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We apply a suitable replica technique to develop a perturbative expression for the entanglement
negativity of bipartite mixed states in TT̄-deformed CFT2s up to the first order in the deformation
parameter. Utilizing our perturbative construction we compute the entanglement negativity for various
bipartite mixed states involving two disjoint intervals, two adjacent intervals, and a single interval in a
TT̄-deformed CFT2 at a finite temperature, in the large central-charge limit. Subsequently, we advance
appropriate holographic constructions to compute the entanglement negativity for such bipartite states in
TT̄-deformed thermal CFT2s dual to BTZ black holes in a finite cutoff bulk geometry and find agreement
with the corresponding field theoretic results in the limit of small deformation parameter.
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I. INTRODUCTION

Over the past three decades, diverse areas of physics
ranging from quantum many body systems in condensed
matter to quantum gravity and black holes, have seen
tremendous progress with the toolbox of quantum entangle-
ment. For bipartite pure states, the entanglement entropy,
defined as the von-Neumann entropy of the corresponding
reduced density matrix, correctly captures the entanglement
structure. On the other hand, for bipartite mixed states or
tripartite pure states, entanglement entropy fails to be a
viable measure of the entanglement structure due to con-
tributions from irrelevant classical and quantum correla-
tions. To address this significant issue, various other
measures for bipartite mixed-state entanglement have been
introduced in the literature. Among these, a computable
entanglementmonotone termed the entanglement negativity
was introduced in the seminal work [1]. This nonconvex [2]
entanglement measure serves as an upper bound on the
distillable entanglement for a given mixed state.
Although the calculation of these entanglement measures

in extended many-body systems is in general computa-
tionally challenging, remarkably in (1þ 1)-dimensional
conformal field theories (CFT2s) the entanglement entropy
for bipartite pure states may be explicitly computed
utilizing a novel replica technique [3–5]. Interestingly, a
similar replica technique to compute the entanglement
negativity for various bipartite mixed states in CFT2s
was introduced in [6–8].
With the advance of the holographic correspondence [9],

there has been intense focus on the holographic

characterization of the entanglement structure in conformal
field theories with large central charge and a sparse
spectrum which are dual to bulk anti–de Sitter (AdS)
geometries. Such advent was pioneered by the celebrated
Ryu-Takayanagi formula [10] which states that the entan-
glement entropy of a subsystem in a CFTd is given by the
area of a codimension-two minimal spacelike surface in the
bulk dual AdSdþ1 geometry, homologous to the subsystem
under consideration. Furthermore, a covariant generaliza-
tion of this formula was proposed in [11]. These proposals
were proved in a series of subsequent interesting commu-
nications [12–15]. With these developments in character-
izing the pure state entanglement, the authors in [16–25]
explored several holographic constructions1 for character-
izing the mixed state entanglement structure through the
entanglement negativity,2 which reproduced the field theo-
retic results [32,33] in the large central-charge limit.
Interestingly, these geometric constructions were substan-
tiated through the consideration of a replica symmetry-
breaking saddle to the bulk gravitational path integral for
the replica partition function in [34,35].
In a separate context, Zamolodchikov showed in a seminal

work [36] that CFT2s deformed by the determinant of the
stress-energy tensor have a solvable structure in the sense
that the energy spectrum and the partition function may be
determined exactly. This particular class of irrelevant defor-
mations is generally termed as the TT̄-deformations. The UV
structure of such theories are nonlocal and there are an
infinite number of possible RG flows to the same fixed point.
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1For analogues of these proposals in the context of flat
holography, see [26].

2Note that, in [27–31], an alternative holographic proposal
based on the bulk entanglement wedge cross section was also
investigated.
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Furthermore, a holographic dual for such theories which
alter the UV physics must be different from asymptotically
AdS geometries which correspond to UV fixed points i.e.,
CFTs. A particularly simple description for a holographic
dual was provided in [37] which change the asymptotics of
the dual AdS spacetime by putting a finite cutoff radius. This
proposal has passed several tests including the matching of
the bulk and boundary two-point function, the energy
spectrum and the partition function [37]. For further develop-
ments in this direction, see [38–46]. The entanglement
entropy for bipartite pure states in different TT̄-deformed
CFTs has been investigated in [47–56]. While the holo-
graphic entanglement entropy may be exactly computed via
the Ryu-Takayanagi formula, for the field theoretic compu-
tations one needs to resort to conformal perturbation theory
[51]. Furthermore, in [57], a total correlation measure for
bipartite mixed states known as the reflected entropy [58,59]
and the corresponding holographic dual, namely the minimal
entanglement wedge cross-section (EWCS) [60,61] were
investigated.
The above developments bring into sharp focus the

outstanding issue of characterizing the mixed-state entan-
glement structure in such TT̄-deformed CFTs. In this
article, we address this issue by studying the entanglement
negativity for various bipartite mixed states in TT̄-
deformed CFT2s. Motivated by [49,51], we advance a
suitable replica technique and subsequently a conformal
perturbation theory for computing the entanglement neg-
ativity in TT̄-deformed CFT2s. Following this, we compute
the entanglement negativity for two disjoint, two adjacent
and a single interval in a thermal CFT2 deformed by the TT̄
operator. Furthermore, we utilize the holographic construc-
tions in [18–20] to reproduce these field theoretic results in
the large central-charge limit. We would like to emphasize
that the study of mixed state entanglement in TT̄-deformed
CFTs investigated in the present work provide interesting
insights on the entanglement structure of UV nonlocal
theories and information theoretic aspects of the RG group.
The rest of the article is organized as follows. In Sec. II,

we review the basic features of TT̄-deformed conformal
field theories, the quantum information theoretic definition
of the entanglement negativity and the corresponding
replica technique in CFT2s. Following this, in Sec. III,
we develop an appropriate replica technique to compute the
entanglement negativity for various bipartite states in a
CFT2 with TT̄-deformation. Utilizing this replica tech-
nique, we subsequently compute the entanglement nega-
tivity for the mixed state configurations of two disjoint, two
adjacent and a single interval in a TT̄-deformed CFT at a
finite temperature defined on a temporally compactified
cylinder. The holographic characterization of the entangle-
ment negativity for such mixed states forms the subject
matter of Sec. IV. In the Appendix, the technical details are
collected. Finally, in Sec. V, we provide a summary of our
results and present a discussion of the future open issues.

II. REVIEW OF EARLIER LITERATURE

A. TT̄-deformation in a CFT2

In this subsection we briefly review the salient features
of two-dimensional conformal field theory deformed by the
insertion of the following double-trace operator into the
undeformed Lagrangian [36]

hTT̄i ¼ 1

8
ðhTabihTabi − hTa

ai2Þ: ð2:1Þ

This composite operator, satisfying the factorization prop-
erty [36], is called the TT̄ operator and correspondingly the
deformed CFT is termed a TT̄-deformed CFT. The TT̄
deformation of a CFT2 defines a one parameter family of
theories characterized by a deformation parameter μð≥ 0Þ
having the dimensions of length squared. The deformed
theory is described by the flow equation [36,49,51]

dSðμÞQFT

dμ
¼

Z
d2xðTT̄Þμ; SðμÞQFTjμ¼0 ¼ SCFT; ð2:2Þ

where SðμÞQFT and SCFT are the actions of the deformed and
undeformed theories respectively. The energy spectrum of a
TT̄-deformed CFT2 is exactly solvable [62,63].
Perturbatively, for a small deformation parameter μ, the

action of the deformed CFT may be written as [49,51]

SðμÞQFT ¼ SCFT þ μ

Z
d2x ðTT̄Þμ¼0

¼ SCFT þ μ

Z
d2xðTT̄ − Θ2Þ; ð2:3Þ

where T ≡ Tww, T̄ ≡ Tw̄ w̄ andΘ≡ Tww̄ are the components
of the undeformed energy momentum tensor expressed in
the complex coordinates ðw; w̄Þ. In this manuscript, we
always consider the deformed CFT on a cylinder for which
the expectation value of Θ vanishes and hence we may
omit theΘ2 term entirely [49]. A holographic description of
TT̄-deformedCFTswas given in [37], for which the relevant
discussions are deferred until Sec. IV.

B. Entanglement negativity in CFT2s

In this article, we will focus on a computable mixed state
entanglement measure termed the entanglement negativity
introduced in [1]. This nonconvex entanglement mono-
tone [2] provides an upper bound to the distillable entan-
glement. For a bipartite mixed state ρAB ∈ HA ⊗ HB, the
logarithmic entanglement negativity between subsystems A
and B is defined as the natural logarithm of the trace norm
of the density matrix partially transposed with respect to the
subsystem B as

EðA∶BÞ ≔ log jjρTB
ABjj; ð2:4Þ
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where for an arbitrary hermitian matrixM the trace norm is
defined as jjMjj ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffi
MM†

p
and the partially transposed

density matrix ρTB
AB is defined through the following

operation

hiA; jBjρTB
ABjkA; lBi ¼ hiA; lBjρABjkA; jBi; ð2:5Þ

with fiAg and fjBg representing orthogonal bases for the
Hilbert spaces HA and HB, respectively.
A replica technique to compute the entanglement neg-

ativity for bipartite states in a CFT2 was developed in [6–8],
where one considers ne ∈ 2Zþ copies of the original
manifold M, with branch cuts along the subsystems A
and B. Finally, the entanglement negativity for the bipartite
state ρAB is obtained by considering the even analytic
continuation ne → 1 of the replica index as follows:

EðA∶BÞ ¼ lim
ne→1

EðneÞðA∶BÞ≡ lim
ne→1

log TrðρTB
ABÞne : ð2:6Þ

The Riemann surface computing the path integral for the
trace in Eq. (2.6) is prepared via a particular gluing of the
individual copies where the branch cuts along A are sewed
cyclically while those along B are sewed anticyclically.
The partition function on this replica manifold computes
the Renyi entanglement negativity EðneÞ. Utilizing the
replica technique, the entanglement negativity between
two subsystems A and B in M may be expressed in terms
of the logarithm of the (normalized) partition function on
the ne sheeted Riemann surface as follows [6–8]:

EðA∶BÞ ¼ lim
ne→1

log
Z½Mne �
ðZ½M�Þne ; ð2:7Þ

whereMne denotes the ne sheeted Riemann surface glued
cyclically along A and anticyclically along B. In a CFT2,
the partition function in Eq. (2.7) may be recast in terms of
various correlation functions of twist operators placed at
the endpoints of the subsystems A and B in the orbifold
theory M̃ne ≡Mne=Zne obtained by quotienting via the
replica Zne symmetry [6–8]. For example, in the case of
two disjoint intervals A ¼ ½z1; z2� and B ¼ ½z3; z4� in the
vacuum state of a CFT2, the entanglement negativity
between A and B may be expressed as [6,7]

E ¼ lim
ne→1

log hσneðz1Þσ̄neðz2Þσ̄neðz3Þσneðz4ÞiM̃ne
; ð2:8Þ

where σne and σ̄ne are the twist and antitwist fields
respectively. These are primary operators in the CFT2

with conformal dimensions

hne ¼ h̄ne ¼
c
24

�
ne −

1

ne

�
: ð2:9Þ

III. ENTANGLEMENT NEGATIVITY
IN TT̄-DEFORMED CFT2

In this section, we devise a suitable replica technique to
compute the entanglement negativity for various bipartite
mixed states in a CFT2 perturbed by the TT̄ operator. We
utilize the twist-operator formalism to compute the corre-
lation function on the ne-sheeted (with ne even) Riemann
surface in the replica method.
Consider a TT̄-deformed CFT2 living on some manifold

M. We are concerned with calculating the entanglement
negativity for bipartite mixed states consisting of two
spatial intervals A and B. The ne-sheeted Riemann surface
Mne is obtained by joining ne copies of the manifold M,
cyclically along A and anticyclically along B. The partition
function of the deformed theory may be written in the path
integral representation as follows:

Z½Mne � ¼
Z
Mne

Dϕ e−S
ðμÞ
QFT½ϕ�; ð3:1Þ

where SðμÞQFT is the action for the TT̄-deformed CFT. For the
case with a small deformation parameter in Eq. (2.3) we
may obtain the entanglement negativity from Eq. (2.7) as

EðμÞðA∶BÞ ¼ lim
ne→1

log

2
64
R
Mne

Dϕe
−SCFT−μ

R
Mne

ðTT̄Þ

ðRMDϕe−SCFT−μ
R
M
ðTT̄ÞÞne

3
75; ð3:2Þ

where the superscript μ indicates that we are working with a
deformed CFT2. Since the deformation parameter μ is
small, we may further expand the exponential in terms of μ,
to obtain

EðμÞðA∶BÞ

¼ lim
ne→1

log

�R
Mne

Dϕe−SCFTð1 − μ
R
Mne

ðTT̄Þ þOðμ2ÞÞ
½RM Dϕe−SCFTð1 − μ

R
MðTT̄Þ þOðμ2ÞÞ�ne

�
;

ð3:3Þ

¼ ECFTðA∶BÞ þ lim
ne→1

log

�ð1 − μ
R
Mne

hTT̄iMne
Þ

ð1 − μ
R
M hTT̄iMÞne

�
: ð3:4Þ

Here ECFTðA∶BÞ is the entanglement negativity of the
bipartite quantum state ρAB in a CFT2 and the expectation
value of the TT̄ operator on the manifold M is defined as
(similarly on Mne),

hTT̄iM ¼
R
MDϕe−SCFTðTT̄ÞR

M Dϕe−SCFT
: ð3:5Þ

Therefore, the first-order correction in the entanglement
negativity of CFT2 due to the deformation by the TT̄
operator is given by
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δEðA∶BÞ ¼ −μ lim
ne→1

�Z
Mne

hTT̄iMne
− ne

Z
M

hTT̄iM
�
:

ð3:6Þ

In this article, we consider the deformed CFT2 in an excited
state at finite temperature 1=β and the manifold M is an
infinitely long cylinder whose Euclidean time direction is
compactified with the circumference β. We set up
the complex coordinates w ¼ xþ iτ and w̄ ¼ x − iτ on
the cylinderM, where x ∈ ð−∞;∞Þ and τ ∈ ð0; βÞwith the
periodic identification τ ∼ τ þ β. The cylinder is described
by the following conformal map from a complex plane C,

z ¼ e
2πw
β ; z̄ ¼ e

2πw̄
β ; ð3:7Þ

where ðz; z̄Þ are the coordinates on the complex plane.
Under this map, the energy momentum tensors transform as
follows:

TðwÞ ¼ TðzÞ − π2c
6β2

; T̄ðw̄Þ ¼ T̄ðz̄Þ − π2c
6β2

: ð3:8Þ

Since for the vacuum state of a CFT2 described at the
complex plane, hTðzÞiC ¼ hT̄ðz̄ÞiC ¼ 0, we obtain

hTðwÞT̄ðw̄ÞiM ¼
�
π2c
6β2

�
2

: ð3:9Þ

A. Two disjoint intervals

In this subsection we calculate the first-order correction
in the entanglement negativity for a bipartite mixed state
comprised of two disjoint spatial intervals A ¼ ½x1; x2� and
B ¼ ½x3; x4� in a finite temperature TT̄-deformed CFT2.
Consider a CFT2 living on the cylindrical manifoldMwith
temperature 1=β, perturbed by TT̄- deformation. To com-
pute the entanglement negativity in the mixed state ρAB
defined in a TT̄-deformed CFT2, we need to determine the
expectation value of the TT̄ operator. On the Riemann
surface Mne (cf. Fig. 1), the value of hTT̄iMne

may be

obtained from inserting the TT̄ operator into the correlation
function of the twist operators located at the end points of
intervals A and B as follows [3,5]:

Z
Mne

hTT̄iMne
¼

Xne
k¼1

Z
M

hTkðwÞT̄kðw̄Þσneðw1; w̄1Þσ̄neðw2; w̄2Þσ̄neðw3; w̄3Þσneðw4; w̄4ÞiM
hσneðw1; w̄1Þσ̄neðw2; w̄2Þσ̄neðw3; w̄3Þσneðw4; w̄4ÞiM

¼
Z
M

1

ne

hTðneÞðwÞT̄ðneÞðw̄Þσneðw1; w̄1Þσ̄neðw2; w̄2Þσ̄neðw3; w̄3Þσneðw4; w̄4ÞiM
hσneðw1; w̄1Þσ̄neðw2; w̄2Þσ̄neðw3; w̄3Þσneðw4; w̄4ÞiM

: ð3:10Þ

In the above expression, TkðwÞ represents the stress energy tensor corresponding to the undeformed CFT2 living on the kth
sheet of the replica manifold Mne , and σne ; σ̄ne are the twist operators that are inserted at the endpoints wi of the intervals
[3,5]. Note that in the second line of the above expression, TðneÞ is the energy-momentum tensor on the ne-sheeted Riemann
surface Mne and we have utilized an identity described in [51] to arrive at the second line. To proceed, we transform the
energy momentum tensor defined on the cylindrical manifold to the complex plane through Eq. (3.8) and apply the
following Ward identities [64]:

hTðneÞðzÞO1ðz1; z̄1Þ…Omðzm; z̄mÞiC ¼
Xm
j¼1

�
hj

ðz − zjÞ2
þ 1

ðz − zjÞ
∂zj

�
hO1ðz1; z̄1Þ…Omðzm; z̄mÞiC;

hT̄ðneÞðz̄ÞO1ðz1; z̄1Þ…Omðzm; z̄mÞiC ¼
Xm
j¼1

�
h̄j

ðz̄ − z̄jÞ2
þ 1

ðz̄ − z̄jÞ
∂z̄j

�
hO1ðz1; z̄1Þ…Omðzm; z̄mÞiC; ð3:11Þ

where Oi are primary operators with conformal dimensions ðhi; h̄iÞ.

FIG. 1. Schematics of the replica manifold computing the path
integral for the entanglement negativity of two disjoint intervals A
and B in a TT̄-deformed CFT2. Figure modified from [7].
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The expectation value in Eq. (3.10) may therefore be rewritten as

Z
Mne

hTT̄iMne
¼ 1

ne

Z
M

1

hσneðz1; z̄1Þσ̄neðz2; z̄2Þσ̄neðz3; z̄3Þσneðz4; z̄4ÞiC

�
−
π2cne
6β2

þ
�
2π

β
z

�
2X4
j¼1

� cðne− 1
ne
Þ

24ðz− zjÞ2
þ 1

ðz− zjÞ
∂zj

��

×

�
−
π2cne
6β2

þ
�
2π

β
z̄

�
2X4
k¼1

� cðne− 1
ne
Þ

24ðz̄− z̄kÞ2
þ 1

ðz̄− z̄kÞ
∂z̄k

��
hσneðz1; z̄1Þσ̄neðz2; z̄2Þσ̄neðz3; z̄3Þσneðz4; z̄4ÞiC:

ð3:12Þ

In the t-channel, where the two disjoint intervals are in proximity, the four-point function of twist operators in Eq. (3.12) is
given by [32,33]

hσneðz1; z̄1Þσ̄neðz2; z̄2Þσ̄neðz3; z̄3Þσneðz4; z̄4ÞiC ≈ ð1 − ηÞhð2Þne ð1 − η̄Þh̄ð2Þne : ð3:13Þ

The cross ratio η is defined as η ≔ z12z34
z13z24

with zij ¼ ðzi − zjÞ. Now substituting Eq. (3.9) and Eq. (3.12) into Eq. (3.6) and
subsequently utilizing Eq. (3.13) we obtain the first-order correction in the entanglement negativity of two disjoint intervals
due to the deformation by TT̄ operator as follows:

δEðA∶BÞ ¼ −
μc2π4

β4

Z
M

�
−

1

12

�
z2z12z34

ðz − z1Þðz − z2Þðz − z3Þðz − z4Þ
þ z̄2z̄12z̄34
ðz̄ − z̄1Þðz̄ − z̄2Þðz̄ − z̄3Þðz̄ − z̄4Þ

�

þ 1

4

�
z2z12z34

ðz − z1Þðz − z2Þðz − z3Þðz − z4Þ
��

z̄2z̄12z̄34
ðz̄ − z̄1Þðz̄ − z̄2Þðz̄ − z̄3Þðz̄ − z̄4Þ

��
: ð3:14Þ

The definite integrals in Eq. (3.14) are evaluated explicitly in the Appendix. Utilizing these results, we obtain

δEðA∶BÞ ¼ −
μc2π3

24β2

��
z1
z13

log

�
z1
z3

�
−

z1
z14

log

�
z1
z4

�
−

z2
z23

log

�
z2
z3

�
þ z2
z24

log

�
z2
z4

��
þ H:c:

�
þ δEcross

¼ −
μc2π4

12β3

�
x31 coth

�
πx31
β

�
þ x42 coth

�
πx42
β

�
− x41 coth

�
πx41
β

�
− x32 coth

�
πx32
β

��
þ δEcross: ð3:15Þ

In the second line we have used zi ¼ z̄i ¼ e
2πxi
β with τi ¼ 0. Note that the additional term δEcross originates from the crossing

correlation of the holomorphic and the antiholomorphic sector in the integration. For two disjoint intervals in proximity, this
crossing term is found to be vanishingly small (cf. Appendix) and hence may be neglected in the leading order.

B. Two adjacent intervals

In this subsection, we will compute δEðA∶BÞ for a bipartite mixed state of two adjacent intervals A ∪ B ¼ ½x1; x2� ∪
½x2; x3� in a thermal TT̄-deformed CFT2. The computation of the expectation value of the composite operator hTT̄iMne

for
the mixed state with two adjacent intervals follows closely from the case of two disjoint intervals:

Z
Mne

hTT̄iMne
¼

Z
M

1

ne

hTðneÞðwÞT̄ðneÞðw̄Þσneðw1; w̄1Þσ̄2neðw2; w̄2Þσneðw3; w̄3ÞiM
hσneðw1; w̄1Þσ̄2neðw2; w̄2Þσneðw3; w̄3ÞiM

: ð3:16Þ

Now, we utilize the conformal transformation specified in Eq. (3.8) to transform the energy momentum tensor on the
complex plane and employ the Ward identities Eq. (3.11) to obtain,
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Z
Mne

hTT̄iMne
¼ 1

ne

Z
M

1

hσneðz1; z̄1Þσ̄2neðz2; z̄2Þσneðz3; z̄3ÞiC

�
−
π2c ne
6β2

þ
�
2πz
β

�
2X3
j¼1

�
hj

ðz − zjÞ2
þ 1

ðz − zjÞ
∂zj

��

×

�
−
π2c ne
6β2

þ
�
2πz̄
β

�
2X3
k¼1

�
h̄k

ðz̄ − z̄kÞ2
þ 1

ðz̄ − z̄kÞ
∂z̄k

��
hσneðz1; z̄1Þσ̄2neðz2; z̄2Þσneðz3; z̄3ÞiC: ð3:17Þ

Here ðhj; h̄jÞ refer to the conformal dimensions of twist operator inserted at ðzj; z̄jÞ. The three-point function of twist
operators in the above expression is given by [64]

hσneðz1; z̄1Þσ̄2neðz2; z̄2Þσneðz3; z̄3ÞiC ¼
Cσne σ̄2neσne

z
hð2Þne
12 z

hð2Þne
23 z

2hne−h
ð2Þ
ne

13 z̄
h̄ð2Þne
12 z̄

h̄ð2Þne
23 z̄

2h̄ne−h̄
ð2Þ
ne

13

; ð3:18Þ

where Cσne σ̄2neσne is the operator product expansion (OPE) coefficient. Substituting Eqs. (3.17) and (3.9) into Eq. (3.6), and
utilizing Eq. (3.18) we obtain the first-order correction to the entanglement negativity for two adjacent intervals as follows:

δEðA∶BÞ ¼ −
μc2π4

β4

Z
M

�
−

1

12

�
z2z12z23

ðz − z1Þðz − z2Þ2ðz − z3Þ
þ z̄2z̄12z̄23
ðz̄ − z̄1Þðz̄ − z̄2Þ2ðz̄ − z̄3Þ

�

þ 1

4

�
z2z12z23

ðz − z1Þðz − z2Þ2ðz − z3Þ
��

z̄2z̄12z̄23
ðz̄ − z̄1Þðz̄ − z̄2Þ2ðz̄ − z̄3Þ

��
: ð3:19Þ

Once again, we leave the technical details of the integrations in Eq. (3.19) in the Appendix. The correction to the
entanglement negativity is then given by

δEðA∶BÞ ¼ −
μc2π3

24β2

��
z1z23
z12z13

log

�
z1
z2

�
þ z12z3
z13z23

log

�
z2
z3

��
þ H:c:

�
þ δEcross

¼ −
μc2π4

12β3

�
x21 coth

�
πx21
β

�
þ x32 coth

�
πx32
β

�
− x31 coth

�
πx31
β

��
þ δEcross: ð3:20Þ

We expect the crossing term δEcross to vanish similar to the case of two disjoint intervals.

C. A single interval

To compute the entanglement negativity for a single interval A ¼ ½−l; 0� in a TT̄-deformed CFT2 at finite temperature,
we follow the prescription in [8] and introduce two large auxiliary intervals B1 ¼ ½−L;−l� and B2 ¼ ½0; L� sandwiching the
interval A. The correct entanglement negativity for the mixed state of the single interval A is then obtained by taking the
bipartite limit L → ∞ subsequent to the replica limit.
Under the TT̄ deformation, the expectation value of the composite TT̄ operator for the single interval is

obtained as

Z
Mne

hTT̄iMne
¼

Z
M

1

ne

hTðneÞðwÞT̄ðneÞðw̄Þσneðw1; w̄1Þσ̄2neðw2; w̄2Þσ2neðw3; w̄3Þσ̄neðw4; w̄4Þi
hσneðw1; w̄1Þσ̄2neðw2; w̄2Þσ2neðw3; w̄3Þσ̄neðw4; w̄4Þi

: ð3:21Þ

Note that here we have kept the coordinates of the endpoints generic in the correlation function and the specific
configuration involving the desired single interval will be considered towards the end of our discussion. Using the
transformation of the energy momentum tensor from Eq. (3.8) and the Ward identities with the energy momentum tensor
from Eq. (3.11) we may simplify Eq. (3.21) as
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Z
Mne

hTT̄iMne
¼
Z
M

1

ne

1

hσneðz1; z̄1Þσ̄2neðz2; z̄2Þσ2neðz3; z̄3Þσ̄neðz4; z̄4Þi
�
−
π2cne
6β2

þ
�
2πz
β

�
2X4
j¼1

�
hj

ðz−zjÞ2
þ 1

ðz−zjÞ
∂zj

��

×

�
−
π2cne
6β2

þ
�
2πz̄
β

�
2X4
k¼1

�
hk

ðz̄− z̄kÞ2
þ 1

ðz̄− z̄kÞ
∂z̄k

��
hσneðz1; z̄1Þσ̄2neðz2; z̄2Þσ2neðz3; z̄3Þσ̄neðz4; z̄4ÞiC: ð3:22Þ

The four point function in the above expression has the following form [8]:

hσneðz1; z̄1Þσ̄2neðz2; z̄2Þσ2neðz3; z̄3Þσ̄neðz4; z̄4Þi ¼ cnec
ð2Þ
ne

0
B@ F neðηÞ
z
2hne
14 z

2hð2Þne
23 ηh

ð2Þ
ne

1
CA
0
B@ F̄ neðη̄Þ
z̄
2h̄ne
14 z̄

2h̄ð2Þne
23 η̄h̄

ð2Þ
ne

1
CA; ð3:23Þ

with the functions F neðηÞ and F̄ neðη̄Þ obeying the following OPE limits:

F neð1ÞF̄ neð1Þ¼1; F neð0ÞF̄ neð0Þ¼
Cσne σ̄2ne σ̄ne

cð2Þne

; ð3:24Þ

where Cσne σ̄2ne σ̄ne is the OPE coefficient and cne; c
ð2Þ
ne are normalization constants. Now, we substitute Eqs. (3.22) and (3.9)

into Eq. (3.6) and use the four-point function from Eq. (3.23) to obtain,

δEðA∶BÞ ¼ −
μc2π4

β4

Z
M

�
1

12

�
z2

ðz − z2Þ2
þ z2

ðz − z3Þ2
−
�X4

j¼1

z2

ðz − zjÞ
∂zj

�
log ½z223ηfðηÞ�

�

þ 1

12

�
z̄2

ðz̄ − z̄2Þ2
þ z̄2

ðz̄ − z̄3Þ2
−
�X4

j¼1

z̄2

ðz̄ − z̄jÞ
∂z̄j

�
log ½z̄223η̄ f̄ðη̄Þ�

�

þ 1

4

�
z2

ðz − z2Þ2
þ z2

ðz − z3Þ2
−
�X4

j¼1

z2

ðz − zjÞ
∂zj

�
log ½z223ηfðηÞ�

�

×

�
z̄2

ðz̄ − z̄2Þ2
þ z̄2

ðz̄ − z̄3Þ2
−
�X4

j¼1

z̄2

ðz̄ − z̄jÞ
∂z̄j

�
log ½z̄223η̄ f̄ðη̄Þ�

��
; ð3:25Þ

where we have defined

lim
ne→1

F neðηÞ ¼ ½fðηÞ�c=8 and lim
ne→1

F̄ neðη̄Þ ¼ ½f̄ðη̄Þ�c=8:

Now we specialize to the specific configuration the single
interval of length l and subsequently take the bipartite limit
L → ∞. The first-order correction in the entanglement
negativity of a single interval in a finite-temperature CFT2

with TT̄-deformation is therefore given by

δEðA∶AcÞ ¼ −
μπ4c2l
6β3

�
−1þ coth

�
πl
β

�
− e−

2πl
β
f0ðe−2πl

β Þ
fðe−2πl

β Þ

�

þ δEcross: ð3:26Þ

Thedetails of integrations to realizeEq. (3.26) fromEq. (3.25)
can be found in theAppendix.We expect the crossing term to
vanish in a similar fashion like the earlier cases.

IV. HOLOGRAPHIC ENTANGLEMENT
NEGATIVITY

In this section, we apply the holographic construction3

for the entanglement negativity advanced in [18–20] to the
case of various bipartite mixed states in a TT̄-deformed
CFT2 defined on a thermal cylinder of circumference β. As

3Note that, an alternative proposal for the holographic entan-
glement negativity exists in the literature [27,28], which concerns
the area of a backreacting bulk cosmic brane homologous to the
EWCS. In particular for spherical entangling surfaces, the effects
of the backreaction from the cosmic brane may be captured by a
dimension dependent prefactor χd and the holographic entangle-
ment negativity is proportional to the area of the minimal EWCS,
E ¼ χdEW . However, it has been demonstrated that the area of the
said cosmic brane only agrees with the field theoretic result for
the entanglement negativity up to certain constants (possibly
related to the holographic Markov gap [65]), in the context of
AdS3=CFT2 [30] as well as flat-space holography [31].
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described in [37], the holographic dual for a TT̄-deformed
CFT2 with deformation parameter μ > 0 is given by a
portion of AdS3 geometry cutoff at a finite radius rC with

rC ¼
ffiffiffiffiffiffiffiffi
6R4

πcμ

s
¼ R2

ϵ
; ð4:1Þ

where R is the AdS3 radius, c and ϵ are the central charge
and the UV cutoff of the dual field theory.
Following the proposal in [37], the thermal CFT2 with

TT̄-deformation is dual to a BTZ black hole [66] in the
finite radius bulk geometry, with the metric

ds2 ¼ r2 − r2H
R2

dt2 þ R2

r2 − r2H
dr2 þ r2dx̃2; ð4:2Þ

where r ¼ rH is the horizon of the black hole. The
Euclidean time t is identified as t ∼ tþ β, where β ¼
2πR2

rH
is the inverse temperature of the black hole as well as

the dual CFT2. The dual TT̄-deformed CFT2 is located at
the cutoff radius rC and hence the metric of the background
manifold is conformal to the flat metric as follows [49,51]:

ds2 ¼ dt2 þ dx̃2

1 − r2H
r2C

≡ dt2 þ dx2; ð4:3Þ

where x ¼ x̃ð1 − r2H
r2C
Þ−1=2 is the spatial coordinate in

the CFT2.
In [49,51], the holographic entanglement entropy for

bipartite states in a thermal TT̄-deformed CFT2 was
investigated, where it was found that for high temperatures
the Ryu-Takayanagi formula [10] still applies in the dual
finite-radius geometry. The length of the minimal spacelike
geodesic homologous to a subsystem A ¼ ½xi; xj�

(cf. Fig. 2) in the deformed CFT2 at a temperature 1=β
was computed to be [49,51]

Lij ¼ R log ðAðxi; xjÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðxi; xjÞ2 − 1

q
Þ; ð4:4Þ

where

Aðxi; xjÞ≡ 1þ 2r2C
r2H

sinh2
�
πjxi − xjj

β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2H
r2C

s �
: ð4:5Þ

In the following, we will utilize the above geodesic
length to compute the holographic entanglement negativity
corresponding to two disjoint, two adjacent and a single
interval in a TT̄-deformed CFT2 at finite temperature.

A. Two disjoint intervals

The holographic construction for the entanglement
negativity of two disjoint intervals A and B in a CFT2

[23,34] concerns an algebraic sum of the lengths of bulk
minimal spacelike geodesics homologous to various com-
bination of subsystems as follows:

EðA∶BÞ ¼ 3

16GN
ðLA∪C þ LB∪C − LC − LA∪B∪CÞ; ð4:6Þ

where C is another interval sandwiched between A and B.
Note that the above holographic formula is valid only when
the intervals A and B are in close proximity.4

Now we apply the above holographic formula5 to the
case of two disjoint intervals A ¼ ½x1; x2� and B ¼ ½x3; x4�
in a TT̄-deformed thermal CFT2 defined on a cylinder of
circumference β. The schematic of the setup is depicted in
Fig. 3. Utilizing Eq. (4.4) in Eq. (4.6) we obtain

EðμÞðA∶BÞ ¼ 3R
16GN

log
�ðAðx1; x3Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx1; x3Þ2 − 1

p
ÞðAðx2; x4Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx2; x4Þ2 − 1

p
Þ

ðAðx2; x3Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx2; x3Þ2 − 1

p
ÞðAðx1; x4Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx1; x4Þ2 − 1

p
Þ

�
; ð4:7Þ

where the superscript indicates a finite deformation param-
eter for the dual CFT2. Note that as rC → ∞, the cutoff
radius approaches the asymptotic boundary of the AdS3
geometry and Lij in Eq. (4.4) becomes proportional to the
holographic entanglement entropy in the usual AdS3=CFT2

setting. In this limit, the above expression reduces to the
holographic entanglement negativity for two disjoint in-
tervals in a thermal CFT2, obtained in [23].
To compare with the field theory computations in

Sec. III A, we consider the limit of small deformation
parameter μ, which corresponds to a large cutoff
radius according to Eq. (4.1). Expanding Eq. (4.7) for
large rC and further considering the high-temperature
limit β ≪ xij (the dual geometry corresponds to a BTZ
black hole only in the high-temperature limit), we obtain
the entanglement negativity for the disjoint intervals as
follows:

4On the other hand, for two disjoint intervals which are far
away from each other, the holographic-entanglement negativity
vanishes identically [23,33].

5Note that, the applicability of the formula in Eq. (4.6) for a
deformed CFT2 is assumed a priori.
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EðμÞðA∶BÞ¼ 3R
8GN

log

�sinhðπx13β Þsinhðπx24β Þ
sinhðπx23β Þsinhðπx14β Þ

�

þ 3π4μR2

16β3G2
N

�
x13 coth

�
πx13
β

�
þx24 coth

�
πx24
β

�

−x23 coth

�
πx23
β

�
−x14 coth

�
πx14
β

��
: ð4:8Þ

Note that the logarithmic term in the above expression is
the holographic-entanglement negativity for two disjoint
intervals A ¼ ½x1; x2� and B ¼ ½x3; x4� in an undeformed
holographic CFT2 [20]. On the other hand, the second
term proportional to μ indicates the effects of the TT̄
deformation which, upon using the holographic diction-
ary in Eq. (4.1) and the usual Brown-Henneaux relation in
AdS3=CFT2 [67], matches with the field theoretic calcu-
lations in Eq. (3.15) up to the crossing contributions. As
discussed earlier, the computations in the Appendix
reveal that the crossing integral is vanishingly small in
the proximity limit (η ∼ 1). Therefore, the crossing

contributions are subdominant in the large central-charge
limit and naturally the holographic computations do not
capture their significance.

B. Two adjacent intervals

In the AdS3=CFT2 setup, the entanglement negativity
between two adjacent intervals A and B in a holographic
CFT2 is proportional to the holographic mutual information
as follows [19,34]:

EðA∶BÞ ¼ 3

16GN
ðLA þ LB − LA∪BÞ≡ 3

4
IðA∶BÞ; ð4:9Þ

where in the last equality, the Ryu-Takayanagi formula has
been utilized.
For two adjacent intervals A ¼ ½x1; x2� and B ¼ ½x2; x3�

in a thermal TT̄-deformed CFT2 defined on a temporally
compactified cylinder of circumference β, application of
the above holographic formula leads to the expression

EðμÞðA∶BÞ ¼ 3R
16GN

log

�ðAðx1; x2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx1; x2Þ2 − 1

p
ÞðAðx2; x3Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx2; x3Þ2 − 1

p
Þ

ðAðx1; x3Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðx1; x3Þ2 − 1

p
Þ

�
: ð4:10Þ

The schematic of the configuration is sketched in Fig. 4.
Expanding the above result for a small deformation of the dual CFT2 at a high temperature β ≪ xij and utilizing the

holographic dictionary from Eq. (4.1) we obtain

EðμÞðA∶BÞ¼ 3R
8GN

log

�
β

πϵ

sinhðπx12β Þsinhðπx23β Þ
sinhðπx13β Þ

�
þ3π4μR2

16β3G2
N

�
x12coth

�
πx12
β

�
þx23coth

�
πx23
β

�
−x13coth

�
πx13
β

��
: ð4:11Þ

FIG. 3. Holographic entanglement negativity for two disjoint
intervals in a TT̄-deformed CFT2.

FIG. 2. Holographic entanglement entropy for a single interval
in a TT̄-deformed CFT2. Figure modified from [57].
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Once again, the first term on the right-hand side corre-
sponds to the holographic entanglement negativity in the
usual AdS3=CFT2 scenario [19]. The term proportional to μ
corresponds to the leading-order corrections due to the
deformation of the CFT2 which, upon using the holo-
graphic dictionary in Eq. (4.1) and the usual Brown-
Henneaux relation in AdS3=CFT2 [67], matches with the
field theoretic calculations in Eq. (3.20) up to the crossing
contributions. Once again, this is expected since the
crossing terms are vanishingly small as described in the
Appendix and therefore do not contribute in the large
central-charge limit.

C. A single interval

In the context of AdS3=CFT2 correspondence, the holo-
graphic characterization of entanglement negativity for a
single interval A at a finite temperature requires the
introduction of two auxiliary large but finite intervals
B1, B2 sandwiching the single interval in question [8].
One then computes yet another algebraic sum of the lengths

of minimal bulk spacelike geodesics homologous to certain
combination of the subsystems involved [18,34]. Finally,
the bipartite limit B1 ∪ B2 → Ac leads to the correct
holographic entanglement negativity for A as follows:

EðA∶AcÞ¼ lim
B1∪B2→Ac

3

16GN

×ð2LAþLB1
þLB2

−LA∪B1
−LA∪B2

Þ: ð4:12Þ

Now we consider a single interval A ¼ ½−l; 0� in the
thermal CFT2 with a TT̄-deformation. Similar to the case of
a single interval in an undeformed thermal CFT2 described
in [8,18], we introduce two large auxiliary intervals B1 ¼
½−L;−l� and B2 ¼ ½0; L� sandwiching the interval A in
question. The schematic of the setup is depicted in Fig. 5.
Utilizing the length of the minimal boundary anchored

spacelike geodesic given in Eq. (4.4) the entanglement
negativity between A and B≡ B1 ∪ B2 may be obtained as
follows:

EðμÞðA∶BÞ ¼ 3

4
ðIðA∶B1Þ þ IðA∶B2ÞÞ

¼ 3R
16GN

log

�ðAð−L;−lÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að−L;−lÞ2 − 1

p
ÞðAð−l; 0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að−l; 0Þ2 − 1

p
Þ

ðAð−L; 0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að−L; 0Þ2 − 1

p
Þ

�

þ 3R
16GN

log

�ðAð−l; 0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að−l; 0Þ2 − 1

p
ÞðAð0; LÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að0; LÞ2 − 1

p
Þ

ðAð−l; LÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að−l; LÞ2 − 1

p
Þ

�
: ð4:13Þ

In the limit of a large cutoff radius rC, the leading-order expression for the entanglement negativity at high temperature
reduces to

FIG. 5. Holographic entanglement negativity for a single
interval in a TT̄-deformed CFT2.

FIG. 4. Holographic entanglement negativity for two adjacent
intervals in a TT̄-deformed CFT2.
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EðμÞðA∶BÞ ¼ 3R
8GN

log

�
β2

π2ϵ2
sinh2ðπlβ Þ sinhðπðL−lÞβ Þ

sinhðπðLþlÞ
β Þ

�

þ 3μR2π4

16G2
Nβ

3

�
ðLþ lÞ coth

�
πðLþ lÞ

β

�
− ðL − lÞ coth

�
πðL − lÞ

β

�
− 2l coth

�
πl
β

��
: ð4:14Þ

The bipartite limit may now be achieved by making the auxiliary intervals semi-infinite in length. Therefore, the
entanglement negativity for the single interval A in the TT̄-deformed CFT2 is obtained as

EðμÞðA∶AcÞ ¼ 3R
4GN

�
log

�
β

πϵ
sinh

�
πl
β

��
−
πl
β

�
−
3μπ4R2l
8β3G2

N

�
−1þ coth

�
πl
β

��
: ð4:15Þ

Once again, the first term on the left-hand side corresponds
to the entanglement negativity for a single interval in a
finite temperature undeformed CFT2 while the terms
proportional to μ correspond to the leading-order correc-
tions due to the TT̄-deformation. Note that, in writing
Eq. (4.15) we have already made use of the holographic
dictionary in Eq. (4.1). The above expression matches with
the field theoretic computations in Eq. (3.26) apart from the
crossing term and the nonuniversal contributions coming
from the arbitrary function fðηÞ. This is expected, since the
nonuniversal contributions are generally subdominant in
the large central-charge limit as discussed in [18]. Fur-
thermore, the mismatch of the crossing contributions may
be interpreted as follows. As seen from the first equality in
Eq. (4.13) as well as from Eq. (4.10) the entanglement
negativity for the single interval is given by the sum of the
individual entanglement negativities for the adjacent sub-
systems ðA;B1Þ and ðA;B2Þ respectively [18]. As argued
earlier in Sec. IV B, for adjacent intervals the effects of the
crossing integrals are subdominant in the large central
charge limit. Hence, in the present case we may also neglect
the effects of the crossing terms for a holographic TT̄-
deformed CFT2.

V. SUMMARY AND DISCUSSIONS

In this work, we have studied the entanglement
negativity for various bipartite mixed states in a thermal
TT̄-deformed CFT2 for a small deformation parameter μ.
We have developed a perturbative formula for computing
the first order corrections to the entanglement negativity
for bipartite states utilizing the replica technique. For a
bipartite state ρAB in a deformed CFT2, our formula
involves definite integrals of the expectation value of the
TT̄ operator over the replica manifold Mne obtained by
taking an ne-fold cover of the original manifold where the
replica index ne is an even integer. Utilizing the twist-
operator formalism, these expectation values may be recast
into various correlation functions of twist operators placed
at the endpoints of the subsystems A and B, including
appropriate insertions of stress tensors. Subsequently, we

have computed the entanglement negativity for two dis-
joint, two adjacent and a single interval in a TT̄-deformed
CFT2 at a finite temperature. The technical details are
collected in the Appendix. Note that the definite integrals of
the stress tensor expectation values may be classified
into the holomorphic, antiholomorphic and the mixing
categories. The mixing integrals originate from the crossing
correlations between the holomorphic and the anti-
holomorphic parts and are in general nonvanishing.
However, we have found that for two disjoint intervals
in proximity, the mixing terms are negligibly small com-
pared to the other contributions and hence may be
neglected altogether.
Furthermore, we have advanced a holographic construc-

tion for computing the entanglement negativity in TT̄-
deformed CFT2s with a large central charge and sparse
spectrum. The holographic dual of such CFTs with
irrelevant deformation is given by AdS3 geometries with
a finite cutoff rC. Our holographic constructions for the
entanglement negativity for different bipartite states involve
algebraic sums of the lengths of minimal spacelike geo-
desics homologous to the subsystems involved. It is
interesting to note that the holographic constructions can
deal with arbitrary deformation parameters at any temper-
ature. In the high-temperature limit, for a small deformation
parameter μ our holographic results match with the
corresponding field theoretic calculations with a large
central charge, up to the mixing or crossing contributions.
This may be interpreted as the mixing terms becoming very
small in the large central-charge limit as compared to the
holomorphic and antiholomorphic contributions. This pro-
vides a nontrivial consistency check of our holographic
constructions. It is important to note that according to a
refined version of the holographic constructions [34]
based on [35], the entanglement negativity is given in
terms of the lengths of bulk cosmic branes homologous to
various combinations of the subsystems involved. These
cosmic branes have finite tension for a finite replica
parameter ne and hence backreact on the ambient geometry
and onto each other nontrivially. We expect that a closer
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investigation of these backreactions may reveal a connec-
tion to the holographic origin of the crossing correlations.
Note that, in an earlier work [57], a low-temperature

expansion of the leading-order corrections to the entangle-
ment wedge cross section was investigated and a mismatch
was found with the corresponding field theoretic replica
technique results. In this context, we have explored the
alternative holographic proposal [27,28] based on the
entanglement wedge cross section and a preliminary
exposition6 reveals that the leading order correction in
the high-temperature limit conforms to the entanglement
negativity obtained in the present work. On the other hand,
the zeroth order results still differ from the field theoretic
entanglement negativity by certain additive constants
proportional to the central charge c (cf. Footnote 4). In
light of these differences as well as the work in [57], we
expect that the applicability of the alternative holographic
proposal for the entanglement negativity to TT̄-deformed
CFT2s requires further investigation.
There are various possible future directions to explore,

for example a generalization of our construction to higher
dimensions. In particular, for sufficiently symmetric setups
in higher dimensions, an investigation of the interactions
between different cosmic branes may shed light on the
holographic counterpart of the mixing between the

holomorphic and antiholomorphic modes. It will also be
interesting to extend our formalism to other entanglement
and correlation measures such as the odd entanglement
entropy [68], the balance partial entanglement [69] or the
entanglement of purification [60,70].

APPENDIX: THE INTEGRALS

In this appendix we present the details of integrations of
Eqs. (3.14), (3.19), and (3.25). Here the integrations have
been performed on the cylindrical manifold M described
by the Euclidean complex coordinates ðx; τÞ with appro-
priate limits.

1. Disjoint intervals

We assume that z1 < z2 < z3 < z4 without any loss of
generality. In the following, we will systematically evaluate
the holomorphic, antiholomorphic and the crossing con-
tributions to the definite integral in Eq. (3.14).

a. Holomorphic integral

The holomorphic part of the integration in Eq. (3.14) is
given by

Z
M

d2w
z2ðz1 − z2Þðz3 − z4Þ

ðz − z1Þðz − z2Þðz − z3Þðz − z4Þ
¼

Z
∞

−∞
dx

Z
β

0

dτ

�
e
4πðxþiτÞ

β ðz1 − z2Þðz3 − z4Þ
ðe2πðxþiτÞ

β − z1Þðe
2πðxþiτÞ

β − z2Þðe
2πðxþiτÞ

β − z3Þðe
2πðxþiτÞ

β − z4Þ

�
: ðA1Þ

Firstly, we carry out the indefinite integration with respect to τ and find the primitive function to be

−
iβ
2π

ðz1 − z2Þðz3 − z4Þ
�

z1 logðe
2πðxþiτÞ

β − z1Þ
ðz1 − z2Þðz1 − z3Þðz1 − z4Þ

−
z2 logðe

2πðxþiτÞ
β − z2Þ

ðz1 − z2Þðz2 − z3Þðz2 − z4Þ

−
z3 logðe

2πðxþiτÞ
β − z3Þ

ðz1 − z3Þð−z2 þ z3Þðz3 − z4Þ
−

z4 logðe
2πðxþiτÞ

β − z4Þ
ðz1 − z4Þð−z2 þ z4Þð−z3 þ z4Þ

�
: ðA2Þ

The logarithmic functions require a careful investigation before putting the integration limits, τ ¼ 0 and τ ¼ β, due to the
presence of branch cuts. The contribution due to a branch cut is incorporated through the following identity [49,51]:

log ðe2πðxþiτÞ
β −zj Þjτ¼β

τ¼0 ¼
�
2πi; for e

2πx
β > zj ⇔ x > β

2π log zj
0; otherwise:

ðA3Þ

Therefore, the range of the x-integrals get modified for each
of the four terms in the integrand as follows:

Z
∞

−∞
dx →

Z
∞

β
2π log zj

dx; for j ¼ 1; 2; 3; 4: ðA4Þ

Finally, we integrate over x and insert the limits according
to the above prescription to obtain,

6A rigorous analysis of the entanglement wedge cross section
for finite cutoff geometries dual to TT̄ deformed CFT2s goes
beyond the scope of the present work and we leave the same for
future explorations.
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Z
M
d2w

�
z2ðz1−z2Þðz3−z4Þ

ðz−z1Þðz−z2Þðz−z3Þðz−z4Þ
�
¼−

β2

2π

�
z1

�
1

z13
log

�
z1
z3

�
−

1

z14
log

�
z1
z4

��
þz2

�
−

1

z23
log

�
z2
z3

�
þ 1

z24
log

�
z2
z4

���
:

ðA5Þ

We have worked out the integration of the antiholomorphic part through a similar analysis and have found that the result is
same as the holomorphic case.

b. Crossing integral

Now we will solve for the integration of the mixing term in Eq. (3.14) which reads,

Z
M

d2w

�
z2ðz1 − z2Þðz3 − z4Þ

ðz − z1Þðz − z2Þðz − z3Þðz − z4Þ
��

z̄2ðz̄1 − z̄2Þðz̄3 − z̄4Þ
ðz̄ − z̄1Þðz̄ − z̄2Þðz̄ − z̄3Þðz̄ − z̄4Þ

�

¼
Z

∞

−∞
dx

Z
β

0

dτ

�
e
4πðxþiτÞ

β ðz1 − z2Þðz3 − z4Þ
ðe2πðxþiτÞ

β − z1Þðe
2πðxþiτÞ

β − z2Þðe
2πðxþiτÞ

β − z3Þðe
2πðxþiτÞ

β − z4Þ
× c:c:

�
: ðA6Þ

The indefinite integration with respect to τ results in

iβ
2π

e
8πx
β ðAþ BÞ; ðA7Þ

where A and B are given by

A ¼ A1 þA2 þA3 þA4;

B ¼ B1 þ B2 þ B3 þ B4;

A1 ¼ −
z31ðz3 − z4Þðz̄1 − z̄2Þðz̄3 − z̄4Þ

ðz1 − z3Þðz1 − z4Þðz1z̄1 − e
4πx
β Þðz1z̄2 − e

4πx
β Þðz1z̄3 − e

4πx
β Þðz1z̄4 − e

4πx
β Þ

log ðe2πðxþiτÞ
β − z1Þ;

A2 ¼
z32ðz3 − z4Þðz̄1 − z̄2Þðz̄3 − z̄4Þ

ðz2 − z3Þðz2 − z4Þðz2z̄1 − e
4πx
β Þðz2z̄2 − e

4πx
β Þðz2z̄3 − e

4πx
β Þðz2z̄4 − e

4πx
β Þ

log ðe2πðxþiτÞ
β − z2Þ;

A3 ¼
z33ðz1 − z2Þðz̄1 − z̄2Þðz̄3 − z̄4Þ

ðz1 − z3Þðz3 − z2Þðz3z̄1 − e
4πx
β Þðz3z̄2 − e

4πx
β Þðz3z̄3 − e

4πx
β Þðz3z̄4 − e

4πx
β Þ

log ðe2πðxþiτÞ
β − z3Þ;

A4 ¼ −
z34ðz1 − z2Þðz̄1 − z̄2Þðz̄3 − z̄4Þ

ðz1 − z4Þðz4 − z2Þðz4z̄1 − e
4πx
β Þðz4z̄2 − e

4πx
β Þðz4z̄3 − e

4πx
β Þðz4z̄4 − e

4πx
β Þ

log ðe2πðxþiτÞ
β − z4Þ;

B1 ¼
z̄31ðz1 − z2Þðz3 − z4Þðz̄3 − z̄4Þ

ðe4πx
β − z1z̄1Þðe

4πx
β − z2z̄1Þðe

4πx
β − z3z̄1Þðe

4πx
β − z4z̄1Þðz̄1 − z̄3Þðz̄1 − z̄4Þ

log ðe2πx
β − e

2iπτ
β z̄1Þ;

B2 ¼ −
z̄32ðz1 − z2Þðz3 − z4Þðz̄3 − z̄4Þ

ðz̄2 − z̄3Þðz̄2 − z̄4Þðe
4πx
β − z1z̄2Þðe

4πx
β − z2z̄2Þðe

4πx
β − z3z̄2Þðe

4πx
β − z4z̄2Þ

log ðe2πx
β − e

2iπτ
β z̄2Þ;

B3 ¼ −
z̄33ðz1 − z2Þðz3 − z4Þðz̄1 − z̄2Þ

ðz̄1 − z̄3Þðz̄3 − z̄2Þðe
4πx
β − z1z̄3Þðe

4πx
β − z2z̄3Þðe

4πx
β − z3z̄3Þðe

4πx
β − z4z̄3Þ

log ðe2πx
β − e

2iπτ
β z̄3Þ;

B4 ¼
z̄34ðz1 − z2Þðz3 − z4Þðz̄1 − z̄2Þ

ðz̄1 − z̄4Þðz̄4 − z̄2Þðe
4πx
β − z1z̄4Þðe

4πx
β − z2z̄4Þðe

4πx
β − z3z̄4Þðe

4πx
β − z4z̄4Þ

log ðe2πx
β − e

2iπτ
β z̄4Þ: ðA8Þ

The identity of Eq. (A3) suggests the following modifications of the x-integration limits:

Ak∶
Z

∞

−∞
dx →

Z
∞

β
2π log zk

dx; Bk∶
Z

∞

−∞
dx →

Z β
2π log z̄k

−∞
dx:

After integrating over x with the above limits, we finally determine the crossing integral as
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β2

2πjz13j2jz23j2jz14j2jz24j2
½−z1z23z24z34ðz̄1z̄23z̄24z̄34 log z11̄ − z̄2z̄13z̄14z̄34 log z12̄ þ z̄3z̄12z̄14z̄24 log z13̄ − z̄4z̄12z̄13z̄23 log z14̄Þ

þ z2z13z14z34ðz̄1z̄23z̄24z̄34 log z21̄ − z̄2z̄13z̄14z̄34 log z22̄ þ z̄3z̄12z̄14z̄24 log z23̄ − z̄4z̄12z̄13z̄23 log z24̄Þ
− z3z12z14z24ðz̄1z̄23z̄24z̄34 log z31̄ − z̄2z̄13z̄14z̄34 log z33̄ þ z̄3z̄12z̄14z̄24 log z33̄ − z̄4z̄12z̄13z̄23 log z34̄Þ
þ z4z12z13z23ðz̄1z̄23z̄24z̄34 log z41̄ − z̄2z̄13z̄14z̄34 log z42̄ þ z̄3z̄12z̄14z̄24 log z43̄ − z̄4z̄12z̄13z̄23 log z44̄Þ�: ðA9Þ

We have explicitly checked that the expression in Eq. (A9)
vanishes when the disjoint intervals are in proximity to each
other.

2. Adjacent intervals

The holomorphic part of the integral in Eq. (3.19) is
given by

Z
M

d2w
z2ðz1 − z2Þðz2 − z3Þ

ðz − z1Þðz − z2Þ2ðz − z3Þ

¼
Z

∞

−∞
dx

Z
β

0

dτ
e
4πðxþiτÞ

β ðz1 − z2Þðz2 − z3Þ
ðe2πðxþiτÞ

β − z1Þðe
2πðxþiτÞ

β − z2Þ
2ðe2πðxþiτÞ

β − z3Þ
:

ðA10Þ

We use a similar procedure to the case of disjoint intervals
described earlier. First we integrate over τ and obtain the
primitive function to be

iβ
2π

z12z23

�
−

z2

z12z23ðe
2πðxþiτÞ

β − z2Þ
−
z1 log ðe

2πðxþiτÞ
β − z1Þ

z212z13

þ ðz22 − z1z3Þ log ðe
2πðxþiτÞ

β − z2Þ
z212z

2
23

þ z3 logðe
2πðxþiτÞ

β − z3Þ
z13z223

�
:

ðA11Þ

The first term in the above expression vanishes when we
insert the integration limits τ ¼ 0 and τ ¼ β, whereas the
logarithmic function contributes according to the identity in

Eq. (A3). Again, the branch cut of the logarithmic function
changes the limits of integration over x as follows:Z

∞

−∞
dx →

Z
∞

β
2π log zj

dx; for j ¼ 1; 2; 3:

Finally, we perform the x-integration to obtain,

Z
M

d2w
z2z12z23

ðz − z1Þðz − z2Þ2ðz − z3Þ

¼ −
β2

2πz12z13z23

�
z1z223 log

�
z1
z2

�
þ z212z3 log

�
z2
z3

��
:

ðA12Þ

The antiholomorphic integral may also be tackled in a
similar fashion. For our case with spatial intervals ðzi ∈ RÞ,
we find that integration over the antiholomorphic part
exactly reproduces Eq. (A12). We can also evaluate the
crossing integral for two adjacent intervals from first
principles utilizing the method outlined in the previous
subsection. Alternatively, we may take the adjacent limit
z3 → z2; z̄3 → z̄2 of the disjoint crossing integral in
Eq. (A9) to write

δEðadjÞ
cross ¼ δEðdisjÞ

cross ðz3 → z2; z̄3 → z̄2Þ:

3. Single interval

The holomorphic part of the integration in Eq. (3.25) is

Z
M

d2w

�
z2

ðz − z2Þ2
þ z2

ðz − z3Þ2
−
X4
j¼1

z2

ðz − zjÞ
∂zj log ½z223ηfðηÞ�

�

¼ −
Z

∞

−∞
dx

Z
β

0

dτ
e
4πðxþiτÞ

β z23

ðe2πðxþiτÞ
β − z1Þðe

2πðxþiτÞ
β − z2Þ

2ðe2πðxþiτÞ
β − z3Þ

2ðe2πðxþiτÞ
β − z4Þ

×

�
z1z2z34 þ z12z3z4 þ ðz12 − z34Þe

4πðxþiτÞ
β þ 2ðz1z3 − z2z4Þe

2πðxþiτÞ
β þ ðe2πðxþiτÞ

β − z2Þðe
2πðxþiτÞ

β − z3Þz14
ηf0ðηÞ
fðηÞ

�
: ðA13Þ

Firstly, we perform an indefinite integration over τ and obtain,

−
iβ
2π

z23
z13z24fðηÞ

ðC þDÞ; ðA14Þ
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where C and D are given as

C ¼ −
z13z24
z23

fðηÞ
�

z2

ðe2πðxþiτÞ
β − z2Þ

þ z3

ðe2πðxþiτÞ
β − z3Þ

�
;

D ¼ ½fðηÞ þ ηf0ðηÞ�ðD1 þD4Þ þ
1

z223
ðD2 þD3Þ;

D1 ¼ −
z1z24
z12

logðe2πðxþiτÞ
β − z1Þ;

D2 ¼
z13
z12

½½z2ðz22 þ z2ðz3 − 2z4Þ − z1ð2z3 − z4ÞÞ þ z1z3z4�fðηÞ þ z2z23z14ηf0ðηÞ� logðe
2πðxþiτÞ

β − z2Þ;

D3 ¼ −
z24
z34

½½z3ðz23 þ z2ðz3 − 2z4Þ − z1ð2z3 − z4ÞÞ þ z1z2z4�fðηÞ þ z3z23z14ηf0ðηÞ� logðe
2πðxþiτÞ

β − z3Þ;

D4 ¼
z4z13
z34

logðe2πðxþiτÞ
β − z4Þ: ðA15Þ

We notice that the expression C vanishes when we insert the limits of integration τ ¼ 0 and τ ¼ β, whereas the logarithmic
terms of D contribute through the identity described in Eq. (A3). Therefore, the limits of the x-integration get modified as
follows:

Dk∶
Z

∞

−∞
dx →

Z
∞

β
2π log zk

dx; k ¼ 1; 2; 3; 4: ðA16Þ

Subsequently, performing the x-integration over Eq. (A14) considering the modified integration limits from Eq. (A16) we
obtain

β2

2πz213z
2
24

�
η

z23
ðz1z223z24z34 log z1 − z13z34ðz2ðz22 þ z2ðz3 − 2z4Þ − z1ð2z3 − z4ÞÞ þ z1z3z4Þ log z2

þ z12z24ðz3ðz23 þ z2ðz3 − 2z4Þ − z1ð2z3 − z4ÞÞ þ z1z2z4Þ log z3 − z12z13z223z4 log z4Þ

þ ðz1z23z24z34 log z1 − z2z13z14z34 log z2 þ z12z14z24z3 log z3 − z12z13z23z4 log z4Þ
f0ðηÞ
fðηÞ

�
: ðA17Þ

Finally, we consider the specific case of a single interval of length l via the substitutions fz1; z2; z3; z4g →

fe−2πL
β ; e−

2πl
β ; 1; e

2πL
β g and subsequently take the bipartite limit to obtain

lim
L→∞

Z
M

d2w

�
z2

ðz − z2Þ2
þ z2

ðz − z3Þ2
−
X4
j¼1

z2

ðz − zjÞ
∂zj log ½z223ηfðηÞ�

�
¼ lβ

�
−1þ coth

�
πl
β

�
− e−

2πl
β
f0ðe−2πl

β Þ
fðe−2πl

β Þ

�
: ðA18Þ

It may be shown by a similar procedure that the antiholomorphic integral also gives the same result which follows from our
consideration of a spatial interval of length l on the cylinder. In this case also we expect the crossing term to be vanishingly
small as argued in Sec. IV C.
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