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The importance of the proper treatment of the wave function renormalization in the renormalization
group analysis of quantum gravity is pointed out. The renormalization factor, sometimes called an
inessential coupling, can be used to fix any one of the coupling constants, with the exception of the
coupling constants that remain unchanged by the rescaling of the field. Choosing to fix the cosmological
constant, we propose to use a new regulator to obtain the renormalization group equations for invariant
couplings which tell us the flow of the Newton and R2 couplings. We find that the Newton coupling
reaches a nontrivial ultraviolet fixed point (FP) and becomes small in the low energy, but find only
asymptotically free FP of the R2 couplings for the higher-derivative gauge fixing and regulator. For the
asymptotically free FP, we find that both of the two independent terms are relevant operators in the
high energy. It is noted that the existence of nontrivial FPs may depend on the choice of the gauge
and regulator.
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I. INTRODUCTION

One of the longstanding problems in particle physics and
gravity is to formulate the quantum theory of gravity in a
consistent manner. String theory is a promising candidate
for such a theory. However, in order to make physically
meaningful predictions, nonperturbative effects must be
incorporated. So far, however, attempts to do so have not
been entirely successful.
On the other hand, it seems that the possibility of

formulating quantum gravity in the context of ordinary
field theory is still open. After the idea of the asymptotic
safety was initiated in [1], many considerations have been
made along this line. The main problem here is how to
describe the renormalization group flow for a nonrenor-
malizable theory like gravity. One possibility is to use the
ordinary perturbation theory near two dimensions and
apply the ϵ-expansion as was proposed in [1]. It turns out

that the pole structure of the 2þ ϵ dimensional gravity is
rather complicated than was expected but still ϵ-expansion
is possible [2]. However it is hard to tell whether a fixed
point (FP) exists in four dimensions or not, because four is
too far from two. Another possibility is to try to find a FP
numerically based on constructive definition of gravity. In
fact several works have been made in this direction, and
there appeared some results that support the existence of a
FP [3–5]. The most important question here is whether
such FPs correspond to unitary field theories. The problem
stems from the fact that unitarity is not guaranteed in
standard dynamical triangulation. When unitarity is not
guaranteed, the simplest class of FPs would correspond to
R2-type theories with ghosts. Therefore, when finding a
FP, one must be sure that it is a different theory from the
simple R2-type theory. One exception is the causal
dynamical triangulation in which unitarity is manifest
[6,7]. In this case instead, we should check whether
Lorentz invariance is recovered or not. In other words,
one needs to show that the FP is sufficiently far from the
perturbative theory of the R2 action. This was the situation
around the mid-1990s, and no definite answers have been
made to this question of unitarity.
There have been several active attempts [8–11], based on

the nonperturbative functional renormalization group equa-
tion (FRGE) [12,13] to seek for asymptotically safe unitary
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theory. The explicit form of the FRGE is given in terms of
the effective average action Γk as

_Γk ¼
1

2
TrðΓð2Þ

k þ RkÞ−1 _Rk; ð1:1Þ

where k is the cutoff, Rk is a cutoff function suppressing the
contribution of the modes below the momentum scale k to
Γk, the dot is a derivative with respect to t ¼ logðk=k0Þ,
k0 being an arbitrary initial value, and Γð2Þ

k is the second
variation of the effective average action. Although the flow
equation (1.1) is exact, we have to make approximations to
solve (1.1). In general, the effective average action Γk
includes an infinite number of all possible general coor-
dinate invariant operators, called theory space, generated
by quantum effects. The FRGE (1.1) gives flows in this
infinite-dimensional theory space. However, in order to
solve the flow equation (1.1), we have to make approxi-
mation by restricting this infinite-dimensional theory space
to a finite subspace. This approximation is called trunca-
tion. The approach of asymptotic safety attempts to find
nontrivial FPs away from asymptotically free theory for a
given truncation. Once such fixed points are found, we have
to extend the restricted space to study whether additional
operators are necessary to define the ultraviolet (UV)
theory until there are no more necessary operators.
In general, any field theory contains redundant operators

whose coupling parameters change when we subject the
fields to a point transformation and have no effects on
physical quantities. It is well known that they need to be
treated properly in order to study FP actions. In quantum
gravity, the couplings of such redundant operators are
sometimes referred to as inessential couplings [1]. The
most typical of these is the wave function renormalization.
This appears in any truncation of the action because it
preserves the form of each term. In ordinary field theory, we
usually fix the coefficient of the kinetic term by the wave
function renormalization. Any one of the coupling con-
stants, however, can be fixed, except those that are
unchanged by the field rescaling. In the case of quantum
gravity, which consists of the Einstein, cosmological
constant and R2 terms, either the Newton coupling or
the cosmological constant can be fixed using wave function
renormalization. It does not make physical sense to con-
sider the flow of these couplings separately. The choice of a
parameter to be fixed is not important because the physics
depends only on the combination of the coupling constants
which does not depend on the wave function renormaliza-
tion. For example, if the cosmological constant is fixed,
the renormalization group equation tells us the flow of the
Newton and R2 couplings. In the perturbative approach,
this point was discussed in Ref. [14]. However until now,
much attention has not been paid to this point in the context
of asymptotically safe gravity. Here we take this point into
account and study the flow of the coupling constants. In this

process, we find that the most often adopted cutoff function
breaks the invariance under the wave function renormal-
ization. We propose to use a different cutoff function to
resolve the problem. In this manner we find that the Newton
coupling reaches nontrivial UV FP and becomes small in
the low energy, and that the R2 couplings are asymptoti-
cally free.
Recently such field redefinition is also considered

in [15,16]. The authors consider the redefinition of the
metric not just by overall factor but also by Ricci tensor etc.
and neglect higher order terms that would appear by such a
redefinition. This would completely change the truncated
theory, or such redefinition does not close at the level
of quadratic curvature gravity. Again in the perturbative
approach to the quantum Einstein gravity, this kind of field
redefinition was considered long time ago, see for example
[17,18]. Related discussions of parametrization of the
metric were made in [19–23]. Here we only consider the
effect of the wave function renormalization factor and find
rather nontrivial results.
In the asymptotic safety, operators whose couplings have

UV FPs are called relevant operators, while those whose
couplings do not have UV FPs and diverge in UVare called
irrelevant operators. The formers are the operators that
should be kept in order to get well-defined UV behavior,
while the latter should be adjusted to be absent in the
theory. For example, in perturbation theory (corresponding
to trivial FP), operators with dimensions less than or equal
to four are relevant operators and we have to keep these to
obtain perturbatively renormalizable theory. The expect-
ation of asymptotic safety is that the number of relevant
operators needed to define a theory is finite, allowing one to
make predictions about physical quantities. Such a theory is
called nonperturbatively renormalizable theory.
Much evidence has accumulated to show that such FPs

exist, see for example [9–11,24,25] and references therein.
An important problem in the asymptotically safe theory is
to find howmany relevant operators we have and to identify
these operators. In perturbation theory, it has been known
for some time that gravity with quadratic curvature terms
are renormalizable [26]. There are two kinds of indepen-
dent diffeomorphism invariant operators in four dimen-
sions, which can be chosen Weyl curvature squared and
scalar curvature squared. So we consider the action

S ¼
Z

d4x
ffiffiffi
g

p �
2Λ − ZNRþ 1

2λ
Cμνρσ

2 þ 1

ξ
R2 −

1

ρ
E

�
;

ð1:2Þ

where ZN ¼ 1
16πGN

with the Newton coupling GN , Λ is the
cosmological constant, Cμνρσ the Weyl tensor, R the scalar
curvature and E is the Gauss-Bonnet term which is a total
derivative and topological in four dimensions. As such,
ρ does not contribute to the quantum effects so we may
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neglect this term in our study. Note that the definition of the
cosmological constant is different from, say Ref. [24], and
λ, ξ, and ρ are dimensionless couplings. These operators are
necessary in order for the theory to be renormalizable. This
suggests that, together with the cosmological constant and
the Newton coupling, there are four relevant operators.
As mentioned above, operators with dimensions less

than or equal to four are relevant for asymptotically free FP.
However this is a nontrivial problem in the asymptotically
safe theory, because if the couplings at the UV FP are
nonzero, it is possible that quantum effects may change
their properties. The beta functions of these couplings have
been calculated in the literature [24,27–34], and it was
thought that there was only asymptotically free FP. It turned
out that if we keep contributions from the Newton coupling,
there are nontrivial FP [25,35,36]. A surprise is that it has
been claimed that there are only three relevant operators at
the nontrivial FPs of λ and ξ [25,35]. However the analysis
was not complete because the calculation was made on the
Einstein space. Then the two quadratic curvature terms are
not independent in four dimensions, and these beta func-
tions cannot be uniquely determined. In Ref. [36], the beta
functions are calculated on the general backgrounds, and
it was found that there are indeed only three relevant
operators. Unfortunately the calculation was made in the
expansion in the inverse Newton couping, and then it is not
possible to see if the nontrivial FPs found there may be
smoothly connected to the low energy, where we expect
that the Newton coupling becomes small. This is important
in studying how the quantum effects affect physical
quantities at various energies, in particular in the context
of cosmology. In order to study this, we have to calculate
the beta functions without expanding in the inverse Newton
coupling. Here we present the result including all orders
in the inverse Newton coupling and study the flow of
couplings between the low and high energies with the
higher-derivative gauge fixing and regulator.
Unfortunately we have not been able to find any

nontrivial FP in the range of GN > 0 and λ > 0, though
we have searched for it in the wide range of parameter
space. Indeed, one of the present authors (N.O.) together
with K. Falls and R. Percacci searched for such nontrivial
FPs in the higher-derivative couplings with higher-
derivative regulators without taking into account the
wave function renormalization, and did not find any
reasonable nontrivial FP. On the other hand, some non-
trivial FPs were found if the standard Feynman-
De Donder gauge and lower derivative regulator was
used [37].1 It was not clear if such FPs, depending on the
gauge and/or regulator, are physical or not. So here we
concentrate on the analysis of the flow of the asymptoti-
cally free FP, which is universal.

This paper is organized as follows. In Sec. II, we start
with the analysis of the Einstein theory with the cosmo-
logical constant term. In Sec. II A, we recapitulate the
results of the FPs when we do not consider the freedom
of wave function renormalization. In Sec. II B, we consider
the effect of wave function renormalization and note that
the cosmological constant and Newton coupling change
by the wave function renormalization. Then we formulate
the FRGE with such a freedom, and use this freedom to fix
the cosmological constant. In this process, we show that we
should use a new cutoff which does not break the invariance
under the wave function renormalization. Using this regu-
larization, we find the beta functions are entirely written in
terms of the coupling constants invariant under the wave
function renormalization. We find that the Newton coupling
go to UV FP and becomes smaller in the low energy, as
expected. In Sec. III, we discuss the quadratic curvature
theory. Here we have not found physically reasonable
nontrivial FPs for the dimensionless couplings λ and ξ,
but have found asymptotically free FP with the higher-
derivative gauge fixing term and regulator. For the asymp-
totically free FP, we show that both the Weyl curvature
square and scalar curvature square are relevant operators,
in agreement with the perturbation theory. Again the
Newton coupling is found to go to UV FP and becomes
smaller in the low energy. Section IV is devoted to
summary and discussions.

II. EINSTEIN GRAVITY WITH THE
COSMOLOGICAL CONSTANT

As a warm-up, let us study the Einstein theory with
cosmological constant. That is, we will consider only the
cosmological constant and the Einstein term in (1.2), and
look at the results when the wave function renormalization
is properly handled.

A. Earlier results

First, we check the case where the wave function
renormalization is not considered. Using the type Ia cutoff
(in the standard Feynman-De Donder gauge)

RðΔÞ ¼ ZNðk2 − ΔÞθðk2 − ΔÞ; ð2:1Þ

where Δ≡ −gμν∇μ∇ν, we get the FRGE [24]

2ð _̃Λþ 4Λ̃Þ ¼ 1

16π
ðA1 þ A2ηZÞ;

_̃G − 2G̃

16πG̃2
¼ 1

16π
ðB1 þ B2ηZÞ; ð2:2Þ

where the dimensionless couplings are defined by

Λ ¼ k4Λ̃; GN ¼ k−2G̃; ð2:3Þ1Similar FPs were found in [38].
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and the quantities on the right-hand side (rhs) are given by

A1 ¼
1þ 128πG̃ Λ̃
πð1 − 32πG̃ Λ̃Þ ;

A2 ¼
5

6πð1 − 32πG̃ Λ̃Þ ;

B1 ¼ −
11 − 288πG̃ Λ̃þ7ð32πG̃ Λ̃Þ2

3πð1 − 32πG̃ Λ̃Þ2 ;

B2 ¼ −
1þ 160πG̃ Λ̃

12πð1 − 32πG̃ Λ̃Þ2 ; ð2:4Þ

which are obtained from those in [24] by the replacement
Λ̃ → 16πΛ̃ G̃. The anomalous dimension ηZ for the inverse
of the Newton coupling is defined by

ηZ ¼ −
_ZN

ZN
¼ 2 −

_̃G

G̃
: ð2:5Þ

The beta functions for the cosmological constant and the
Newton coupling are obtained from Eq. (2.2) as

_̃Λ ¼ −4Λ̃þ A1 þ ðA1B2 − A2B1ÞG̃
32πð1þ B2G̃Þ

;

_̃G ¼ 2G̃þ B1G̃
2

1þ B2G̃
: ð2:6Þ

We find that the FP for positive Newton coupling is
located at

ðΛ̃�; G̃�Þ ¼ ð0.00543; 0.7073Þ: ð2:7Þ

This result is consistent with [24] because the cosmological
constant there is obtained by 16πΛ̃�G̃� ¼ 0.193. In addi-
tion, there is another FP at ðΛ̃�; G̃�Þ ¼ ð0.0007916; 0Þ,
which should correspond to the Gaussian FP in the usual
convention.

B. Inessential coupling:
The wave function renormalization

Next, we examine the effect of the wave function
renormalization. If we express the metric in terms of the
rescaled (or renormalized) metric as

gμν ¼ Zg0μν; ð2:8Þ

the terms in the action (1.2) can be written as

ffiffiffi
g

p ¼ Z2
ffiffiffiffi
g0

p
;

ffiffiffi
g

p
R ¼ Z

ffiffiffiffi
g0

p
R0; ð2:9Þ

and the other terms are unchanged. This means that under
the wave function renormalization, the couplings scale as

Λ0 ¼ Z2Λ; G0
N ¼ Z−1GN: ð2:10Þ

In other words, the following identity holds

Seff ½Zg0μν;ΛðtÞ; GNðtÞ; t� ¼ Seff ½g0μν; Z2ΛðtÞ; Z−1GNðtÞ; t�:
ð2:11Þ

provided that the energy scale parameter t does not change
under the rescaling (2.8). Note that the dimensionless
combination ΛG2

N is invariant under this rescaling.
By definition, the effective action in terms of g0μν is

given by

S0eff ½g0μν;ΛðtÞ; GNðtÞ; t� ¼ Seff ½gμν;ΛðtÞ; GNðtÞ; t�; ð2:12Þ

and it is evaluated as

¼ Seff ½Zg0μν;ΛðtÞ; GNðtÞ; t�
¼ Seff ½g0μν; Z2ΛðtÞ; Z−1GNðtÞ; t�: ð2:13Þ

Thus, if we introduce a wave function renormalization at
each step of the renormalization transformation, it will
generate additional infinitesimal transformations as

δΛ ¼ 2ζΛ; δGN ¼ −ζGN: ð2:14Þ

The FRGE (2.2) is modified as

_̃Λþ 4Λ̃ ¼ 1

32π
ðA1 þ A2ηZÞ þ 2ζΛ̃;

_̃G − 2G̃ ¼ G̃2ðB1 þ B2ηZÞ − ζG̃; ð2:15Þ

Because of the freedom of wave function renormalization,
we should note that the values of Λ̃ or G̃ themselves do not
have physical meaning separately. Only the combination
of Λ̃G̃2 has physical meaning. Using this freedom, we can
impose the condition that either the (dimensionless) cos-
mological constant or the Newton coupling is fixed for
the whole range of t, or consider only the FRGE for the
invariant combination Λ̃G̃2.
We must remember that the above analysis is based on

the assumption that the energy scale k (or t) is invariant
under wave function renormalization. It can be seen that the
cutoff (2.1) commonly used in the literature clearly violates
this condition. This is because under the rescaling of the
metricΔð≡ − gμν∇μ∇νÞ is transformed to Z−1Δ. To correct
this, we propose to use the following cutoff:

RðΔÞ ¼ ZN

� ffiffiffiffi
Λ̃

p
k2 − Δ

�
θ
� ffiffiffiffi

Λ̃
p

k2 − Δ
�
: ð2:16Þ

Since we are going to fix Λ̃, this in effect introduces a
numerical factor to k2 in (2.1), but the factor is important to
make the term transform consistently under the rescaling.
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Using the cutoff (2.16), we find that the quantities in (2.4)

are modified to
ffiffiffiffi
Λ̃

p

A1 ¼
�
_̃Λþ 4Λ̃

��
1þ 128πG̃

ffiffiffiffi
Λ̃

p �

4π
�
1 − 32πG̃

ffiffiffiffi
Λ̃

p � ;

A2 ¼
5Λ̃

6π
�
1 − 32πG̃

ffiffiffiffi
Λ̃

p � ;

B1 ¼ −

�
_̃Λþ 4Λ̃

��
11 − 288πG̃

ffiffiffiffi
Λ̃

p
þ7

�
32πG̃

ffiffiffiffi
Λ̃

p �
2
�

12π
�
1 − 32πG̃

ffiffiffiffi
Λ̃

p �
2 ffiffiffiffi

Λ̃
p ;

B2 ¼ −

�
1þ 160πG̃

ffiffiffiffi
Λ̃

p � ffiffiffiffi
Λ̃

p

12π
�
1 − 32πG̃

ffiffiffiffi
Λ̃

p �
2
: ð2:17Þ

Note that here we still have _̃Λ in A1 and B1 on the rhs.
Imposing that the Λ̃ is constant, we can obtain ζ
from (2.15). Substituting this into the second equation
in (2.15), we find

_̃G ¼ 2ð8 − 19ηþ η2 − 14η3ÞG̃
5 − 6η − 5η2 þ 384π2ð1 − ηÞ2 ; ð2:18Þ

where we have defined the invariant variable

η ¼ 32πG̃
ffiffiffiffi
Λ̃

p
: ð2:19Þ

Equation (2.18) can be rewritten into the FRGE in terms
of η:

_η ¼ 2ð8 − 19ηþ η2 − 14η3Þη
5 − 6η − 5η2 þ 384π2ð1 − ηÞ2 : ð2:20Þ

It is important to notice that the rhs is solely written in terms
of η, the invariant combination. If we did not use the

modified cutoff (2.16), it would depend on other combi-
nation and the flow equation is inconsistent. For example, if
we used the cutoff (2.1), we find that the rhs is a function
of Λ̃ G̃. However this is not invariant under the wave
function renormalization.
We plot the beta function for η in Fig. 1. This is a typical

asymptotically safe theory for 0 ≤ η ≤ 0.3864. The beta
function has only one positive zero:

η� ¼ 0.3864; ð2:21Þ

which corresponds to the UV FP.
We expect the usual dimensionful Newton coupling,

which describes our world, remains small but finite in
the low energy. We see from (2.3) that this means that
the dimensionless Newton coupling G̃ becomes small in the
low energy. We plot the flow of η from the low energy
(t ¼ −200) to the high energy (t ¼ 1000) for the boundary
condition η ¼ 0.1 at t ¼ 0. We can fix the cosmological
constant Λ̃ to a certain value, and in this case, the FRGE
gives the flow of the Newton coupling. We see that the
Newton coupling goes to the FP at the high energy and
flows down to small value in the low energy, as shown in
Fig. 2. This is the expected behavior.
The stability matrices are

∂βη
∂η

����
η�

¼ −0.01325; ð2:22Þ

This means that this FP is UV stable. This is actually
obvious from the behavior of βη shown in Fig. 1(b).

III. QUADRATIC GRAVITY

In Ref. [36], the beta functions for the quadratic
gravity (1.2) on general backgrounds were calculated to
the first order in ZN . Then it is found that there are
nontrivial FPs for the beta functions for λ and ξ, and it
is discussed how many relevant operators exist. It is found

(a) (b)

FIG. 1. The beta function of η for the range of (a) 0 < η < 1.5 and (b) 0 < η < 0.5.
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that only three out of the couplings Λ̃; G̃; λ, and ξ are
relevant, in sharp contrast to the perturbation theory in
which we need all four couplings for the renormalizability.
In the case of asymptotically free FP λ� ¼ ξ� ¼ 0, the ratio
of these couplings is finite with ω� ≡ − 3λ�

ξ�
¼ −0.02286.

However, only the first order of the inverse of the
Newton coupling G̃ is kept in the above approximation,
and we cannot study how the FPs are connected to the low
energy where we expect that the Newton coupling becomes
small. In order to study this and settle the question of the
number of relevant operators, we have to calculate the beta
functions for all orders in ZN . However this calculation is
quite involved. Fortunately Benjamin Knorr developed a
code which enabled us to calculate the beta functions.
The calculation done in [36] used the higher derivative

cutoff

RðΔÞ ∼ ðk4 − Δ2Þθðk4 − Δ2Þ; ð3:1Þ

where the front factor, which is chosen to match the higher
derivative term in the Hessian, is not exposed explicitly.
However, as pointed out in the Einstein theory, we have to
modify this to be consistent with the scaling by the wave
function renormalization. Here we take

RðΔÞ ∼ ðΛ̃k4 − Δ2ÞθðΛ̃k4 − Δ2Þ: ð3:2Þ

By using Knorr’s program, we have calculated the flow
equations:

_̃Λ ¼ −4Λ̃þ Λ̃f1ðη; λ; ξÞ þ 2ζΛ̃;
_̃G ¼ 2G̃þ 16πG̃2

ffiffiffiffi
Λ̃

p
f2ðη; λ; ξÞ − ζG̃;

_λ ¼ −2λ2f3ðη; λ; ξÞ;
_ξ ¼ −ξ2f4ðη; λ; ξÞ: ð3:3Þ

The explicit form of the functions f1;…; f4 are too
complicated to be presented here. Here we have already
incorporated the effects by the wave function renormaliza-
tion in the equations for Λ̃ and G̃. Note that λ and ξ are
dimensionless couplings, and are not affected by the wave
function renormalization. So their flow equations take
already invariant form under the transformation of wave
function renormalization and involve only the invariant
combination η.
As before, we impose the condition to fix the cosmo-

logical constant to obtain

ζ ¼ 2 −
1

2
f1ðη; λ; ξÞ: ð3:4Þ

Substituting this into the beta function for G̃, we get

_̃G ¼ 1

2
G̃f1ðη; λ; ξÞ þ 16πG̃2

ffiffiffiffi
Λ̃

p
f2ðη; λ; ξÞ: ð3:5Þ

This can be cast into the equation for η:

_η ¼ η

2
f1ðη; λ; ξÞ þ

η2

2
f2ðη; λ; ξÞ: ð3:6Þ

We thus find the flow equation invariant under the wave
function renormalization. The explicit forms of the beta
functions for η, λ and ξ are given in theMathematica file as
ancillary file in the arXiv page.
We have found one nontrivial FP

η� ¼2.1397; λ� ¼−1.3731; ξ� ¼−7.7864; ð3:7Þ

but this is probably unphysical FP because λ is supposed
to be positive for the stability of the system. A similar
FP is found in [38] though they have not taken into
account the fact that the wave function renormalization
is inessential. Unfortunately we have not been able to
find any other reasonable FP except for the asymptoti-
cally free FP. As mentioned in the Introduction, this
may be an artifact of our gauge and/or regulator, or our
search may not be enough. Whichever it is, the existence
of the asymptotically free FP is universal. So here we
study the flow of the asymptotically free (but nonzero FP
for G̃) FP. When we study asymptotically free FP, it is
more convenient to use ω ¼ −3λ

ξ rather than ξ. We find
the FP

η� ¼ 0.7788; λ� ¼ 0; ω� ¼ −0.02286; ð3:8Þ

In this case, both λ and ξ go to zero asymptotically with
their ratio ω being fixed.

FIG. 2. The flow of η for the boundary condition η ¼ 0.1
at t ¼ 0.
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In order to see whether this FP is relevant or not, we
make expansion to the second order of the beta functions
for small λ and ξ. We find

βλ ¼ −
3591þ 796ξ

480π2ð9þ 2ξÞ λ
2 þOðλ3Þ

¼ −
133

160π2
λ2 þOðλ3; λ2ξÞ;

βξ ¼ −
5ξ2

576π2
þ
�

5ξ

16π2
þ ð163 − 700ηÞξ2

1080π2η

	
λ

−
�

5

8π2
þ ð44 − 145ηÞξ

72π2η

þ ð6385 − 9288ηþ 21800η2Þξ2
6480π2η2

	
λ2 þOðξ3; ξ2λ; λ3Þ

¼ −
5ð72λ2 − 36λξþ ξ2Þ

576π2
þOðξ3; ξ2λ; λ3Þ; ð3:9Þ

in agreement with the known results [14,24,27–34,36].
This gives a nontrivial check of our results.
If we simply check the stability matrix (defined by

the first derivatives of the beta functions at the FP), its
eigenvalues are zero. So naively these are marginal
operators. In this case, we should look at the higher order
terms in the couplings. It is clear from the beta function
for λ, λ is actually a relevant coupling near the origin. Let
us study the behavior of these coupling near the origin in
more detail.
As is well known, the perturbative regions are asymp-

totically free or not, depending on the initial values of
the couplings constants. To see this, let us consider the
renormalization group trajectory given by

dξ
dλ

¼ βξ
βλ

¼ aþ b
ξ

λ
þ c

ξ2

λ2
; ð3:10Þ

where we have dropped higher order terms for small
couplings. Set

χ ¼ ξ

λ
; ð3:11Þ

and Eq. (3.10) is rewritten as

λ
dχ
dλ

¼ aþ ðb − 1Þχ þ cχ2

≡ cðχ − αÞðχ − βÞ: ð3:12Þ

Let us consider the case

a>0; b<0; c>0; ðb−1Þ2−4ac>0; ð3:13Þ

so that both α and β are real and positive.2 Without loss of
generality, we can assume

α > β: ð3:14Þ

Using this, we can determine the region of initial values
where the renormalization group flow converges to the
origin λ ¼ ξ ¼ 0. First, obviously the initial value of λ
should be positive, and the direction of flow should be in
the direction of decreasing λ. Then the half λ − ξ plane
(λ > 0) splits into three sectors (see Fig. 3):

ð1Þ ξ > αλ; ð2Þ αλ > ξ > βλ; ð3Þ βλ > ξ: ð3:15Þ

From (3.12), it is clear that these three sectors are not mixed
by the renormalization group flow. More explicitly, the
flow in each sector is described by a different branch of the
solution to (3.12). Actually, the trajectory of the second
sector (2) is given by

ξ ¼ ðσ − δ tanhðcδ log jλj þ κÞÞλ; ð3:16Þ

where

δ ¼ 1

2
ðα − βÞ; σ ¼ 1

2
ðαþ βÞ; ð3:17Þ

FIG. 3. Renormalization group flow. The flow direction is from
right to left. The slope of the steeper line (ξ ¼ αλ) is α and that of
the flatter line (ξ ¼ βλ) is β. All trajectories in the region between
the flatter line and the vertical axis are tangent to the steeper line
near the origin, and trajectories outside this region do not pass
through the origin.

2Their values corresponding to (3.9) are a ¼ 100
133

; b ¼ − 50
133

;
c ¼ 25

2394
, and α ¼ 131.2, β ¼ 0.5487. They are related to ω; in

fact we have ω� ¼ − 3
α.
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and κ is an integration constant. On the other hand, the
trajectory in the first (1) or the third sector (3) is given by

ξ ¼ ðσ − δ cothðcδ log jλj þ κÞÞλ: ð3:18Þ

depending on whether the argument of coth is negative or
positive.
In the first sector (1), the trajectory corresponds to the

part of (3.18) where the argument of coth is negative where
coth < −1. Therefore as λ is decreased to zero, the argu-
ment of the coth remains negative and the value of χ (inside
of the parentheses) converges to α. In the second sector (2),
tanh in (3.16) causes no singularity and χ again converges
to α. Therefore in the first two sectors, the flow converges
to the origin along the curve converging to ξ ¼ αλ,
as depicted in Fig. 3. This precisely corresponds to the
FP value for ω in (3.8). On the other hand in the third
sector (3), the trajectory corresponds to the part of (3.18)
where the argument of coth is positive. Then the argument

of coth becomes zero at some smaller value of λð> 0Þ,
which means the flow goes away to ξ ¼ −∞. Thus, the
domain of the asymptotically free FP is given by

ξ > βλ; λ > 0: ð3:19Þ

Given this result, we may say that these two R2 operators
are marginally relevant operators.
We have thus found the flow of asymptotically free

theory, in agreement with perturbative treatment, where
all couplings are necessary for the renormalizability.
However we should note that our analysis is not just
perturbative treatment, but shows that these couplings are
necessary from the viewpoint of renormalization group
for the theory to be renormalizable. A typical example of
nonrenormalizable theory in this sense, though perturba-
tively renormalizable, is QED, where the coupling is not
asymptotically free and the theory suffers from Landau
singularity.

(a) (b)

(c) (d)

FIG. 4. The flow of η for the range of (a) −200 < t < 2000 and (b) −200 < t < 0, and the flows of (c) λ and (d) ω for the range
of −200 < t < 10000.
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We have also studied how the couplings flow from
the low to high energies for the boundary condition
η ¼ 0.1; λ ¼ 0.005;ω ¼ −0.2 at t ¼ 0 in full order in
the inverse Newton coupling without restricting to the
weak coupling expansion. The results are depicted in
Fig. 4. It is reassuring that we have precisely reproduced
the expected behaviors for Newton coupling, going to a
finite UV FP and becoming smaller in IR.

IV. SUMMARY AND DISCUSSIONS

We have studied the flow of the coupling constants in
the Einstein and higher curvature theories. In most of the
discussions of FPs in the asymptotic safety, the effect of the
wave function renormalization have not been considered
much, even though it was recognized from the outset to be
inessential coupling [1]. If we neglect this, it appears that
we get FP both for the cosmological constant and Newton
coupling separately, but it is important to realize that they
could be changed by the wave function renormalization and
do not make much sense. The freedom in the choice of the
wave function renormalization allows us to fix either the
cosmological constant or Newton coupling. Here we have
chosen to fix the cosmological constant and studied the
flow of Newton and R2 couplings. It should be noted that it
is also perfectly right to fix the Newton coupling to study
the flow of the cosmological constant. Either way, the flow
equation is written in terms of the invariant combination η,
and we find the same FP.
We have then studied the flow of the Newton coupling in

the Einstein theory with the fixed cosmological constant. In
this process, we find that the widely accepted cutoff should
be modified so as to be consistent with the scaling by the
wave function renormalization. In this way, we have found
the beta functions are written entirely in terms of invariant
combination η and found the nice behavior that the Newton
coupling goes to a finite UV FP and becomes small in the
low energy, as expected. We have also studied the behav-
iors of the couplings in quadratic curvature theory. There
we have found nontrivial FP for the cosmological constant
and the Newton coupling with asymptotically free FP for
the higher curvature terms, in addition to nontrivial FP for
the higher curvature terms (3.7) which is probably unphys-
ical. We find here again that the beta functions are written
in terms of the invariant combination η. We have given the
detailed analysis of the asymptotically free FP for small
couplings and revealed how the couplings go to the free FP
and identified the region where this happens around the
origin of the coupling space. They vanish in the UV with
their ratio tending to a finite number. We have also
confirmed this behavior for the higher curvature terms
and the expected behavior for the Newton coupling using
the full beta functions containing all order terms of the
Newton coupling. Our motivation to study the system is to
examine how many relevant operators there are. This is an
important problem in identifying the asymptotically safe

theory. We have found that the two independent quadratic
curvature terms are both marginally relevant at the
asymptotically free FP. It is reassuring that we have been
able to find a trajectory connecting between the high and
low energies.
Unfortunately we have not been able to find any

reasonable nontrivial UV FPs. The importance of such
FPs is that the asymptotically free theory is probably not
able to resolve the unitarity problem inherent in the higher-
derivative theories. However, there are some suggestions
that the ghost may not be a problem because they may be
confined in analogy with strong coupling QCD [39], or
they are unstable massive modes which do not appear in the
asymptotic states [40]. To determine whether either of these
is true or not, or if there is another way to avoid the
problem, needs further confirmation. So it is premature to
conclude at this stage that the asymptotically free FP cannot
save the theory.
We would also like to note that it is only that we have not

been able to find good nontrivial UV FPs with our present
higher-derivative gauge fixing and regulator, but this does
not completely exclude the possibility that there are still
sensible UV FPs somewhere in the coupling space. This is
because numerical calculations cannot rule out this pos-
sibility completely. Another problem is that the result seems
to depend on the choice of gauge and/or regulator [37]. To
confirm the existence or nonexistence of the nontrivial FPs,
we need further study.
Another possibility is that this failure is just an artifact

of the truncation and it is possible to find nontrivial FP if
we extend our space of study to more operators. This
search for nontrivial FPs may end at certain stage without
any more relevant and marginal operators, or could
continue. The first case realizes the goal of the asymptotic
safety program. If the latter is true, there may be an infinite
number of relevant operators. In this case we have to
understand how the coefficients of these terms are
determined, because otherwise the theory lacks its pre-
dictability. The principle to determine them may be the
requirement of the consistency of the theory, and then the
infinite series might be summed up to a closed theory,
just like massive gravity [41]. This may lead to an
alternative formulation of string theory or some other
theory of quantum gravity that can deal with phenomena
in curved space.
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