sec. II are natural candidates for conformal
Carrollian primaries sourcing the dual theory (for s ¼ 2, these are quasiprimaries), i.e.

σoutðk;k̄Þðu; z; z̄Þ≡ lim
r→þ∞

ðr1−sϕðsÞout
z…z ðu; r; z; z̄ÞÞ ¼ ϕ̄ðsÞout

z…z ðu; z; z̄Þ; ð5:15Þ

for “out” insertions in retarded Bondi coordinates and the similar identification

σinðk;k̄Þðv; z; z̄Þ≡ lim
r→−∞

ðr1−sϕðsÞin
z…z ðv; r; z; z̄Þ†Þ ¼ ϕ̄ðsÞin

z…z ðv; z; z̄Þ† ð5:16Þ

for “in” insertions in advanced Bondi coordinates and the
Hermitian conjugated contributions for reversed helicities.
From (2.51), the conformal Carrollian weights k; k̄ in (5.13)
are fixed in terms of the helicity J as

k ¼ 1� J
2

; k̄ ¼ 1 ∓ J
2

; ð5:17Þ

the upper sign for outgoing fields and the lower sign for
incoming fields.
Aside of the source operators, the Carrollian CFT is

populated by fields ΨiðxÞ. Among them, one finds the
Carrollian stress tensor Cab that gathers the Carrollian
momenta (4.36) and will be identified with the gravitational
momenta in the bulk, irrespective of the presence of
radiation. Furthermore, the propagating massless fields
are not only described by their boundary values but also
by a tower of subleading pieces such as the components

Fð2Þ
ur of the Faraday tensor for spin-1 field or the subleading

tensorsDAB; EAB;… in the expansion of the angular part of
the Bondi metric. These are all natural candidates for the

fields of the Carrollian CFTwhose evolution is modified by
the presence of source operators that holographically
encode the radiative degrees of freedom.
Remark—The fact that the algebraic constraints (5.17)

hold, i.e. that the conformal Carrollian operators con-
structed from the boundary value of bulk quantum spin-
s fields can be labeled only with one quantum number J,
comes from the conformal compactification process and its
impact on the fall-offs near Iþ imposed for radiative
fields. Indeed, under the combined action of Weyl rescal-
ings and BMS symmetries, the boundary value of a spin-s
field with helicity J ¼ �s and Weyl weight W will trans-
form infinitesimally as

δξ̄;Ωϕ̄
W
z…z ¼ ½Yz

∂z þ Y z̄
∂z̄ þ s∂zYz −WΩ�ϕ̄W

z…z;

δξ̄;Ωϕ̄
W
z̄…z̄ ¼ ½Yz

∂z þ Y z̄
∂z̄ þ s∂z̄Y z̄ −WΩ�ϕ̄W

z̄…z̄: ð5:18Þ

Fixing the representative of the conformal boundary metric

to be the flat metric implies δξ̄;Ωq
∘
zz̄ ¼ ∂zYzþ

∂z̄Y z̄ − 2Ω ¼ 0, so that

δξ̄;Ω¼αϕ̄
W
z…z ¼

�
Yz

∂z þ Y z̄
∂z̄ þ

�
s −

1

2
W

�
∂zYz −

1

2
W∂z̄Y z̄

�
ϕ̄W
z…z;

δξ̄;Ω¼αϕ̄
W
z̄…z̄ ¼

�
Yz

∂z þ Y z̄
∂z̄ −

1

2
W∂zYz þ

�
s −

1

2
W

�
∂z̄Y z̄

�
ϕ̄W
z̄…z̄: ð5:19Þ

Using (5.15) and by identification with the transformation (5.13), we find
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ϕ̄W
z…z ↦ σðk;k̄Þ with k¼ s−

1

2
W; k̄¼−

1

2
W;

ϕ̄W
z̄…z̄ ↦ σðk;k̄Þ with k¼−

1

2
W; k̄¼ s−

1

2
W: ð5:20Þ

Finally, the radiative falloff (2.41) fixes the Weyl weightW
of the boundary value of the field because, under a
boundary Weyl rescaling induced by r → Ω−1r, the

boundary spin-s field scales as ϕ̄W
z…z → Ω1−sϕ̄W

z…z so
W ¼ s − 1, which gives again (5.17) with the upper choice
of sign. The reasoning can also be applied for incoming
fields defined as (5.16), the Hermitian conjugation being
responsible for the sign flip in (5.17).
Owing to (5.15) and (5.16), we propose the following

holographic identification between conformal Carrollian
correlators (5.14) and S-matrix elements written in position
space (2.87):

hσoutðk1;k̄1Þðx1Þ…σoutðkn;k̄nÞðxnÞσ
in
ðknþ1;k̄nþ1Þðxnþ1Þ…σinðkN;k̄NÞðxNÞi≡

1
ð2πÞN

Q
n
k¼1

Rþ∞
0 dωke−iωkuk

Q
N
l¼nþ1

Rþ∞
0 dωleiωlvlANðp1;…;pNÞ;

ð5:21Þ

or equivalently

hσoutðk1;k̄1Þðx1Þ…σoutðkn;k̄nÞðxnÞσ
in
ðknþ1;k̄nþ1Þðxnþ1Þ…σinðkN;k̄NÞðxNÞi
≡

h0jϕ̄ðsÞ
I1
ðx1Þout…ϕ̄ðsÞ

In
ðxnÞoutϕ̄ðsÞ

Inþ1
ðxnþ1Þin†…ϕ̄ðsÞ

IN
ðxNÞin†j0i; ð5:22Þ

where Ii ¼ z…z if the helicity is positive (Ji ¼ þs), and Ii ¼ z̄…z̄ otherwise, and Carrollian weights ðki; k̄iÞ are fixed by
bulk helicities according to (5.17).
Particularizing (5.22) to the insertion of two fields only, we obtain, by virtue of the regulated expression (2.95), that the

Carrollian two-point function is given by

hσoutðk1;k̄1Þðu; z1; z̄1Þσ
in
ðk2;k̄2Þðv; z2; z̄2Þi ¼

K2
ðsÞ
4π

�
1

β
−
�
γ þ ln ju − vj þ iπ

2
signðu − vÞ

��
δð2Þðz1 − z2Þδkþ

12
;2δk−12;0 ð5:23Þ

denoting k�12 ≡
P

iðki � k̄iÞ. There is correlation if kþ12 and k−12 obey two algebraic conditions: the first condition kþ12 ¼ 2 is
imposed by (5.17), i.e. the fact that the inserted fields are identified with boundary values of bulk radiative fields, while the
second implies the conservation of helicity J1 ¼ J2. As above, β ∈ Rþ

0 is an infrared regulator than can be arbitrarily close
to zero, encoding the fact that position space amplitudes are divergent in the low-energy regime. Finally, from the
identification (5.15) and recalling (2.48), one gets that the source operators (5.15) obey the following canonical
commutation relations:

½σoutðk1;k̄1Þðu1; z1; z̄1Þ; σ
out
ðk2;k̄2Þðu2; z2; z̄2Þ� ¼ −

i
2
K2

ðsÞsignðu1 − u2Þδð2Þðz1 − z2Þδkþ
12
;2δk−12;0: ð5:24Þ

Analogous considerations hold for “in” insertions.

2. Electrodynamics

We now detail some holographic aspects of electrody-
namics reviewed in Sec. III A in terms of the dual sourced
Carrollian CFT. For the sake of conciseness, we give
all definitions for Iþ and drop the “out” subscripts to
lighten the notations when the coordinate dependence is
clear. The analogous relations can be easily deduced
for I −.

The dual conformal Carrollian theory is invariant under
Uð1Þ transformations. The source operators that are con-
sidered in this section are denoted as σðk;k̄Þ;Q and bear

conformal Carrollian weights ðk; k̄Þ describing their trans-
formations under boundary diffeomorphisms (4.31) and a
“weight” Q under the internal Uð1Þ symmetry, which is
interpreted as the electric charge of the bulk field.
Following (5.15), we introduce
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σðAÞz ðu; z; z̄Þ≡ σð1;0Þ;0ðu; z; z̄Þ ¼ Að0Þ
z ðu; z; z̄Þ; σðAÞz̄ ðu; z; z̄Þ ¼ ðσðAÞz Þ†;

σðϕÞðu; z; z̄Þ≡ σð1
2
;1
2
Þ;Qðu; z; z̄Þ ¼ ϕð0Þðu; z; z̄Þ ¼ lim

r→∞
rϕðu; r; z; z̄Þ; ð5:25Þ

coinciding with the boundary values of the bulk gauge field Aμ and some massless scalar matter field ϕ atIþ. These fields
are conformal Carrollian primaries with respective weights (1,0) and ð1

2
; 1
2
Þ by virtue of (5.17), on which the global Uð1Þ

symmetry acts as

δλσ
ðAÞ
z ðu; z; z̄Þ ¼ ∂zλ

ð0Þðz; z̄Þ; δλσ
ðϕÞðu; z; z̄Þ ¼ −ieQλð0Þðz; z̄ÞσðϕÞðu; z; z̄Þ: ð5:26Þ

The homogeneous transformation determines the charge
under theUð1Þ transformation (which is proportional to the
electric charge of the field) and the inhomogeneous trans-
formation vanishes for parameters λð0Þ ∈ R. The Noether
current for the Uð1Þ symmetry is given by

hjuλi≡ −
1

e2
λð0ÞFð2Þ

ru ; hjzλi≡ 0≡ hjz̄λi ð5:27Þ

and the corresponding fluxes are

Fλ ¼ λð0ÞJ ð2Þ
u ðσðϕÞÞ − 1

e2
ð∂uσðAÞz ∂z̄λ

ð0Þ þ ∂uσ
ðAÞ
z̄ ∂zλ

ð0ÞÞ:
ð5:28Þ

The factors are adjusted to precisely match with the charges
(3.8) obtained by the bulk computation. With the identi-
fications (5.27) and (5.28), one can then check explicitly
that the time evolution equations in the sourced Ward
identities (4.29) reproduce the asymptotic Maxwell equa-
tion (3.7) when there is no insertion in the correlators.
Notice finally that the fluxes (5.28) vanish identically if

Ãð0Þ
z ¼ 0 ¼ Ãð0Þ

z̄ and J ð2Þ
u ¼ 0.

3. Gravity

We now argue that a quantum conformal Carrollian field
theory coupled with external sources is a viable candidate
to describe holographically gravity in 4d asymptotically
flat spacetimes reviewed in Sec. III B. We propose the
following correspondence between Carrollian momenta
(4.36) (left-hand side) and gravitational data (3.32)
(right-hand side) at Iþ:

hCuui≡ M̄
4πG

; hCuAi≡ 1

8πG
ðN̄A þ u∂AM̄Þ;

hCABi þ
1

2
δABhCuui≡ 0: ð5:29Þ

The factors are fixed by demanding that the gravitational
charges (3.31) correspond to the Noether currents (4.35) of
the conformal Carrollian field theory integrated on a section
u ¼ const: The correspondence (5.29) is inspired by the
AdS=CFT dictionary where the holographic stress-energy
tensor of the CFT is identified with some subleading order
pieces in the expansion of the bulk metric [206,207].
Indeed, recall that the Carrollian momenta are nothing
but the components of an ultra-relativistic stress tensor
living at null infinity.
Following the identification (5.15), we identify the

source operators in the Carrollian CFT as the asymptotic
shear

σðgÞzz ðu; z; z̄Þ≡ σð3
2
;−1

2
Þðu; z; z̄Þ ¼ Czzðu; z; z̄Þ;

σðgÞz̄ z̄ ðu; z; z̄Þ≡ σð−1
2
;3
2
Þðu; z; z̄Þ ¼ Cz̄ z̄ðu; z; z̄Þ; ð5:30Þ

and similarly at I −. They are quasi-conformal Carrollian
primary fields because of (3.30). The homogeneous part of
the transformation determines the Carrollian weights of the
field to be k ¼ 3

2
and k̄ ¼ − 1

2
. In the presence of matter,

boundary values of radiative null fields will also be
considered as source operators σðϕÞ with weights ðk; k̄Þ
fixed by the helicity of the bulk field as (5.17). All these
sources are responsible for the dissipation in the conformal
Carrollian field theory through the fluxes Fξ̄ ¼ Faξ̄

a with

Fu ¼
1

16πG

�
∂
2
z∂uσ

ðgÞ
z̄ z̄ þ 1

2
σðgÞz̄ z̄ ∂

2
uσ

ðgÞ
zz þ H:c:

�
− Tmð2Þ

uu ðσðϕÞÞ;

Fz ¼
1

16πG

�
−u∂3z∂uσ

ðgÞ
z̄ z̄ þ σðgÞzz ∂z∂uσ

ðgÞ
z̄ z̄ −

u
2
ð∂zσðgÞzz ∂

2
uσ

ðgÞ
z̄ z̄ þ σðgÞzz ∂z∂

2
uσ

ðgÞ
z̄ z̄ Þ

�
− Tmð2Þ

uz ðσðϕÞÞ þ u
2
∂zT

mð2Þ
uu ðσðϕÞÞ;

Fz̄ ¼ ðFzÞ†: ð5:31Þ
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Taking the identifications (5.29) and (5.31) into account, one
can then check explicitly that the time evolution equations in
the sourcedWard identities (4.41) reproduce the gravitational
retarded time evolution equations (3.24) when there is no
insertion in the correlators. Notice that imposing the BMS-

invariant conditions C̃zz ¼ 0 ¼ C̃z̄ z̄ and Tmð2Þ
uu ¼ 0 ¼

Tmð2Þ
uz ¼ Tmð2Þ

uz̄ makes the flux vanish identically.

C. Holographic Ward identities
for a massless scattering

In this section, we specify the holographic sourced Ward
identities discussed in Secs. IV C and IV D to the case
where the bulk process consists of a massless scattering.
Let us consider a scattering of null particles in some

asymptotically-flat spacetime at null infinity. Through the
holographic identification (5.21), the scattering amplitudes
are encoded by correlation functions hXσ

Ni of source
operators in a putative dual conformal Carrollian theory
living on Î . The integrated version of the sourced Ward
identity (4.22) is specified as	�Z

Î
Fξ̄ −

Z
Iþ

þ
jξ̄ þ

Z
I−

−

jξ̄

�
Xσ
N



¼ 0; ð5:32Þ

for any conformal Carrollian vector ξ̄, where jξ̄jI−
−
, jξ̄jIþ

þ
are sensitive to motions of massive particles and the flux Fξ̄

is given by (5.31). Hypothesizing that the process under
consideration only encompasses massless fields and noth-
ing arrives at past and future timelike infinities, the Noether
current jξ̄ vanishes at I

−
− and Iþ

þ. Hence (5.32) becomes

hF ξ̄X
σ
Ni ¼ 0; where F ξ̄ ¼

Z
Î
Fξ̄: ð5:33Þ

Taking into account that the insertion of the flux operator
F ξ̄ generates the transformation of the source operators in
Xσ
N , we have

δξ̄hXσ
Ni ¼ 0; ð5:34Þ

hence recovering the invariance of the correlators under
conformal Carrollian symmetries. Notice that with no
source inserted (N ¼ 0), we obtain the natural result
hF ξ̄i ¼ 0. The consequence of the relation (5.34) has been
studied e.g. in [23,26,193]. In the next section, we will
revisit how to deduce the generic form of correlators from
these symmetry constraints.
Prior to that, let us mention that the derivation can also be

made for electrodynamics. In that case, the conformal
Carrollian correlators obey

hF λXσ
Ni ¼ 0 ⇔ δλhXσ

Ni ¼ 0 ð5:35Þ

for any gauge parameter λ. In particular, this constrains the
two-point function to satisfy

δλhXσ
2i ¼ 0 ⇒ ðλð0Þðz1; z̄1ÞQ1 − λð0Þðz2; z̄2ÞQ2ÞhXσ

2i ¼ 0

ð5:36Þ

using (5.15), (5.16), and (5.26). For the particular trans-
formation λð0Þ ¼ c ∈ R0, this imposes the algebraic con-
straint Q1 ¼ Q2, which is nothing but the statement of
conservation of electric charge. For a generic function
λð0Þðz; z̄Þ, this further imposes hXσ

2i ∝ δð2Þðz1 − z2ÞδQ1;Q2
,

which is consistent with conformal Carrollian invariance
(5.34) as we will show in the next section.

D. Conformal Carrollian invariant
correlation functions

In this section, we deduce the explicit form of the two-
and three-point correlation functions in Carrollian CFT
from the Ward identities (5.34). The computation of higher-
point functions is left to a future endeavor.
Let Φðk1;k̄1Þðx1Þ and Φðk2;k̄2Þðx2Þ be two quasiconformal-

Carrollian primary operators.Wewant to study the constrains
on the two-point function hX2i≡ hΦðk1;k̄1Þðx1ÞΦðk2;k̄2Þðx2Þi
implied by δξ̄hX2i ¼ 0, where ξ̄ denotes an element of the
global part of the conformal Carroll algebra (or equivalently
Poincaré algebra), which transforms the inserted fields as
(4.34). Invariance under Carrollian translations generated by
Pa ¼ ∂a gives

∂

∂xa1
hX2i þ

∂

∂xa2
hX2i ¼ 0 ⇒ hX2i ¼ hX2iðu12; z12; z̄12Þ;

ð5:37Þ

where u12 ≡ u1 − u2 and z12 ≡ z1 − z2. Invariance under
Carrollian boosts BA ¼ xA∂u gives

x12A ∂u12hX2i ¼ 0 ⇒ hX2i
¼ fð2Þðz12; z̄12Þ þ gð2Þðu12Þδð2Þðz12Þ: ð5:38Þ

The general solution thus involves two distinct branches
[55,193]. The time-independent one hX2iti is meant to be
invariant under the stabilizer group of u ¼ const: cuts of the
conformal Carrollian manifold (i.e. the conformal group in
two dimensions), while the other branch hX2itd involves
explicitly the time direction but at the price to reduce the
angular dependence to contact terms, which can be expected
for an “ultralocal” theory of fields.

1. Time-independent branch

Selecting first the time-independent branch by setting
gð2Þ ≡ 0, the invariance under the Carrollian dilatation D ¼
xa∂a ¼ u∂u þ z∂z þ z̄∂z̄ imposes
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z12∂z12fð2Þ þ z̄12∂z̄12fð2Þ þ kþ12fð2Þ ¼ 0 ⇒ fð2Þ ¼
c̃ð2Þ
za12z̄

b
12

;

aþ b ¼ kþ12: ð5:39Þ

Invariance under Carrollian rotation J ¼ −z∂z þ z̄∂z̄ also
imposes

z12∂z12fð2Þ − z̄12∂z̄12fð2Þ þ k−12fð2Þ ¼ 0 ⇒ a − b ¼ k−12;

ð5:40Þ

which then implies that a ¼ P
i ki and b ¼ P

i k̄i. Because
of time-independence, K0 brings no additional constraint.
K1 and K2 respectively impose that k1 ¼ k2 and k̄1 ¼ k̄2,
which allows us to conclude that [55,193]

hX2iti ¼ fð2Þ ¼
c̃ð2Þ

ðz1 − z2Þk1þk2ðz̄1 − z̄2Þk̄1þk̄2
δk1;k2δk̄1;k̄2 :

ð5:41Þ

This is exactly the standard two-point function for a 2d
CFT. However, although this branch is allowed from a
symmetry analysis, it is not related to dynamical bulk
events such as scattering processes since it has no time
dependence.

2. Time-dependent branch

We are thus rather interested in the time-dependent
branch hX2itd where we set fð2Þ ≡ 0. The Ward identity
encoding the invariance under Carrollian rotation J simply
adds one algebraic constraint as

gð2Þðz12∂z12 − z̄12∂z̄12 þ k−12Þδð2Þðz12Þ ¼ k−12gð2Þδ
ð2Þðz12Þ ¼ 0 ⇒ k−12 ¼ 0: ð5:42Þ

Now, invariance under Carrollian dilatation D gives

u12∂u12hX2itd þ z12∂z12hX2itd þ z̄12∂z̄12hX2itd þ kþ12hX2itd ¼ 0; ð5:43Þ

which, using the fact that xδ0ðxÞ ≃ −δðxÞ in the sense of distributions, becomes

u12g0ð2Þðu12Þ þ ðkþ12 − 2Þgð2Þðu12Þ ¼ 0: ð5:44Þ

When (5.44) is satisfied, we can check that the Ward identities for K0, K1, and K2 do not bring additional constraints.
Indeed, the proof for K0 is immediate, because

ðjz1j2∂u1 þ jz2j2∂u2ÞhX2itd ∝ ðjz1j2 − jz2j2Þδð2Þðz1 − z2Þ ¼ 0: ð5:45Þ

The Ward identity for K1 is equivalent to the following differential constraint:

u12z1∂u12hX2itd þ ðz21 − z22Þ∂z12hX2itd þ 2z1hX2itd
X
i

ki ¼ 0

⇒ ð2 − k−12Þz1hX2itd þ ðz1 þ z2Þz12∂z12hX2itd þ 2z1hX2itd
X
i

ki ¼ 0

⇒

�
2 −

X
i

ki −
X
i

k̄i − 2þ 2
X
i

ki

�
z1hX2itd ¼

�X
i

ki −
X
i

k̄i

�
z1hX2itd ¼ 0; ð5:46Þ

using successively (5.44) and the constraint k−12 ¼ 0. This concludes the derivation since the invariance under the last
special conformal transformation K2 is proven in an analogous way. The deal now consists in solving carefully the master
equation (5.44), which offers a few surprises.

3. Continuous set of functional solutions

For generic values of kþ12 ≠ 2, the general functional solution of this equation is

gð2Þðu12Þ ∝
1

u
kþ
12
−2

12

; ð5:47Þ

leading to the following correlator
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hX2itd;f ¼ cf;ð2Þ
ðu1 − u2Þkþ12−2

δð2Þðz1 − z2Þδk−
12
;0: ð5:48Þ

This class of solutions is consistent with previous analyses
[55,193,208].
When kþ12 ¼ 2, the above solution seems to be time

independent again. But if the insertions represent boundary
values of bulk-scattering fields, this algebraic constraint is
precisely implied by (5.17). The only hope to keep a time-
dependent solution from (5.48) that can match e.g. with
(5.23) in the limit kþ12 → 2 is to have a particular dependency
in kþ12 in the overall constant, left unfixed by the symmetries.

Going to Fourier space, gð2Þðu12Þ ¼
Rþ∞
−∞ dωGðωÞe−iωu12

and posing β≡ kþ12 − 2, (5.44) becomesZ þ∞

−∞
dω½−ωG0ðωÞ þ ðβ − 1ÞGðωÞ�e−iωu12 ¼ 0: ð5:49Þ

Assuming that β > 0, the distribution

GβðωÞ ¼ 2πcωβ−1ΘðωÞ ð5:50Þ

is solution of (5.49), where c is a constant. Indeed, enforcing
thatω ≥ 0 to interpret it afterwards as the (light cone) energy
of particles,

Z þ∞

−∞
dω½−ωG0

βðωÞ þ ðβ − 1ÞGβðωÞ�e−iωu12 ¼ −2πc
Z þ∞

−∞
dωωβδðωÞe−iωu12 ¼ 0: ð5:51Þ

Inverting the Fourier transform for β > 0 gives

gð2Þðu12Þ ¼
1

2π

Z þ∞

−∞
dωGβðωÞe−iωu12 ¼ c

Z þ∞

0

dωωβ−1e−iωu12 ; ð5:52Þ

which involves the integral (2.93). This fixes the dependency of cf;ð2Þ as

gð2Þðu12Þ ¼
cΓ½kþ12 − 2�

u
kþ
12
−2

12

⟶
kþ
12
→2
c

�
1

kþ12 − 2
− ðγ þ ln ju12jÞ

�
þOðkþ12 − 2Þ ð5:53Þ

only focusing on the functional branch by fixing c ∈ R. As we discussed in Sec. II D 4, the pole is related to an infrared
divergence,which seems entangledwith the large-r limit of thebulk fields inducing the algebraic constraints (5.17).Aswe shall
now see, this is however not the unique time-dependent solution for kþ12 ¼ 2.

4. Discrete set of distributional solutions

When kþ12 ¼ 2þ n for n ∈ N, the solution of (5.44) is enriched by a discrete set of distributional solutions. For n ¼ 0,
using the fact that xδðxÞ ≃ 0 in the sense of distributions, we see that gð2Þðu12Þ ∝ fð0Þðu12Þ≡ signðu12Þ is a solution. We
thus have

hX2itd;d ¼ cd;ð2Þsignðu1 − u2Þδð2Þðz1 − z2Þδk−
12
;0δkþ

12
;2; ð5:54Þ

among the possible solutions of the Carrollian Ward identity for kþ12 ¼ 2. For any n ∈ N0, it can be shown by recurrence that
(5.44) is solved by the successive distributional derivatives of the sign function, denoted by fðnÞðu12Þ≡ dn

dun
12

fð0Þðu12Þ.
Indeed, if fðnÞðu12Þ is solution of (5.44) for k12þ − 2 ¼ n, i.e. u12f0ðnÞðu12Þ þ nfðnÞðu12Þ ¼ 0, then

u12f0ðnþ1Þðu12Þ þ ðnþ 1Þfðnþ1Þðu12Þ ¼ ðu12f0ðnÞðu12ÞÞ0 þ nf0ðnÞðu12Þ ¼ 0: ð5:55Þ

So in general, we can write

hX2itd;dðnÞ ¼ cd;ð2Þ
dn

dun1
signðu1 − u2Þδð2Þðz1 − z2Þδk−

12
;0δkþ

12
;2þn; ∀ n ∈ N: ð5:56Þ

To the best of our knowledge, this particular solution has not been derived in the previous Carrollian literature. Together
with (5.53), this proves the Carrollian invariance of the boundary two-point function (5.53) and the commutator (5.24).
More precisely, the holographic dictionary (5.15), (5.22) and the considerations of Sec. II D 5 favors the following
particular linear combination of (5.53) and (5.54):
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hX2itd ∝
�

1

kþ12 − 2
−
�
γ þ ln ju1 − u2j þ

iπ
2
signðu1 − u2Þ

��
δð2Þðz1 − z2Þδkþ

12
;2δk−12;0: ð5:57Þ

We thus regard the above expression as the form of the two-point function for source operators in any holographic
Carrollian CFT. The expression (2.95) of the two-point amplitude in position space fixes the overall constant in (5.57)
to ð4πÞ−1K2

ðsÞ.
Remark—Acting with n time derivatives on the correlators increments kþ12 → kþ12 þ n (because each time derivative

increases Carrollian weights by 1
2
), starting from the correlators of boundary value fields with kþ12 ¼ 2. For each n ∈ N0, we

thus have two branches to consider. For instance,

h∂u1Φz1z1ðu1; z1; z̄1ÞΦz̄2 z̄2ðu2; z2; z̄2Þi ∝
δð2Þðz1 − z2Þ
u1 − u2

or δðu1 − u2Þδð2Þðz1 − z2Þ;

h∂u1Φz1z1ðu1; z1; z̄1Þ∂u2Φz̄2 z̄2ðu2; z2; z̄2Þi ∝
δð2Þðz1 − z2Þ
ðu1 − u2Þ2

or δ0ðu1 − u2Þδð2Þðz1 − z2Þ; ð5:58Þ

for kþ12 ¼ 3 and 4. Both choices lead to time-dependent
correlation functionswhich are possiblywell-behaved for the
B-transform. However, the compatibility with the holo-
graphic dictionary imposes to choose the distributional
branch for (expectation values of) commutators and the
functional branch for the correlation functions.As a curiosity,
we remark that the coexistence of inverse power law in time
and distributional dependencies is reminiscent of what
happens in 2d CFT, where the analogous branches can be
mapped onto each other by means of shadow transforms.
Let us conclude this section by giving some comments

on the three-point function hX3i. It has already been
pointed out that the time-dependent three-point function
hX3itd is identically zero in a conformal Carrollian quantum
theory [55,193,208]. This can be seen as a consequence of
the invariance under Carrollian time translation P0, boosts
BA and special conformal transformation K0, or, in other
words, invariance under Poincaré translations (see
Appendix B for the dictionary). One has the following
algebraic constraints:

X3
i¼1

∂uihX3itd ¼
X3
i¼1

zi∂uihX3itd ¼
X3
i¼1

z̄i∂uihX3itd

¼
X3
i¼1

jzij2∂uihX3itd ¼ 0 ð5:59Þ

solved by ∂uihX3itd ¼ 0, for all i ¼ 1, 2, 3 and the time-
dependent three-point function is identically zero. Finally, by

similar arguments, one can easily show that this is also the
case for the one-point function, namely hX1i ¼ hΦðk;k̄Þi ¼ 0,
except for the identity operator.

VI. RELATIONWITH CELESTIAL HOLOGRAPHY

In Sec. V, we discussed the Carrollian holography
proposal by providing some kinematical properties of
the dual Carrollian CFT and its relation with gravity in
the bulk. The goal of this section is to make contact
between the Carrollian approach and the celestial holog-
raphy paradigm. In order to do so, we start by recalling
some of the well-established symmetry constraints for
celestial CFT induced from the bulk analysis, namely
the BMS Ward identities encoding bulk soft theorems.
We then relate Carrollian CFT and celestial CFT by
mapping the Carrollian source operators, their correlation
functions and associated Ward identities to those of
the CCFT.

A. Ward identities of 2d celestial CFT currents

As already reviewed in Sec. II D 3, for a massless
scattering, one can express the S-matrix elements in a
boost-eigenstate basis made of the conformal primary wave
functions by performing a Mellin transform on the ampli-
tudes in energy eigenstates, see (2.84). The key ingredient
of celestial holography is to identify the S-matrix elements
written in this conformal basis with correlation functions of
2d celestial CFT, namely

hOout
ðΔ1;J1Þðz1; z̄1Þ…Oout

ðΔn;JnÞðzn; z̄nÞOin
ðΔnþ1;Jnþ1Þðznþ1; z̄nþ1Þ…Oin

ðΔN;JNÞðzN; z̄NÞiCCFT
≡ houtjiniboost ¼

Z þ∞

0

dω1ω
Δ1−1
1

Z þ∞

0

dω2ω
Δ2−1
2 …

Z þ∞

0

dωNω
ΔN−1
N ANðp1;…;pNÞ; ð6:1Þ
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where we recall that AN denotes the amplitude of
N-particle scattering (n of which are outgoing) in the usual
energy-eigenstate basis. CCFT operators are characterized
by a pair of numbers; Δ is the conformal dimension
corresponding to the boost eigenvalue in the bulk and J
is the 2d spin identified with the bulk helicity. Very
often, one trades ðΔ; JÞ for the conformal weights ðh; h̄Þ
defined as

h ¼ Δþ J
2

; h̄ ¼ Δ − J
2

: ð6:2Þ

CCFT operators can also wear a number associated with
additional global symmetries, e.g. the electric charge Q for
the Uð1Þ symmetry, which is sometimes dropped to
simplify the notation. In the following, we will use the
shorthand notation

XN ¼ Oout
ðΔ1;J1Þðz1; z̄1Þ…Oout

ðΔn;JnÞðzn; z̄nÞOin
ðΔnþ1;Jnþ1Þðznþ1; z̄nþ1Þ…Oin

ðΔN;JNÞðzN; z̄NÞ ð6:3Þ

for N insertions in CCFT correlators.
Using the identification (6.1), soft theorems in the bulk

can be rewritten as Ward identities associated to
“conformally soft” currents (i.e. with Δ ∈ Z operators)
in CCFT [110]. The soft-photon theorem can be rewritten
as a Uð1Þ Kac-Moody Ward identity [69,110,126]

hJðzÞXNi ¼ ℏ
XN
q¼1

eηqQq

z − zq
hXNi; ð6:4Þ

where JðzÞ is a Uð1Þ Kac-Moody current of conformal
weights (1,0) and ηq ¼ �1 for outgoing/incoming fields.
Note that this sign disappears in the all out convention.
Similarly, the leading soft graviton theorem can be encoded
in the supertranslation Ward identities of the CCFT
[110,125,151]

hPðz; z̄ÞXNi þ ℏ
XN
q¼1

ηq
z − zq

b∂Δq
hXNi ¼ 0; ð6:5Þ

where Pðz; z̄Þ is the supertranslation current with conformal
weights ð3

2
; 1
2
Þ and b∂Δ shifts the conformal dimension Δ by

unit increment. The subleading soft graviton theorem is
described by the CCFT Ward identities of superrotations
[69,72,76,209]:

hTðzÞXNi þ ℏ
XN
q¼1

�
∂q

z − zq
þ hq
ðz − zqÞ2

�
hXNi ¼ 0; ð6:6Þ

where TðzÞ is the holomorphic celestial stress tensor with
conformal weights (2, 0) (similar results hold for the
antiholomorphic stress tensor).
The low-point correlation functions in the CCFT can be

deduced from the bulk amplitudes using (6.1).
Alternatively, they can be deduced by studying the con-
straints implied by (6.5) and (6.6) [121,210]. The two-point
function reads explicitly as

MðΔ1; z1; z̄1;Δ2; z2; z̄2Þ
≡ hOout

ðΔ1;J1Þðz1; z̄1ÞOin
ðΔ2;J2Þðz2; z̄2Þi

¼ ð2πÞ4C ð2Þδðν1 þ ν2Þδð2Þðz1 − z2ÞδJ1;J2 ; ð6:7Þ

with Δq ¼ cþ iνq, while the 3-point correlation function
vanishes in Lorentzian signature for the bulk spacetime. The
latter can be made nonvanishing by formulating the CCFT
correlators with complexified ðz; z̄Þ, i.e. z̄ ≠ z�, which
amounts to consider holographic duals of bulk amplitudes
written in the split metric signature ð−;þ;−;þÞ [71].
Another important information in the CCFT that one can

deduce is the form of the OPEs. The latter can be obtained
from the bulk amplitudes using (6.1) and taking the collinear
limit for the particles, which amounts to take the limit
ðz1; z̄1Þ → ðz2; z̄2Þ. The knowledge of the OPEs allows one
to deduce new symmetries for scattering amplitudes, which
includes the w1þ∞ algebra [98,100,211]. An interesting
observation for the current discussion is that the OPEs
between the CCFT currentsPðz; z̄Þ and TðzÞ can be deduced
from the BMS charge algebra [158], the latter being
interpreted as an algebra for Noether currents in the
Carrollian CFT at null infinity. This constitutes a first
important insight suggesting that the Carrollian CFT and
the CCFT can be related to one another.We explore this idea
in further details in the following section.

B. From Carrollian to celestial holography

In this section, we show that the celestial Ward identities
associated to large gauge and BMS symmetries can be
recovered from Carrollian correlation functions involving
(quasi)conformal Carrollian primary source operators of
specific weights.

1. Soft-photon theorem

We consider again here the holographic description of
massless scalar electrodynamics and we use the objects
defined in Sec. V B 2. The goal now is to deduce the
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celestial Ward identity (6.4) from the Uð1Þ invariance of
Carrollian correlators (5.35) after some B-transforms. We
are giving more details about the simpler Uð1Þ case, as the
gravity case proceeds similarly.

First, it is useful to express the soft-photon current JðzÞ
in terms of conformal Carrollian fields. Recalling (5.25),

we write _σðAÞz ≡ ∂uσ
ðAÞ
z , which carries Carrollian weights

ð3
2
; 1
2
Þ and _σðAÞz̄ ¼ ð _σðAÞz Þ†. The soft flux (3.18) then reads

F S
λ ¼

Z
Î
d3xFS

λðs; z; z̄Þ ¼
1

e2

Z
Σ
d2zλð0Þ

�Z þ∞

−∞
du∂z̄ _σ

ðAÞ
z −

Z þ∞

−∞
dv∂z̄ _σ

ðAÞ
z

�
þ H:c:; ð6:8Þ

where all objects have been promoted to quantum operators. Now using the electricity condition (3.12) after performing the
time integrals explicitly,

F S
λ ¼

2

e2

Z
Σ
d2zλð0Þ

�Z þ∞

−∞
du∂z̄ _σ

ðAÞ
z −

Z þ∞

−∞
dv∂z̄ _σ

ðAÞ
z

�
¼ −

2

e2

Z
Σ
d2z∂z̄λð0Þ

�Z þ∞

−∞
du _σðAÞz −

Z þ∞

−∞
dv _σðAÞz

�
¼ 1

2π

Z
Σ
d2z∂z̄λð0ÞJðzÞ; ð6:9Þ

using the expression of the soft-photon current [126,155]

JðzÞ≡ −
4π

e2

�Z þ∞

−∞
du _σðAÞz −

Z þ∞

−∞
dv _σðAÞz

�
: ð6:10Þ

This operator inserts a soft photon of positive helicity. Notice that by using the electricity condition to trade ∂z̄ _σ
ðAÞ
z in favor

of ∂z _σ
ðAÞ
z̄ , one can insert a soft photon of negative helicity instead by means of the Hermitian conjugated operator J̄ðz̄Þ.

Starting from the Ward identity (5.35), splitting the flux F λ ¼ FH
λ þ F S

λ as in (3.17) and (3.18) and using hFH
λ X

σ
Ni ¼

iℏδHλ hXσ
Ni as a consequence of (3.19), we find

1

iℏ
hF S

λX
σ
Ni þ δHλ hXσ

Ni ¼
1

2πiℏ

Z
Σ
d2z∂z̄λð0ÞhJðzÞXσ

Ni þ δHλ hXσ
Ni ¼ 0; ð6:11Þ

owing to (6.9). Here δHλ hXσ
Ni represents the homogeneous part of the Uð1Þ transformation of the source operators, i.e.

δHλ σ
out=in
ðkj;k̄jÞ;Qj

ðuj=vj; zj; z̄jÞ ¼∓ ieQjλ
ð0Þðzj; z̄jÞσout=inðkj;k̄jÞ;Qj

ðuj=vj; zj; z̄jÞ; ð6:12Þ

obtained explicitly from (4.28), (5.15), and (5.16). Particularizing for λð0Þðz; z̄Þ ¼ 1
z−w and using the property

δð2Þðz − wÞ ¼ 1

2π
∂z̄

�
1

z − w

�
; ð6:13Þ

we have

1

iℏ
hJðwÞXσ

Ni þ ie
XN
q¼1

ηqQq

w − zq
hXσ

Ni ¼ 0; ð6:14Þ

where ηq ¼ �1 for incoming/outgoing insertions. The last step needed to translate this result into the celestial picture
amounts to relating Carrollian outgoing and incoming source operators to the celestial operators by means of the
B-transform as in (2.65), i.e.

Oout
ðΔi;JiÞ;Qi

ðzi; z̄iÞ ¼ κþΔ lim
ϵ→0þ

Rþ∞
−∞

dui
ðuiþiϵÞΔi σ

out
ðki;k̄iÞ;Qi

ðui; zi; z̄iÞ;

Oin
ðΔj;JjÞ;Qj

ðzj; z̄jÞ ¼ κ−Δ lim
ϵ→0þ

Rþ∞
−∞

dvj
ðvj−iϵÞΔj σ

in
ðkj;k̄jÞ;Qj

ðvj; zj; z̄jÞ;
ð6:15Þ
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which is also consistent with the extrapolate-style dic-
tionary of [93]. Importantly, let us recall that, in our picture,
the Carrollian sources that are B-transformed in (6.15) are
identified with the boundary values of bulk massless fields,
namely implying that the 2d spins are implicitly fixed by
Carrollian weights as (5.17). Denoting as before the set of
celestial insertions by XN, one finally checks that (6.14)
becomes (6.4), which is nothing but the celestial encoding
of Weinberg’s soft photon theorem.
Remark—Let us stress that, in this last step to relate

Carrollian and celestial results, our proposal to exchange
time and conformal dimension by means of (6.15) differs
from the proposal of [55] to use the “modified Mellin
transform” introduced in [208]. By construction, the B-
transform (2.63), defined in Sec. II C as the combination of
Fourier and Mellin transforms acting on ladder operators,
maps boundary values of bulk scattering fields onto
celestial operators and vice versa thanks to the inversion
formula (2.73). On the other hand, the modified Mellin
transform maps functions in Fourier space onto functions
depending both on (retarded) time and conformal dimen-
sion, which thus cannot be interpreted as boundary values

of scattering fields. Nevertheless, since both integral trans-
forms provide amplitudes which solve conformal Carrollian
Ward identities, the link between the B-transform and the
modified Mellin transform would be worth exploring.

2. Soft graviton theorems

Nowwe turn our interest to scattering processes involving
gravitons in asymptotically flat spacetime. Let hXσ

Ni be a
conformal Carrollian correlator with N insertions, among
which can be found either boundary values for the gravita-
tional field [i.e. quasiconformal Carrollian primary source

operators σðgÞzz of weights ð3
2
;− 1

2
Þ] or null matter fields (i.e.

conformal Carrollian primary source operators σðϕÞ).
From the considerations of Sec. V C, we impose (5.33)

for each conformal Carrollian transformation (4.31). The
splitting in hard and soft variables induces a corresponding
separation in the integrated fluxes as in (3.49). Considering
first a supertranslation (by setting Yz ¼ 0 ¼ Y z̄) and

defining _σðgÞzz ≡ ∂uσ
ðgÞ
ð3
2
;−1

2
Þ and _σðgÞz̄ z̄ ¼ ð _σðgÞzz Þ†, we promote

the soft flux to the following quantum operator

F S
ξ̄ðT ;0Þ ¼

Z
Î
d3xFS

ðT ;0Þðs; z; z̄Þ

¼ 1

16πG

Z
d2zT

�Z þ∞

−∞
duD2

z̄ _σ
ðgÞ
zz þ

Z þ∞

−∞
dvD2

z̄ _σ
ðgÞ
zz

�
þ H:c:

¼ 1

8πG

Z
Σ
d2zT

�Z þ∞

−∞
duD2

z̄ _σ
ðgÞ
zz þ

Z þ∞

−∞
dvD2

z̄ _σ
ðgÞ
zz

�
¼ −

1

2π

Z
d2z∂z̄T Pðz; z̄Þ: ð6:16Þ

The second equality involves the electricity condition (3.41) after performing the time integrals, the third equality uses an
integration by parts on the angles and the following definition the supertranslation current [125,151]

Pðz; z̄Þ≡ 1

4G

�Z þ∞

−∞
duD z̄ _σ

ðgÞ
zz þ

Z þ∞

−∞
dvD z̄ _σ

ðgÞ
zz

�
; ð6:17Þ

which inserts of a soft graviton of positive helicity. Notice again that by using the electricity condition to remove D z̄ _σ
ðgÞ
zz in

favor of Dz _σ
ðgÞ
z̄ z̄ , we would insert a soft graviton of negative helicity instead. With this definition, (5.33) becomes

1

iℏ
hF ξ̄ðT ;0ÞXσ

Ni þ δH
ξ̄
hXσ

Ni ¼ −
1

2πiℏ

Z
Σ
d2z∂z̄T hPðz; z̄ÞXσ

Ni þ δH
ξ̄
hXσ

Ni ¼ 0; ð6:18Þ

where we used the factorization property (3.52) and δH
ξ̄
reproduces the homogeneous transformation (5.13). We have

−
1

2πiℏ

Z
Σ
d2z∂z̄T hPðz; z̄ÞXσ

Ni þ
�Xn

i¼1

T ðzi; z̄iÞ∂ui þ
XN
j¼nþ1

T ðzj; z̄jÞ∂vj
�
hXσ

Ni ¼ 0; ð6:19Þ

assuming that the first n fields are holographically identified with outgoing radiative modes. We now perform the
B-transforms
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Oout
ðΔi;JiÞðzi; z̄iÞ ¼ κþΔ lim

ϵ→0þ

Z þ∞

−∞

dui
ðui þ iϵÞΔi

σoutðki;k̄iÞðui; zi; z̄iÞ;

Oin
ðΔj;JjÞðzj; z̄jÞ ¼ κ−Δ lim

ϵ→0þ

Z þ∞

−∞

dvj
ðvj − iϵÞΔj

σinðkj;k̄jÞðvj; zj; z̄jÞ; ð6:20Þ

such that

δH
ξ̄ðT ;0ÞO

out=in
ðΔj;JjÞðzj; z̄jÞ ¼∓ iT ðzj; z̄jÞb∂Δj

Oout=in
ðΔj;JjÞðzj; z̄jÞ; ð6:21Þ

in accordance with e.g. (2.31) and the holographic map (5.15) and (5.16). Notice that one also has

δH
ξ̄ð0;YÞO

out=in
ðΔj;JjÞðzj; z̄jÞ ¼ ðYzjðzjÞ∂zj þ Ȳ z̄jðz̄jÞ∂z̄j þ hj∂zjY

zj þ h̄j∂z̄jȲ
z̄jÞOout=in

ðΔj;JjÞðzj; z̄jÞ; ð6:22Þ

where hj; h̄j are fixed as (6.2). Then particularizing (6.19) for T ðz; z̄Þ ¼ 1
z−w, trading Xσ

N for XN through (6.20) and using
(6.13), we recover (6.5), namely the celestial encoding of the (leading) soft-graviton theorem.
The case of a holomorphic superrotation (setting T ¼ 0 ¼ Y z̄, the antiholomorphic case being analogous) taken as

YzðzÞ ¼ 1
z−w, can be considered in a similar fashion. The related soft flux is promoted as the following quantum operator

F S
ξ̄ð0;YÞ ¼

Z
Î
d3xFS

ξ̄ð0;YÞðs; z; z̄Þ ¼ −iTðwÞ ð6:23Þ

for the holomorphic stress tensor TðzÞ [158,159]

TðzÞ≡ i
16πG

Z
d2w
z − w

�Z þ∞

−∞
du

�
uD3

w _σ
ðgÞ
w̄ w̄ þ 3

2
σðg;0Þww Dw _σ

ðgÞ
w̄ w̄ þ 1

2
_σðgÞw̄ w̄Dwσ

ðg;0Þ
ww

�
þ ðu ↦ vÞ

�
; ð6:24Þ

where σðg;0Þww ðw; w̄Þ denotes the quantum operator represent-

ing the soft variable Cð0Þ
ww defined by (3.40). Then proceed-

ing the same way as before and recalling (6.22), one
recovers the 2d CFT Ward identity (6.6) from (5.34) after
performing the integral transforms (6.20).

VII. DISCUSSION

In this paper, we have provided more details about the
Carrollian approach to flat space holography. Let us
summarize the steps of this proposal. First, consider gravity
in 4d asymptotically flat spacetimes without radiation. In
this case, the putative dual theory is an honest Carrollian
CFTwithout external source. The insertions of operators in
the correlators of this theory, denoted by Ψi, are typically
components of the Carrollian momenta. This situation is
similar to what is usually considered in AdS=CFT with
Dirichlet boundary conditions, where the correlation func-
tions in the CFT involve the holographic stress tensor. It is
also very reminiscent of the situation arising in 3d
asymptotically flat spacetimes where the bulk theory is
topological.
The second step consists in introducing the radiation in

4d asymptotically flat spacetimes. In this case, a first
observation is that the BMS charges are no longer con-
served due to the radiation reaching null infinity. Therefore,

if one identifies the BMS charges in the bulk theory with
the Noether charges of the putative dual Carrollian CFT,
something has to spoil the global symmetries in the dual
theory to yield the nonconservation. In [60] and in the
present paper, we have argued that the right setup to spoil
the symmetries and encode the radiation at null infinity is to
consider a sourced Carrollian CFT. The situation would be
very similar to the case of AdS=CFT if one considered
leaky boundary conditions instead of conservative boun-
dary conditions such as the standard Dirichlet boundary
conditions. In that case, the boundary metric, which plays
the role of source, is allowed to fluctuate on the phase space
and becomes a field of the dual theory. In the flat case, for
pure gravity, the source operators σm correspond to the
asymptotic shear and encode insertions of gravitons at null
infinity. The correlators of source operators are therefore
identified with S-matrix elements in the bulk. In this sence,
from the Carrollian perspective, the S-matrix is described
by the source sector of the theory. Obviously, this sector
does not exist in the 3d case since there is no propagating
degree of freedom and no scattering process occurring.
In the last part of the paper, we have then shown that the

source sector of the Carrollian CFT could be related to the
celestial CFT. More precisely, the source operators in
the Carrollian CFT are mapped on the operators of
the CCFT.

BRIDGING CARROLLIAN AND CELESTIAL HOLOGRAPHY PHYS. REV. D 107, 126027 (2023)

126027-43



We end up this manuscript by providing future poten-
tially interesting directions for this work.

(i) The formalism of sourced quantum field theory
introduced in Sec. IV was applied in this work to
flat space holography and its associated asymptotic
dynamics of the bulk spacetime. We believe that this
setup describing a sourced system could be applied
to a much broader scope than the one presented here.
Indeed, any gravitational system with leaky boun-
dary conditions could in principle be holographi-
cally described using this formalism. For instance, it
would be worth applying this framework in the case
of hypersurfaces at finite distance (see e.g.
[196,199,212–217]), such as black hole horizons,
to deduce some insights on holography for finite
spacetime regions.

(ii) As mentioned in the introduction, most of the results
obtained in Carrollian holography are deduced from
AdS=CFT by taking a flat limit in the bulk, leading
to an ultrarelativistic limit at the boundary. However,
as highlighted in [61–65,218], one has to start from
leaky boundary conditions in 4d AdS if one wants to
obtain radiative spacetimes in the limit. This con-
trasts with the standard Dirichlet boundary condi-
tions that are usually considered in AdS=CFT.
Therefore, the first step would be to obtain a holo-
graphic description of AdS spacetimes with leaky
boundary conditions by coupling the dual CFTwith
some external sources and using the formalism of
Sec. IV. Then, taking a flat limit in the bulk will
imply an ultrarelativistic limit at the boundary. The
hope is that one might get an explicit realization of
the sourced Carrollian CFT using this procedure. It
would also be interesting to revisit in this context the
flat limit procedure of scattering amplitudes in AdS
in the spirit of the works done in [219–222] and
relate it to our setup.

(iii) The newly uncovered w1þ∞ symmetries in the
CCFT [98] have not yet been given a clear inter-
pretation in the Carrollian CFT. As suggested by the
recent analysis of [103], the information on these
symmetries might be encoded in the subleading
orders of the bulk metric. In our analysis, we have
only considered Carrollian stress tensor or source
operators. However, nothing would prevent us to
consider Carrollian fields that are holographically
identified with subleading orders in the expansion of
the bulk metric. It might be instructive to revisit
these w1þ∞ symmetries in those terms and provide
an interpretation at null infinity.

(iv) Finally, it would be a great progress if one could
provide an explicit example of Carrollian CFT living
at null infinity that would holographically capture
some features of gravity in the bulk (for the celestial
approach, see e.g. [223–226] for recent top-down

models). A good starting point is the BMS geometric
action constructed in [32] which, together with
[227], furnishes an effective description of the dual
Carrollian CFT for nonradiative spacetimes. The
source sector of the Carrollian CFT is not yet known
but we believe that the analysis provided in the
present paper imposes strong constraints on it. For
instance, the Carrollian weights of the source oper-
ators are completely fixed via (5.17). Moreover, the
2-point correlation function for source operators is
identified with the bulk 2-point amplitude as in
(5.23). In particular, this tells us that the propagator
of source operators is u-dependent, which suggests
that the source sector of the Carrollian CFT is a
timelike electric-type of Carrollian theory
[41,46,190,228,229].
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APPENDIX A: BONDI COORDINATES FOR
MINKOWSKI SPACETIME

In the main text, we make an extensive use of the
parametrization of Minkowski space by Bondi coordinates.
We found convenient to work with a flat representative of
the conformal boundary metric, which amounts to perform
a boundary Weyl rescaling with respect to the usual choice
of round boundary representative. The aim of this appendix
is to install our conventions and notations regarding this
choice of coordinates.

1. Bondi coordinates with round boundary
representative

In retarded Bondi coordinates fu∘; r∘; z∘; z̄∘g (u∘ ∈ R,
r∘ ∈ Rþ, z∘ ∈ C), the Minkowski line elements reads as

ds2 ¼ −du2∘ − 2du∘dr∘ þ
4r2∘

ð1þ z∘z̄∘Þ2
dz∘dz̄∘: ðA1Þ

Cuts of constant u∘ of future null infinity Iþ ¼ fr∘ →
þ∞g are spheres on which the line element is the unit
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round-sphere metric in stereographic coordinates
z∘ ¼ eiφ cot θ

2
. The change of coordinates from the

Cartesian chart Xμ ¼ ft; x⃗g is given by

Xμ ¼ u∘δμ0 þ r∘
ffiffiffi
2

p

1þ z∘z̄∘
qμðz∘; z̄∘Þ; ðA2Þ

where

qμðz; z̄Þ≡ 1ffiffiffi
2

p ð1þ zz̄; zþ z̄;−iðz − z̄Þ; 1 − zz̄Þ ðA3Þ

is the standard parametrization of a null direction pointing
toward the direction ðz∘; z̄∘Þ on the celestial sphere. In a
similar way, one defines advanced Bondi coordinates
fv∘; r0∘; z0∘; z̄0∘g (v∘ ∈ R, r0∘ ∈ Rþ, z0∘ ∈ C) in which the
Minkowski line element is

ds2 ¼ −dv2∘ þ 2dv∘dr0∘ þ
4r2∘0

ð1þ z0∘z̄0∘Þ2
dz0∘dz̄0∘: ðA4Þ

In terms of the Cartesian coordinates, we have

Xμ ¼ v∘δμ0 − r0∘
ffiffiffi
2

p

1þ z0∘z̄0∘
qμðz0∘; z̄0∘Þ: ðA5Þ

For any finite value of r∘; r0∘, both Bondi coordinate
systems are related as

v∘ ¼ u∘ þ 2r∘; r0∘ ¼ r∘; z0∘ ¼ −
1

z̄∘
; ðA6Þ

where in particular the holomorphic coordinates are related
by the antipodal map ðθ;φÞ ↦ ðπ − θ;φþ πÞ, or
z∘ ↦ − 1

z̄∘. This particularly convenient choice [151] allows
one to label a light ray crossing the spacetime with the same
value of the angular coordinates in both coordinate sys-
tems. In other words, a light ray originating from a point
z0∘ ¼ a on the celestial sphere at past null infinity will pierce
again the celestial sphere at future null infinity at the
antipodal point identified by z∘ ¼ a.

2. Bondi coordinates with flat boundary representative

We now introduce the coordinate system fu; r; z; z̄g by
trading the unit round-sphere metric on the boundary for
the flat complex plane metric. The diffeomorphism that
implements the boundary Weyl rescaling has been worked
out e.g. in [230] and reads as

r ¼
ffiffiffi
2

p

1þ z∘z̄∘
r∘ þ

u∘ffiffiffi
2

p ; u ¼ 1þ z∘z̄∘ffiffiffi
2

p u∘ −
z∘z̄∘u2∘
2r

;

z ¼ z∘ −
z∘u∘ffiffiffi
2

p
r
; ðA7Þ

for retarded coordinates. Here u; r ∈ R and z ∈ C. The
relation with Cartesian coordinates is now given by

Xμ ¼ u∂z∂z̄qμðz; z̄Þ þ rqμðz; z̄Þ ðA8Þ

and the Minkowski line element reads as

ds2 ¼ −2dudrþ 2r2dzdz̄: ðA9Þ

These coordinates are such that Iþ and I − are respec-
tively obtained by taking the limits r → þ∞ and r → −∞.
Cuts of Iþ are now complex planes endowed with a flat
metric. Lines obtained by keeping ðu; z; z̄Þ fixed form a
null geodesic congruence extending from past to future null
infinity. The matching between past and future null
infinities is therefore here immediate.
Similarly, we can also flatten the boundary representative

in advanced Bondi coordinates to reach the coordinates
fv; r0; z0; z̄0g. The diffeomorphism implementing the boun-
dary Weyl rescaling is given explicitly by

r0 ¼
ffiffiffi
2

p

1þ z∘z̄∘
r0∘ −

v∘ffiffiffi
2

p ; v ¼ 1þ z0∘z̄0∘ffiffiffi
2

p v∘ þ
z0∘z̄0∘v2∘
2r0

;

z0 ¼ z0∘ þ
z0∘v∘ffiffiffi
2

p
r0
: ðA10Þ

In these coordinates, related to the Cartesian coordinates via

Xμ ¼ v∂z0∂z̄0qμðz0; z̄0Þ − r0qμðz0; z̄0Þ; ðA11Þ

the Minkowski line element is

ds2 ¼ 2dvdr0 þ 2r02dz0dz̄0: ðA12Þ

Here Iþ is reached in the limit r0 → −∞ while I − is
obtained by taking r0 → þ∞. Inverting (A7) recalling that
r∘ ∈ Rþ and taking into account the diffeomorphism (A6),
one can show that (A10) yields

v ¼ u; r0 ¼ −r; z0 ¼ z: ðA13Þ

The Bondi coordinates with flat boundary representative are
asymptotically related to those with round boundary repre-
sentative as follows. In the limit where r∘ goes to infinity in
the retarded Bondi coordinates, we deduce from (A7) that

u ¼ u∘
1þ z∘z̄∘ffiffiffi

2
p þOðr−1∘ Þ; r ¼ r∘

ffiffiffi
2

p

1þ z∘z̄∘
þOðr0∘Þ;

z ¼ z∘ þOðr−1∘ Þ; ðA14Þ

while, in the limit where r0∘ ≡ r∘ goes to infinity in the
advanced Bondi coordinates, (A10) together with the match-
ing (A13) imply
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v ¼ v∘
1þ z0∘z̄0∘ffiffiffi

2
p þOðr−1∘ Þ; r ¼ −r∘

ffiffiffi
2

p

1þ z0∘z̄0∘
þOðr0∘Þ;

z ¼ z0∘ þOðr−1∘ Þ: ðA15Þ

In this sense, the coordinate system fu; r; z; z̄g with flat
boundary representative interpolates between the advanced
and retarded coordinate systems with boundary round
representatives at large distances. In particular points situated
at z∘ on the future celestial sphere are identifiedwith points at
z0∘ ¼ − 1

z̄∘ on the past celestial sphere through a null ray
defined with constant ðu; z; z̄Þ such that z≡ z∘ at future null
infinity. Similar considerations apply for the advanced

coordinate system up to performing the simple change of
coordinates (A13).

APPENDIX B: ISOMORPHISM BETWEEN
GLOBAL CONFORMAL CARROLLIAN AND

POINCARÉ ALGEBRAS

In Cartesian coordinates Xμ ¼ ft; xig, the Poincaré
generators on Minkowski spacetime are

(i) Translations: P0 ¼ ∂t, Pi ¼ ∂xi , i ¼ 1, 2, 3.
(ii) Rotations: Ri ¼ xj∂xk − xk∂xj , ði; j; kÞ ¼ ð1; 2; 3Þ,

(2, 1, 3), (3, 1, 2).
(iii) Special Lorentz transformations: Bi ¼ xi∂t þ t∂xi ,

i ¼ 1, 2, 3.

They satisfy the well-known isoð3; 1Þ algebra

½Pi;Pj� ¼ 0 ¼ ½P0;Pi�; ½Ri;Pj� ¼ −εijkPk; ½Ri;P0� ¼ 0; ½Bi;Pj� ¼ −δijP0;

½Bi;P0� ¼ −Pi; ½Ri;Rj� ¼ −εijkRk; ½Ri;Bj� ¼ −εijkBk; ½Bi;Bj� ¼ εijkRk: ðB1Þ

Performing the change of coordinates to retarded Bondi gauge with flat conformal frame at the boundary, one finds that the
Poincaré generators can be expressed as (4.31) on Iþ with particular functions T ;Yz and Y z̄ given in Table I.
From the intrinsic point of view, these generators do not necessarily seem natural but can be related to the standard

generators of a conformal Carrollian symmetry algebra (see Sec. IV D 1) thanks to the following isomorphism:

CCarr3 ≃ Conf2⨭R4 ≃ soð3; 1Þ⨭R4 ≡ isoð3; 1Þ: ðB2Þ

The dictionary is as follows:

P0 ¼
1ffiffiffi
2

p ðP̄0 þ P̄3Þ; P1 ¼ −
i
2
ðR̄1 þ iR̄2 þ iB̄1 þ B̄2Þ; P2 ¼

i
2
ðR̄1 − iR̄2 − iB̄1 þ B̄2Þ;

J ¼ iR̄3; D ¼ B̄3; B1 ¼ −
1ffiffiffi
2

p ðP̄1 − iP̄2Þ; B2 ¼ −
1ffiffiffi
2

p ðP̄1 þ iP̄2Þ;

K0 ¼ −
ffiffiffi
2

p
ðP̄0 − P̄3Þ; K1 ¼ −iðR̄1 þ iR̄2 − iB̄1 − B̄2Þ; K2 ¼ iðR̄1 − iR̄2 þ iB̄1 − B̄2Þ: ðB3Þ

The bar over the Poincaré generators means again their restriction to future null infinity. Applying the redefinitions
(B3) on (B1) gives the algebra (4.32) and (4.33).

TABLE I. Poincaré generators in retarded Bondi gauge.

Generator T ðz; z̄Þ YzðzÞ Y z̄ðz̄Þ
P0

1ffiffi
2

p ð1þ zz̄Þ 0 0

P1 − 1ffiffi
2

p ðzþ z̄Þ 0 0

P2
1ffiffi
2

p iðz − z̄Þ 0 0

P3
1ffiffi
2

p ð1 − zz̄Þ 0 0

R1 0 1
2
ið1 − z2Þ − 1

2
ið1 − z̄2Þ

R2 0 1
2
ð1þ z2Þ 1

2
ð1þ z̄2Þ

R3 0 iz −iz̄
B1 0 1

2
ð1 − z2Þ 1

2
ð1 − z̄2Þ

B2 0 1
2
ið1þ z2Þ − 1

2
ið1þ z̄2Þ

B3 0 z z̄
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APPENDIX C: CONSTRAINTS ON THE CARROLLIAN STRESS TENSOR

In this appendix, we detail the proof of the identities (4.38) obeyed by the Carrollian stress tensor Cab at the classical
level. All of them stem from the flux-balance law (4.37).
For Carrollian translations, ξ̄a ¼ δab, hence ∂aCab ¼ Fb is immediate from (4.37). Invariance under Carrollian rotation

imposes

0 ¼ ∂að−Cazzþ Caz̄z̄Þ þ zFz − z̄Fz̄ ¼ −zð∂aCaz − FzÞ þ z̄ð∂aCaz̄ − Fz̄Þ − Czz þ Cz̄ z̄; ðC1Þ

which gives Czz ¼ Cz̄ z̄ using the invariance by translation, i.e. the first condition in (4.38). For the Carrollian boosts,

0 ¼ ∂aðCauxAÞ − xAFu ¼ ð∂aCau − FuÞxA þ CAu ⇒ CAu ¼ 0: ðC2Þ
The invariance under Carrollian dilatations finally gives

0 ¼ ∂aðCabxbÞ − Fbxb ¼ ð∂aCab − FbÞxb þ Caa ⇒ Caa ¼ 0; ðC3Þ

which concludes the demonstration of (4.38).
It remains to show that the Carrollian special conformal transformations K0 ¼ −2zz̄∂u, K1 ¼ 2uz̄∂u þ 2z̄2∂z̄ and K2 ¼

2uz∂u þ 2z2∂z do not impose further constraints. Let us prove this statement forK2 (the proof forK0 andK1 is similar). The
flux-balance law is particularized as

0 ¼ ∂aðCauuzþ Cazz2Þ − Fuuz − Fzz2

¼ ð∂aCau − FuÞuzþ ð∂aCaz − FzÞz2 þ Cuuzþ Czuuþ 2Czzz

¼ ðCuu þ Czz þ Cz̄ z̄Þz ¼ 0: ðC4Þ
The second equality holds by virtue of the invariance by translation and boosts, the third one holds thanks to the invariance
by rotation while the last one uses the invariance by dilatation.
Let us finally prove that the global conformal Carrollian symmetries are enough to completely constrain Cab, i.e. (4.37) is

automatically satisfied by the pure supertranslation and superrotation currents provided (4.38) holds. Considering first a
generic supertranslation ξ̄u ¼ T ðz; z̄Þ, ξ̄A ¼ 0, we have

0 ¼ ∂aðCauT Þ − FuT ¼ ð∂aCau − FuÞT þ CAu∂AT ¼ 0 ðC5Þ

using successively the invariance by Carrollian translations and boosts. For superrotations ξ̄u ¼ u
2
∂AYA, ξ̄z ¼ YzðzÞ and

ξ̄z̄ ¼ Y z̄ðz̄Þ, we have

∂a

�
Cau

u
2
∂AYA þ CaAYA

�
− Fu

u
2
∂AYA − FAYA

¼ u
2
∂AYAð∂aCau − FuÞ þ YAð∂aCaA − FAÞ þ

1

2
Cuu∂AYA þ u

2
CBu∂B∂AYA þ CBA∂BYA

¼ 1

2
Cuuð∂zYz þ ∂z̄Y z̄Þ þ Czz∂zYz þ Cz̄z̄∂z̄Y z̄

¼ 1

2
Cuuð∂zYz þ ∂z̄Y z̄Þ þ 1

2
ðCzz þ Cz̄ z̄Þ∂zYz þ 1

2
ðCzz þ Cz̄ z̄Þ∂z̄Y z̄

¼ 1

2
ðCuu þ Czz þ Cz̄ z̄Þð∂zYz þ ∂z̄Y z̄Þ ¼ 0: ðC6Þ

The third equality uses the invariance by translations and boosts. It also uses the fact that superrotations are holomorphic.
The fourth equality uses the invariance by rotation while the last one invokes the invariance by dilatation. This concludes the
proof of (4.38).
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(1965).

[18] G. Barnich, Entropy of three-dimensional asymptotically
flat cosmological solutions, J. High Energy Phys. 10
(2012) 095.

[19] A. Bagchi, S. Detournay, R. Fareghbal, and J. Simón,
Holography of 3D Flat Cosmological Horizons, Phys. Rev.
Lett. 110, 141302 (2013).

[20] W. Li and T. Takayanagi, Holography and Entanglement in
Flat Spacetime, Phys. Rev. Lett. 106, 141301 (2011).

[21] A. Bagchi, R. Basu, D. Grumiller, and M. Riegler,
Entanglement Entropy in Galilean Conformal Field The-
ories and Flat Holography, Phys. Rev. Lett. 114, 111602
(2015).

[22] H. Jiang, W. Song, and Q. Wen, Entanglement entropy in
flat holography, J. High Energy Phys. 07 (2017) 142.

[23] A. Bagchi and I. Mandal, On representations and corre-
lation functions of Galilean conformal algebras, Phys. Lett.
B 675, 393 (2009).

[24] S. Detournay, D. Grumiller, F. Schöller, and J. Simón,
Variational principle and one-point functions in three-
dimensional flat space Einstein gravity, Phys. Rev. D
89, 084061 (2014).

[25] A. Bagchi, D. Grumiller, and W. Merbis, Stress tensor
correlators in three-dimensional gravity, Phys. Rev. D 93,
061502 (2016).

[26] A. Bagchi, M. Gary, and Zodinmawia, The nuts and bolts
of the BMS bootstrap, Classical Quantum Gravity 34,
174002 (2017).

[27] A. Bagchi, M. Gary, and Zodinmawia, Bondi-Metzner-
Sachs bootstrap, Phys. Rev. D 96, 025007 (2017).

[28] G. Barnich, A. Gomberoff, and H. A. González, Three-
dimensional Bondi-Metzner-Sachs invariant two-
dimensional field theories as the flat limit of Liouville
theory, Phys. Rev. D 87, 124032 (2013).

[29] G. Barnich and H. A. Gonzalez, Dual dynamics of three
dimensional asymptotically flat Einstein gravity at null
infinity, J. High Energy Phys. 05 (2013) 016.

[30] G. Barnich, H. A. Gonzalez, and P. Salgado-Rebolledo,
Geometric actions for three-dimensional gravity, Classical
Quantum Gravity 35, 014003 (2018).

[31] W. Merbis and M. Riegler, Geometric actions and flat
space holography, J. High Energy Phys. 02 (2020) 125.

[32] G. Barnich, K. Nguyen, and R. Ruzziconi, Geometric
action for extended Bondi-Metzner-Sachs group in four
dimensions, J. High Energy Phys. 12 (2022) 154.

[33] T. Adamo, E. Casali, and D. Skinner, Perturbative gravity
at null infinity, Classical Quantum Gravity 31, 225008
(2014).

[34] L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos,
and K. Siampos, Flat holography and Carrollian fluids, J.
High Energy Phys. 07 (2018) 165.

[35] A. Campoleoni, L. Ciambelli, C. Marteau, P. M.
Petropoulos, and K. Siampos, Two-dimensional fluids
and their holographic duals, Nucl. Phys. B946, 114692
(2019).

[36] L. Ciambelli, C. Marteau, P. M. Petropoulos, and R.
Ruzziconi, Gauges in three-dimensional gravity and holo-
graphic fluids, J. High Energy Phys. 11 (2020) 092.

[37] L. Ciambelli, C. Marteau, P. M. Petropoulos, and R.
Ruzziconi, Fefferman-Graham and Bondi gauges in the
fluid/gravity correspondence, Proc. Sci. CORFU2019
(2020) 154 [arXiv:2006.10083].

[38] A. Campoleoni, L. Ciambelli, A. Delfante, C. Marteau,
P. M. Petropoulos, and R. Ruzziconi, Holographic Lorentz
and Carroll frames, J. High Energy Phys. 12 (2022)
007.

[39] J. de Boer, J. Hartong, N. A. Obers, W. Sybesma, and S.
Vandoren, Perfect fluids, SciPost Phys. 5, 003 (2018).

[40] L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos,
and K. Siampos, Covariant Galilean versus Carrollian
hydrodynamics from relativistic fluids, Classical Quantum
Gravity 35, 165001 (2018).

[41] J. de Boer, J. Hartong, N. A. Obers, W. Sybesma, and S.
Vandoren, Carroll symmetry, dark energy and inflation,
Front. Phys. 10, 810405 (2022).

DONNAY, FIORUCCI, HERFRAY, and RUZZICONI PHYS. REV. D 107, 126027 (2023)

126027-48

https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1063/1.1301570
https://doi.org/10.1063/1.1301570
https://arXiv.org/abs/hep-th/9901076
https://arXiv.org/abs/hep-th/9901076
https://doi.org/10.1103/PhysRevD.61.106008
https://doi.org/10.1103/PhysRevD.61.106008
https://doi.org/10.1088/0264-9381/21/23/022
https://doi.org/10.1088/0264-9381/21/23/022
https://doi.org/10.1016/j.nuclphysb.2003.09.051
https://doi.org/10.1088/0264-9381/23/9/010
https://doi.org/10.1088/0264-9381/23/9/010
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1103/PhysRev.128.2851
https://doi.org/10.1007/JHEP05(2010)062
https://doi.org/10.1088/1361-6382/aaae22
https://doi.org/10.1007/JHEP03(2018)147
https://doi.org/10.1007/JHEP03(2018)147
https://doi.org/10.1088/0264-9381/31/9/092001
https://doi.org/10.1088/0264-9381/31/9/092001
https://doi.org/10.1007/JHEP10(2012)095
https://doi.org/10.1007/JHEP10(2012)095
https://doi.org/10.1103/PhysRevLett.110.141302
https://doi.org/10.1103/PhysRevLett.110.141302
https://doi.org/10.1103/PhysRevLett.106.141301
https://doi.org/10.1103/PhysRevLett.114.111602
https://doi.org/10.1103/PhysRevLett.114.111602
https://doi.org/10.1007/JHEP07(2017)142
https://doi.org/10.1016/j.physletb.2009.04.030
https://doi.org/10.1016/j.physletb.2009.04.030
https://doi.org/10.1103/PhysRevD.89.084061
https://doi.org/10.1103/PhysRevD.89.084061
https://doi.org/10.1103/PhysRevD.93.061502
https://doi.org/10.1103/PhysRevD.93.061502
https://doi.org/10.1088/1361-6382/aa8003
https://doi.org/10.1088/1361-6382/aa8003
https://doi.org/10.1103/PhysRevD.96.025007
https://doi.org/10.1103/PhysRevD.87.124032
https://doi.org/10.1007/JHEP05(2013)016
https://doi.org/10.1088/1361-6382/aa9806
https://doi.org/10.1088/1361-6382/aa9806
https://doi.org/10.1007/JHEP02(2020)125
https://doi.org/10.1007/JHEP12(2022)154
https://doi.org/10.1088/0264-9381/31/22/225008
https://doi.org/10.1088/0264-9381/31/22/225008
https://doi.org/10.1007/JHEP07(2018)165
https://doi.org/10.1007/JHEP07(2018)165
https://doi.org/10.1016/j.nuclphysb.2019.114692
https://doi.org/10.1016/j.nuclphysb.2019.114692
https://doi.org/10.1007/JHEP11(2020)092
https://doi.org/10.22323/1.376.0154
https://doi.org/10.22323/1.376.0154
https://arXiv.org/abs/2006.10083
https://doi.org/10.1007/JHEP12(2022)007
https://doi.org/10.1007/JHEP12(2022)007
https://doi.org/10.21468/SciPostPhys.5.1.003
https://doi.org/10.1088/1361-6382/aacf1a
https://doi.org/10.1088/1361-6382/aacf1a
https://doi.org/10.3389/fphy.2022.810405


[42] A. C. Petkou, P. M. Petropoulos, D. R. Betancour, and K.
Siampos, Relativistic fluids, hydrodynamic frames and
their Galilean versus Carrollian avatars, J. High Energy
Phys. 09 (2022) 162.

[43] L. Freidel and P. Jai-akson, Carrollian hydrodynamics
from symmetries, Classical Quantum Gravity 40, 055009
(2023).

[44] H. Bacry and J. Levy-Leblond, Possible kinematics, J.
Math. Phys. (N.Y.) 9, 1605 (1968).

[45] E. Bergshoeff, J. Gomis, and G. Longhi, Dynamics of
Carroll particles, Classical Quantum Gravity 31, 205009
(2014).

[46] C. Duval, G. W. Gibbons, P. A. Horvathy, and P. M. Zhang,
Carroll versus Newton and Galilei: Two dual non-
Einsteinian concepts of time, Classical Quantum Gravity
31, 085016 (2014).

[47] J. Hartong, Gauging the Carroll algebra and ultra-
relativistic gravity, J. High Energy Phys. 08 (2015)
069.

[48] E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel, and T. ter
Veldhuis, Carroll versus Galilei gravity, J. High Energy
Phys. 03 (2017) 165.

[49] B. Chen and R. Liu, The shadow formalism of Galilean
CFT2, arXiv:2203.10490.

[50] A. Bagchi, R. Basu, A. Mehra, and P. Nandi, Field theories
on null manifolds, J. High Energy Phys. 02 (2020) 141.

[51] A. Bagchi, A. Mehra, and P. Nandi, Field theories with
conformal Carrollian symmetry, J. High Energy Phys. 05
(2019) 108.

[52] N. Gupta and N. V. Suryanarayana, Constructing Carrol-
lian CFTs, J. High Energy Phys. 03 (2021) 194.

[53] S. Pasterski, A shorter path to celestial currents, arXiv:
2201.06805.

[54] E. Bergshoeff, J. Figueroa-O’Farrill, and J. Gomis, A non-
Lorentzian primer, arXiv:2206.12177.

[55] A. Bagchi, S. Banerjee, R. Basu, and S. Dutta, Scattering
Amplitudes: Celestial and Carrollian, Phys. Rev. Lett. 128,
241601 (2022).

[56] A. Trautman, Radiation and boundary conditions in the
theory of gravitation, Bull. Acad. Pol. Sci., Ser. Sci., Math.,
Astron. Phys. 6, 407 (1958).

[57] R. K. Sachs, Gravitational waves in general relativity. 8.
Waves in asymptotically flat space-times, Proc. R. Soc. A
270, 103 (1962).

[58] R. M. Wald and A. Zoupas, A General definition of
‘conserved quantities’ in general relativity and other
theories of gravity, Phys. Rev. D 61, 084027 (2000).

[59] G. Barnich and C. Troessaert, BMS charge algebra, J. High
Energy Phys. 12 (2011) 105.

[60] L. Donnay, A. Fiorucci, Y. Herfray, and R. Ruzziconi,
Carrollian Perspective on Celestial Holography, Phys. Rev.
Lett. 129, 071602 (2022).

[61] G. Compère, A. Fiorucci, and R. Ruzziconi, The Λ-BMS4
group of dS4 and new boundary conditions for AdS4,
Classical Quantum Gravity 36, 195017 (2019); 38, 229501
(E) (2021).

[62] G. Compère, A. Fiorucci, and R. Ruzziconi, The Λ-BMS4
charge algebra, J. High Energy Phys. 10 (2020) 205.

[63] R. Ruzziconi, On the various extensions of the BMS group,
Ph.D. thesis, University of Brussels, 2020.

[64] A. Fiorucci and R. Ruzziconi, Charge algebra in AlðAÞdSn
spacetimes, J. High Energy Phys. 05 (2021) 210.

[65] A. Fiorucci, Leaky covariant phase spaces: Theory and
application to Λ-BMS symmetry, Ph.D. thesis, Brussels
University, International Solvay Institutes, Brussels, 2021.

[66] J. de Boer and S. N. Solodukhin, A holographic reduction
of Minkowski space-time, Nucl. Phys. B665, 545 (2003).

[67] T. He, P. Mitra, and A. Strominger, 2D Kac-Moody
symmetry of 4D Yang-Mills theory, J. High Energy Phys.
10 (2016) 137.

[68] S. Pasterski, S.-H. Shao, and A. Strominger, Flat space
amplitudes and conformal symmetry of the celestial
sphere, Phys. Rev. D 96, 065026 (2017).

[69] C. Cheung, A. de la Fuente, and R. Sundrum, 4D scattering
amplitudes and asymptotic symmetries from 2D CFT, J.
High Energy Phys. 01 (2017) 112.

[70] S. Pasterski and S.-H. Shao, Conformal basis for flat space
amplitudes, Phys. Rev. D 96, 065022 (2017).

[71] S. Pasterski, S.-H. Shao, and A. Strominger, Gluon
amplitudes as 2d conformal correlators, Phys. Rev. D
96, 085006 (2017).

[72] A. Fotopoulos and T. R. Taylor, Primary fields in celestial
CFT, J. High Energy Phys. 10 (2019) 167.

[73] M. Pate, A.-M. Raclariu, A. Strominger, and E. Y. Yuan,
Celestial operator products of gluons and gravitons, Rev.
Math. Phys. 33, 2140003 (2021).

[74] W. Fan, A. Fotopoulos, and T. R. Taylor, Soft limits of
Yang-Mills amplitudes and conformal correlators, J. High
Energy Phys. 05 (2019) 121.

[75] S. Banerjee, S. Ghosh, and R. Gonzo, BMS symmetry of
celestial OPE, J. High Energy Phys. 04 (2020) 130.

[76] A. Fotopoulos, S. Stieberger, T. R. Taylor, and B. Zhu,
Extended BMS algebra of celestial CFT, J. High Energy
Phys. 03 (2020) 130.

[77] W. Fan, A. Fotopoulos, S. Stieberger, and T. R. Taylor, On
Sugawara construction on celestial sphere, J. High Energy
Phys. 09 (2020) 139.

[78] S. Banerjee, S. Ghosh, and P. Paul, MHV graviton
scattering amplitudes and current algebra on the celestial
sphere, J. High Energy Phys. 02 (2021) 176.

[79] S. Banerjee and S. Ghosh, MHV gluon scattering ampli-
tudes from celestial current algebras, J. High Energy Phys.
10 (2021) 111.

[80] T. Adamo, W. Bu, E. Casali, and A. Sharma, Celestial
operator products from the worldsheet, J. High Energy
Phys. 06 (2022) 052.

[81] K. Costello and N. M. Paquette, Associativity of One-Loop
Corrections to the Celestial Operator Product Expansion,
Phys. Rev. Lett. 129, 231604 (2022).

[82] Y. Hu and S. Pasterski, Celestial recursion, J. High Energy
Phys. 01 (2023) 151.

[83] T. Adamo, W. Bu, E. Casali, and A. Sharma, All-order
celestial OPE in the MHV sector, J. High Energy Phys. 03
(2023) 252.

[84] D. Nandan, A. Schreiber, A. Volovich, and M. Zlotnikov,
Celestial amplitudes: Conformal partial waves and soft
limits, J. High Energy Phys. 10 (2019) 018.

[85] A. Atanasov, W. Melton, A.-M. Raclariu, and A.
Strominger, Conformal block expansion in celestial
CFT, Phys. Rev. D 104, 126033 (2021).

BRIDGING CARROLLIAN AND CELESTIAL HOLOGRAPHY PHYS. REV. D 107, 126027 (2023)

126027-49

https://doi.org/10.1007/JHEP09(2022)162
https://doi.org/10.1007/JHEP09(2022)162
https://doi.org/10.1088/1361-6382/acb194
https://doi.org/10.1088/1361-6382/acb194
https://doi.org/10.1063/1.1664490
https://doi.org/10.1063/1.1664490
https://doi.org/10.1088/0264-9381/31/20/205009
https://doi.org/10.1088/0264-9381/31/20/205009
https://doi.org/10.1088/0264-9381/31/8/085016
https://doi.org/10.1088/0264-9381/31/8/085016
https://doi.org/10.1007/JHEP08(2015)069
https://doi.org/10.1007/JHEP08(2015)069
https://doi.org/10.1007/JHEP03(2017)165
https://doi.org/10.1007/JHEP03(2017)165
https://arXiv.org/abs/2203.10490
https://doi.org/10.1007/JHEP02(2020)141
https://doi.org/10.1007/JHEP05(2019)108
https://doi.org/10.1007/JHEP05(2019)108
https://doi.org/10.1007/JHEP03(2021)194
https://arXiv.org/abs/2201.06805
https://arXiv.org/abs/2201.06805
https://arXiv.org/abs/2206.12177
https://doi.org/10.1103/PhysRevLett.128.241601
https://doi.org/10.1103/PhysRevLett.128.241601
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1103/PhysRevD.61.084027
https://doi.org/10.1007/JHEP12(2011)105
https://doi.org/10.1007/JHEP12(2011)105
https://doi.org/10.1103/PhysRevLett.129.071602
https://doi.org/10.1103/PhysRevLett.129.071602
https://doi.org/10.1088/1361-6382/ab3d4b
https://doi.org/10.1088/1361-6382/ac2c1a
https://doi.org/10.1088/1361-6382/ac2c1a
https://doi.org/10.1007/JHEP10(2020)205
https://doi.org/10.1007/JHEP05(2021)210
https://doi.org/10.1016/S0550-3213(03)00494-2
https://doi.org/10.1007/JHEP10(2016)137
https://doi.org/10.1007/JHEP10(2016)137
https://doi.org/10.1103/PhysRevD.96.065026
https://doi.org/10.1007/JHEP01(2017)112
https://doi.org/10.1007/JHEP01(2017)112
https://doi.org/10.1103/PhysRevD.96.065022
https://doi.org/10.1103/PhysRevD.96.085006
https://doi.org/10.1103/PhysRevD.96.085006
https://doi.org/10.1007/JHEP10(2019)167
https://doi.org/10.1142/S0129055X21400031
https://doi.org/10.1142/S0129055X21400031
https://doi.org/10.1007/JHEP05(2019)121
https://doi.org/10.1007/JHEP05(2019)121
https://doi.org/10.1007/JHEP04(2020)130
https://doi.org/10.1007/JHEP03(2020)130
https://doi.org/10.1007/JHEP03(2020)130
https://doi.org/10.1007/JHEP09(2020)139
https://doi.org/10.1007/JHEP09(2020)139
https://doi.org/10.1007/JHEP02(2021)176
https://doi.org/10.1007/JHEP10(2021)111
https://doi.org/10.1007/JHEP10(2021)111
https://doi.org/10.1007/JHEP06(2022)052
https://doi.org/10.1007/JHEP06(2022)052
https://doi.org/10.1103/PhysRevLett.129.231604
https://doi.org/10.1007/JHEP01(2023)151
https://doi.org/10.1007/JHEP01(2023)151
https://doi.org/10.1007/JHEP03(2023)252
https://doi.org/10.1007/JHEP03(2023)252
https://doi.org/10.1007/JHEP10(2019)018
https://doi.org/10.1103/PhysRevD.104.126033


[86] W. Fan, A. Fotopoulos, S. Stieberger, T. R. Taylor, and B.
Zhu, Conformal blocks from celestial gluon amplitudes,
J. High Energy Phys. 05 (2021) 170.

[87] W. Fan, A. Fotopoulos, S. Stieberger, T. R. Taylor, and B.
Zhu, Conformal blocks from celestial gluon amplitudes.
Part II. Single-valued correlators, J. High Energy Phys. 11
(2021) 179.

[88] A. Guevara, E. Himwich, M. Pate, and A. Strominger,
Holographic symmetry algebras for gauge theory and
gravity, J. High Energy Phys. 11 (2021) 152.

[89] E. Crawley, N. Miller, S. A. Narayanan, and A.
Strominger, State-operator correspondence in celestial
conformal field theory, J. High Energy Phys. 09 (2021)
132.

[90] S. Banerjee, P. Pandey, and P. Paul, Conformal properties
of soft operators: Use of null states, Phys. Rev. D 101,
106014 (2020).

[91] S. Banerjee and P. Pandey, Conformal properties of soft-
operators. Part II. Use of null-states, J. High Energy Phys.
02 (2020) 067.

[92] S. Pasterski, A. Puhm, and E. Trevisani, Celestial dia-
monds: Conformal multiplets in celestial CFT, J. High
Energy Phys. 11 (2021) 072.

[93] S. Pasterski, A. Puhm, and E. Trevisani, Revisiting the
conformally soft sector with celestial diamonds, J. High
Energy Phys. 11 (2021) 143.

[94] S. Mizera and S. Pasterski, Celestial geometry, J. High
Energy Phys. 09 (2022) 045.

[95] D. Kapec and P. Mitra, Shadows and soft exchange in
celestial CFT, Phys. Rev. D 105, 026009 (2022).

[96] D. Kapec, Y. T. A. Law, and S. A. Narayanan, Soft scalars
and the geometry of the space of celestial conformal field
theories, Phys. Rev. D 107, 046024 (2023).

[97] S. Banerjee and S. Pasterski, Revisiting the shadow stress
tensor in celestial CFT, arXiv:2212.00257.

[98] A. Strominger, w1þ∞ and the Celestial Sphere, Phys. Rev.
Lett. 127, 221601 (2021).

[99] E. Himwich, M. Pate, and K. Singh, Celestial operator
product expansions and w1þ∞ symmetry for all spins,
J. High Energy Phys. 01 (2022) 080.

[100] A. Ball, S. A. Narayanan, J. Salzer, and A. Strominger,
Perturbatively exact w1þ∞ asymptotic symmetry of quan-
tum self-dual gravity, J. High Energy Phys. 01 (2022) 114.

[101] T. Adamo, L. Mason, and A. Sharma, Celestial w1þ∞
symmetries from twistor space, SIGMA 18, 016 (2022).

[102] L. Freidel, D. Pranzetti, and A.-M. Raclariu, Sub-subleading
soft graviton theorem from asymptotic Einstein’s equations,
J. High Energy Phys. 05 (2022) 186.

[103] L. Freidel, D. Pranzetti, and A.-M. Raclariu, Higher spin
dynamics in gravity and w1þ∞ celestial symmetries, Phys.
Rev. D 106, 086013 (2022).

[104] A. Ball, E. Himwich, S. A. Narayanan, S. Pasterski, and A.
Strominger, Uplifting AdS3=CFT2 to flat space hologra-
phy, J. High Energy Phys. 08 (2019) 168.

[105] L. Iacobacci, C. Sleight, and M. Taronna, From celestial
correlators to AdS, and back, arXiv:2208.01629.

[106] L. Pipolode Gioia and A.-M. Raclariu, Eikonal approxi-
mation in celestial CFT, J. High Energy Phys. 03 (2023)
030.

[107] E. Casali, W. Melton, and A. Strominger, Celestial
amplitudes as AdS-Witten diagrams, J. High Energy Phys.
11 (2022) 140.

[108] R. Gonzo, T. McLoughlin, and A. Puhm, Celestial holog-
raphy on Kerr-Schild backgrounds, J. High Energy Phys.
10 (2022) 073.

[109] N. Ogawa, T. Takayanagi, T. Tsuda, and T. Waki, Wedge
holography in flat space and celestial holography, Phys.
Rev. D 107, 026001 (2023).

[110] L. Donnay, A. Puhm, and A. Strominger, Conformally soft
photons and gravitons, J. High Energy Phys. 01 (2019)
184.

[111] S. Pasterski, Lectures on celestial amplitudes, Eur. Phys. J.
C 81, 1062 (2021).

[112] S. Pasterski and A. Puhm, Shifting spin on the celestial
sphere, Phys. Rev. D 104, 086020 (2021).

[113] L. Donnay, S. Pasterski, and A. Puhm, Goldilocks modes
and the three scattering bases, J. High Energy Phys. 06
(2022) 124.

[114] C. Fronsdal, On the theory of higher spin fields, Nuovo
Cimento 9, 416 (1958).

[115] S.-J. Chang, Lagrange formulation for systems with higher
spin, Phys. Rev. 161, 1308 (1967).

[116] L. P. S. Singh and C. R. Hagen, Lagrangian formulation for
arbitrary spin. 1. The boson case, Phys. Rev. D 9, 898
(1974).

[117] B. Oblak, From the Lorentz group to the celestial sphere,
arXiv:1508.00920.

[118] E. Titchmarsh, Introduction to the Theory of Fourier
Integrals (Clarendon Press, Oxford, 1948).

[119] L. Donnay, S. Pasterski, and A. Puhm, Asymptotic
symmetries and celestial CFT, J. High Energy Phys. 09
(2020) 176.

[120] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal
Field Theory, Graduate Texts in Contemporary Physics
(Springer-Verlag, New York, 1997).

[121] S. Stieberger and T. R. Taylor, Symmetries of celestial
amplitudes, Phys. Lett. B 793, 141 (2019).

[122] E. Magliaro, C. Perini, and C. Rovelli, Compatibility of
radial, Lorenz and harmonic gauges, Phys. Rev. D 76,
084013 (2007).

[123] L. Donnay, E. Esmaeili, and C. Heissenberg, p-forms on
the celestial sphere, arXiv:2212.03060.

[124] A. Ashtekar and B. Bonga, On the ambiguity in the notion
of transverse traceless modes of gravitational waves, Gen.
Relativ. Gravit. 49, 122 (2017).

[125] T. He, V. Lysov, P. Mitra, and A. Strominger, BMS
supertranslations and Weinberg’s soft graviton theorem,
J. High Energy Phys. 05 (2015) 151.

[126] T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger, New
symmetries of massless QED, J. High Energy Phys. 10
(2014) 112.

[127] A. Ashtekar, Asymptotic Quantization: Based on 1984
Naples Lectures, Monographs and Textbooks In
Physical Science Vol. 2 (Bibliopolis, Naples, Italy,
1987), p. 107.

[128] R. Penrose, Null hypersurface initial data for classical
fields of arbitrary spin and for general relativity, Gen.
Relativ. Gravit. 12, 225 (1980).

DONNAY, FIORUCCI, HERFRAY, and RUZZICONI PHYS. REV. D 107, 126027 (2023)

126027-50

https://doi.org/10.1007/JHEP05(2021)170
https://doi.org/10.1007/JHEP11(2021)179
https://doi.org/10.1007/JHEP11(2021)179
https://doi.org/10.1007/JHEP11(2021)152
https://doi.org/10.1007/JHEP09(2021)132
https://doi.org/10.1007/JHEP09(2021)132
https://doi.org/10.1103/PhysRevD.101.106014
https://doi.org/10.1103/PhysRevD.101.106014
https://doi.org/10.1007/JHEP02(2020)067
https://doi.org/10.1007/JHEP02(2020)067
https://doi.org/10.1007/JHEP11(2021)072
https://doi.org/10.1007/JHEP11(2021)072
https://doi.org/10.1007/JHEP11(2021)143
https://doi.org/10.1007/JHEP11(2021)143
https://doi.org/10.1007/JHEP09(2022)045
https://doi.org/10.1007/JHEP09(2022)045
https://doi.org/10.1103/PhysRevD.105.026009
https://doi.org/10.1103/PhysRevD.107.046024
https://arXiv.org/abs/2212.00257
https://doi.org/10.1103/PhysRevLett.127.221601
https://doi.org/10.1103/PhysRevLett.127.221601
https://doi.org/10.1007/JHEP01(2022)080
https://doi.org/10.1007/JHEP01(2022)114
https://doi.org/10.3842/SIGMA.2022.016
https://doi.org/10.1007/JHEP05(2022)186
https://doi.org/10.1103/PhysRevD.106.086013
https://doi.org/10.1103/PhysRevD.106.086013
https://doi.org/10.1007/JHEP08(2019)168
https://arXiv.org/abs/2208.01629
https://doi.org/10.1007/JHEP03(2023)030
https://doi.org/10.1007/JHEP03(2023)030
https://doi.org/10.1007/JHEP11(2022)140
https://doi.org/10.1007/JHEP11(2022)140
https://doi.org/10.1007/JHEP10(2022)073
https://doi.org/10.1007/JHEP10(2022)073
https://doi.org/10.1103/PhysRevD.107.026001
https://doi.org/10.1103/PhysRevD.107.026001
https://doi.org/10.1007/JHEP01(2019)184
https://doi.org/10.1007/JHEP01(2019)184
https://doi.org/10.1140/epjc/s10052-021-09846-7
https://doi.org/10.1140/epjc/s10052-021-09846-7
https://doi.org/10.1103/PhysRevD.104.086020
https://doi.org/10.1007/JHEP06(2022)124
https://doi.org/10.1007/JHEP06(2022)124
https://doi.org/10.1007/BF02747684
https://doi.org/10.1007/BF02747684
https://doi.org/10.1103/PhysRev.161.1308
https://doi.org/10.1103/PhysRevD.9.898
https://doi.org/10.1103/PhysRevD.9.898
https://arXiv.org/abs/1508.00920
https://doi.org/10.1007/JHEP09(2020)176
https://doi.org/10.1007/JHEP09(2020)176
https://doi.org/10.1016/j.physletb.2019.03.063
https://doi.org/10.1103/PhysRevD.76.084013
https://doi.org/10.1103/PhysRevD.76.084013
https://arXiv.org/abs/2212.03060
https://doi.org/10.1007/s10714-017-2290-z
https://doi.org/10.1007/s10714-017-2290-z
https://doi.org/10.1007/JHEP05(2015)151
https://doi.org/10.1007/JHEP10(2014)112
https://doi.org/10.1007/JHEP10(2014)112
https://doi.org/10.1007/BF00756234
https://doi.org/10.1007/BF00756234


[129] R. Penrose and W. Rindler, Spinors and Space-Time,
Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2011).

[130] S. Weinberg, Photons and gravitons in S-matrix theory:
Derivation of charge conservation and equality of gravi-
tational and inertial mass, Phys. Rev. 135, B1049 (1964).

[131] M. T. Grisaru, H. N. Pendleton, and P. van Nieuwenhuizen,
Supergravity and the S matrix, Phys. Rev. D 15, 996
(1977).

[132] C. Aragone and S. Deser, Consistency problems of hyper-
gravity, Phys. Lett. B 86, 161 (1979).

[133] S. Weinberg and E. Witten, Limits on massless particles,
Phys. Lett. B 96, 59 (1980).

[134] M. Porrati, Universal limits on massless high-spin par-
ticles, Phys. Rev. D 78, 065016 (2008).

[135] X. Bekaert, N. Boulanger, A. Campoleoni, M. Chiodaroli,
D. Francia, M. Grigoriev, E. Sezgin, and E. Skvortsov,
Snowmass white paper: Higher spin gravity and higher
spin symmetry, arXiv:2205.01567.

[136] A. Campoleoni, D. Francia, and C. Heissenberg, On
higher-spin supertranslations and superrotations, J. High
Energy Phys. 05 (2017) 120.

[137] A. Campoleoni, D. Francia, and C. Heissenberg, Asymp-
totic charges at null infinity in any dimension, Universe 4,
47 (2018).

[138] C. Heissenberg, Topics in asymptotic symmetries and
infrared effects, Ph.D. thesis, Scuola Normale Superiore,
Pisa, 2019.

[139] A. Campoleoni, D. Francia, and C. Heissenberg, On
asymptotic symmetries in higher dimensions for any spin,
J. High Energy Phys. 12 (2020) 129.

[140] R. R. Metsaev, Poincare invariant dynamics of massless
higher spins: Fourth order analysis on mass shell, Mod.
Phys. Lett. A 06, 359 (1991).

[141] R. R. Metsaev, S matrix approach to massless higher spins
theory. 2: The case of internal symmetry, Mod. Phys. Lett.
A 06, 2411 (1991).

[142] D. Ponomarev and E. D. Skvortsov, Light-front higher-
spin theories in flat space, J. Phys. A 50, 095401 (2017).

[143] E. D. Skvortsov, T. Tran, and M. Tsulaia, Quantum Chiral
Higher Spin Gravity, Phys. Rev. Lett. 121, 031601 (2018).

[144] E. Skvortsov, T. Tran, and M. Tsulaia, More on quantum
chiral higher spin gravity, Phys. Rev. D 101, 106001
(2020).

[145] K. Krasnov, E. Skvortsov, and T. Tran, Actions for self-
dual higher spin gravities, J. High Energy Phys. 08 (2021)
076.

[146] Y. Herfray, K. Krasnov, and E. Skvortsov, Higher-spin self-
dual Yang-Mills and gravity from the twistor space, J. High
Energy Phys. 01 (2023) 158.

[147] L. Ren, M. Spradlin, A. Yelleshpur Srikant, and A.
Volovich, On effective field theories with celestial duals,
J. High Energy Phys. 08 (2022) 251.

[148] R. Monteiro, From Moyal deformations to chiral higher-
spin theories and to celestial algebras, J. High Energy
Phys. 03 (2023) 062.

[149] T. Adamo and T. Tran, Higher-spin Yang-Mills, ampli-
tudes and self-duality, arXiv:2210.07130.

[150] T. Tran, Constraining higher-spin S-matrices, J. High
Energy Phys. 02 (2023) 001.

[151] A. Strominger, On BMS invariance of gravitational scat-
tering, J. High Energy Phys. 07 (2014) 152.

[152] M. Abramowitz and I. A. Stegun, Handbook of Math-
ematical Functions with Formulas, Graphs, and Math-
ematical Tables (Dover, New York, 1964).

[153] W.-B. Liu and J. Long, Symmetry group at future null
infinity I: Scalar theory, arXiv:2210.00516.

[154] J. M. Henn and J. C. Plefka, Scattering Amplitudes in
Gauge Theories (Springer, Berlin, 2014), Vol. 883.

[155] V. Lysov, S. Pasterski, and A. Strominger, Low’s Sub-
leading Soft Theorem as a Symmetry of QED, Phys. Rev.
Lett. 113, 111601 (2014).

[156] A. Strominger, Magnetic Corrections to the Soft Photon
Theorem, Phys. Rev. Lett. 116, 031602 (2016).

[157] D. Kapec, M. Pate, and A. Strominger, New symmetries of
QED, Adv. Theor. Math. Phys. 21, 1769 (2017).

[158] L. Donnay and R. Ruzziconi, BMS flux algebra in celestial
holography, J. High Energy Phys. 11 (2021) 040.

[159] L. Donnay, K. Nguyen, and R. Ruzziconi, Loop-corrected
subleading soft theorem and the celestial stress tensor, J.
High Energy Phys. 09 (2022) 063.

[160] G. Barnich and R. Ruzziconi, Coadjoint representation of
the BMS group on celestial Riemann surfaces, J. High
Energy Phys. 06 (2021) 079.

[161] G. Barnich, Centrally extended BMS4 Lie algebroid, J.
High Energy Phys. 06 (2017) 007.

[162] G. Barnich and C. Troessaert, Symmetries of Asymptoti-
cally Flat 4 Dimensional Spacetimes at Null Infinity
Revisited, Phys. Rev. Lett. 105, 111103 (2010).

[163] G. Barnich and C. Troessaert, Supertranslations call for
superrotations, Proc. Sci. CNCFG2010 (2010) 010
[arXiv:1102.4632]; Supertranslations call for superrota-
tions, Ann. U. Craiova Phys. 21, S11 (2011).

[164] G. Compère, A. Fiorucci, and R. Ruzziconi, Superboost
transitions, refraction memory and super-Lorentz charge
algebra, J. High Energy Phys. 11 (2018) 200.

[165] M. Campiglia and J. Peraza, Generalized BMS charge
algebra, Phys. Rev. D 101, 104039 (2020).

[166] L. Freidel and D. Pranzetti, Gravity from symmetry:
Duality and impulsive waves, J. High Energy Phys. 04
(2022) 125.

[167] E. Newman and R. Penrose, An approach to gravitational
radiation by a method of spin coefficients, J. Math. Phys.
(N.Y.) 3, 566 (1962).

[168] E. T. Newman and T.W. J. Unti, Behavior of asymptotically
flat empty spaces, J. Math. Phys. (N.Y.) 3, 891 (1962).

[169] M. Campiglia and A. Laddha, BMS algebra, double soft
theorems, and all that, arXiv:2106.14717.

[170] D. Kapec, V. Lysov, S. Pasterski, and A. Strominger,
Semiclassical Virasoro symmetry of the quantum gravity
S-matrix, J. High Energy Phys. 08 (2014) 058.

[171] S. Pasterski, A comment on loop corrections to the celestial
stress tensor, J. High Energy Phys. 01 (2023) 025.

[172] G. Compère and J. Long, Vacua of the gravitational field, J.
High Energy Phys. 07 (2016) 137.

[173] R. Geroch, Asymptotic structure of space-time, in Asymp-
totic Structure of Space-Time, edited by F. P. Esposito and
L. Witten (Plenum Press, New York, 1977), p. 1.

[174] K. Nguyen, Schwarzian transformations at null infinity,
Proc. Sci. CORFU2021 (2022) 133 [arXiv:2201.09640].

BRIDGING CARROLLIAN AND CELESTIAL HOLOGRAPHY PHYS. REV. D 107, 126027 (2023)

126027-51

https://doi.org/10.1103/PhysRev.135.B1049
https://doi.org/10.1103/PhysRevD.15.996
https://doi.org/10.1103/PhysRevD.15.996
https://doi.org/10.1016/0370-2693(79)90808-6
https://doi.org/10.1016/0370-2693(80)90212-9
https://doi.org/10.1103/PhysRevD.78.065016
https://arXiv.org/abs/2205.01567
https://doi.org/10.1007/JHEP05(2017)120
https://doi.org/10.1007/JHEP05(2017)120
https://doi.org/10.3390/universe4030047
https://doi.org/10.3390/universe4030047
https://doi.org/10.1007/JHEP12(2020)129
https://doi.org/10.1142/S0217732391000348
https://doi.org/10.1142/S0217732391000348
https://doi.org/10.1142/S0217732391002839
https://doi.org/10.1142/S0217732391002839
https://doi.org/10.1088/1751-8121/aa56e7
https://doi.org/10.1103/PhysRevLett.121.031601
https://doi.org/10.1103/PhysRevD.101.106001
https://doi.org/10.1103/PhysRevD.101.106001
https://doi.org/10.1007/JHEP08(2021)076
https://doi.org/10.1007/JHEP08(2021)076
https://doi.org/10.1007/JHEP01(2023)158
https://doi.org/10.1007/JHEP01(2023)158
https://doi.org/10.1007/JHEP08(2022)251
https://doi.org/10.1007/JHEP03(2023)062
https://doi.org/10.1007/JHEP03(2023)062
https://arXiv.org/abs/2210.07130
https://doi.org/10.1007/JHEP02(2023)001
https://doi.org/10.1007/JHEP02(2023)001
https://doi.org/10.1007/JHEP07(2014)152
https://arXiv.org/abs/2210.00516
https://doi.org/10.1103/PhysRevLett.113.111601
https://doi.org/10.1103/PhysRevLett.113.111601
https://doi.org/10.1103/PhysRevLett.116.031602
https://doi.org/10.4310/ATMP.2017.v21.n7.a7
https://doi.org/10.1007/JHEP11(2021)040
https://doi.org/10.1007/JHEP09(2022)063
https://doi.org/10.1007/JHEP09(2022)063
https://doi.org/10.1007/JHEP06(2021)079
https://doi.org/10.1007/JHEP06(2021)079
https://doi.org/10.1007/JHEP06(2017)007
https://doi.org/10.1007/JHEP06(2017)007
https://doi.org/10.1103/PhysRevLett.105.111103
https://doi.org/10.22323/1.127.0010
https://arXiv.org/abs/1102.4632
https://doi.org/10.1007/JHEP11(2018)200
https://doi.org/10.1103/PhysRevD.101.104039
https://doi.org/10.1007/JHEP04(2022)125
https://doi.org/10.1007/JHEP04(2022)125
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1724303
https://arXiv.org/abs/2106.14717
https://doi.org/10.1007/JHEP08(2014)058
https://doi.org/10.1007/JHEP01(2023)025
https://doi.org/10.1007/JHEP07(2016)137
https://doi.org/10.1007/JHEP07(2016)137
https://doi.org/10.22323/1.406.0133
https://arXiv.org/abs/2201.09640


[175] G. Barnich, A. Fiorucci, and R. Ruzziconi, Charge algebra
for non-Hamiltonian symmetries (to be published).

[176] C. Troessaert, Hamiltonian surface charges using external
sources, J. Math. Phys. (N.Y.) 57, 053507 (2016).

[177] W. Wieland, Null infinity as an open Hamiltonian system,
J. High Energy Phys. 04 (2021) 095.

[178] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
Generalized global symmetries, J. High Energy Phys. 02
(2015) 172.

[179] G. Compere and D. Marolf, Setting the boundary free in
AdS=CFT, Classical Quantum Gravity 25, 195014 (2008).

[180] M. Henneaux, Geometry of zero signature space-times,
Bull. Soc. Math. Belg. 31, 47 (1979).

[181] A. Ashtekar, Geometry and physics of null infinity,
arXiv:1409.1800.

[182] C. Duval, G. W. Gibbons, and P. A. Horvathy, Conformal
Carroll groups, J. Phys. A 47, 335204 (2014).

[183] X. Bekaert and K. Morand, Connections and dynamical
trajectories in generalised Newton-Cartan gravity II. An
ambient perspective, J. Math. Phys. (N.Y.) 59, 072503
(2018).

[184] K. Morand, Embedding Galilean and Carrollian geom-
etries I. Gravitational waves, J. Math. Phys. (N.Y.) 61,
082502 (2020).

[185] L. Ciambelli, R. G. Leigh, C. Marteau, and P. M.
Petropoulos, Carroll structures, null geometry and con-
formal isometries, Phys. Rev. D 100, 046010 (2019).

[186] J. Figueroa-O’Farrill, R. Grassie, and S. Prohazka, Geom-
etry and BMS Lie algebras of spatially isotropic homo-
geneous spacetimes, J. High Energy Phys. 08 (2019) 119.

[187] Y. Herfray, Asymptotic shear and the intrinsic conformal
geometry of null-infinity, J. Math. Phys. (N.Y.) 61, 072502
(2020).

[188] Y. Herfray, Tractor geometry of asymptotically flat space-
times, Ann. Henri Poincaré 23, 3265 (2022).
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