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Chiral bosons, or self-dual p-form fields, are ubiquitous in string theoretic contexts but are challenging
to treat. Lagrangian constructions invariably introduce a complexity be it auxiliary fields or sacrificing
Lorentz invariance. In this paper we show how to pass between such different approaches to chiral bosons
starting from a Chern Simons point of view to recover formulations of Pasti, Sorokin and Tonin and of
Mkrtchyan. This leads to a novel generalization of the latter to include non-Abelian chiral bosons in
2-dimensions, and generalizations to include twisted self-duality which are relevant in T-duality symmetric
approaches to string theory. Our approach also shows how global affine symmetries of two- and higher-
dimensional chiral bosons emerge from broken Chern-Simons gauge transformations on the boundary.
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I. INTRODUCTION

Chiral bosons are an example of self-dual p-forms:
p-form fields ϕ in a (2pþ 2)-dimensional space-time
whose (pþ 1)-form field strength dϕ is self-dual, i.e.
dϕ ¼ ⋆dϕ. Such fields are pervasive within string theory
as they are often required to complete multiplets which
furnish supersymmetry. Familiar examples include the
self-dual 2-form, living in the 6-dimensional N ¼ ð2; 0Þ
multiplet, pertinent to both the M5 brane and the self-dual
string. Another example is the self-dual Ramond-Ramond
4-form of type IIB supergravity. In two dimensions, i.e.,
p ¼ 0, the self-duality condition amounts to the chiral
boson being purely left-moving, i.e., ∂−ϕ ¼ 0. These self-
dual scalars form a critical component of the “doubled”
approaches to string theory [1–5] in which T-duality is
promoted to a manifest symmetry of the world sheet.
Indeed, this behavior is generic for duality-invariant for-
malisms and also appears in the context of gauge theory
more generally [6–10].
Given these motivations, it is highly desirable to have a

quantum treatment of chiral bosons. The quantization of a

given theory is made significantly easier if one can find a
manifestly Lorentz-invariant Lagrangian, written in terms
of Lorentz-covariant objects. However, formulating a
Lorentz-invariant Lagrangian for chiral bosons is somewhat
challenging, even classically, in essence because the
chirality condition is a first order differential equation,
whereas one anticipates second order differential equations
to arise for bosonic fields. Over the years, many attempts
have been made toward finding a suitable Lagrangian for
chiral bosons, but most of these formalisms require making
some other concession in order to accommodate manifest
Lorentz-invariance.
We will provide a more detailed overview of existing

approaches to chiral bosons in Sec. II, but first, let us
summarize the key aspects of some well-known formal-
isms. Early approaches, such as those of Siegel [11] and
Floreanini and Jackiw [12], sacrificed manifest Lorentz-
invariance in order to describe the correct degrees of
freedom. Manifest Lorentz-invariance was recovered by
Pasti, Sorokin, and Tonin [13] at the expense of adding
an auxiliary field to the Lagrangian in a nonpolynomial
manner. More recently, Mkrtchyan [10] added yet another
auxiliary field to the PST action, rendering it polynomial.
Unfortunately, the nonpolynomial origin of this action is
hiding just beneath the surface; in order to demonstrate that
the Mkrtchyan action describes a chiral boson, one must
leverage a rather mysterious nonpolynomial symmetry. As
well as improving upon the aforementioned shortcomings,
duality-invariant string theory motivates us to include non-
Abelian fields and twisted self-duality.
Alternative to the two-dimensional approaches, the

boundary dynamics of three-dimensional Chern-Simons
theory are known to describe chiral bosons [14]. This
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approach has a few appealing features: the quantization
of Chern-Simons theory has proved very successful,
e.g., [14–16]; the manifestly Lorentz-invariant action
comes equipped with a standard, polynomial symmetry;
the non-Abelian generalization is already known; and we
will see that the inclusion of a twisted self-duality relation
is incredibly simple. While Chern-Simons theory is known
to describe chiral bosons, its relationship to the various
two-dimensional approaches is less evident. Indeed, one
of the key purposes of this note is to clarify these
relationships.
In the forthcoming sections, we will demonstrate that,

alongside the Floreanini-Jackiw action, both the PST and
Mkrtchyan formalisms can be derived from Chern-Simons
theory on a manifold with boundary. These derivations will
center around algebraic manipulations of the actions,
and (in the Abelian case) many of the calculations will
also apply to the higher-form versions of the PST and
Mkrtchyan actions. Using this relationship, we will also be
able to provide the non-Abelian and twisted self-duality
generalizations of both formalisms. Having done this, we
will also have a derivation of the Floreanini-Jackiw action
with twisted self-duality, more commonly referred to in the
literature as the E-model where it arises in the context of
Poisson-Lie T-duality [17–19]. While these generalizations
were known for the PST action [20], we believe that they
were previously unknown for the Mkrtchyan action. In
both cases, we hope that this derivation will offer a novel
perspective on these two-dimensional approaches to
chiral bosons. Furthermore, we hope that this note will
provide additional motivation to pursue the Chern-Simons
approach to chiral bosons.

II. APPROACHES TO CHIRAL BOSONS
IN TWO-DIMENSIONS

Let us start by reviewing some of the two-dimensional
approaches to chiral bosons which we mentioned in the
introduction. Some other approaches to chiral bosons which,
for the sake of brevity, we will not explore include those
of Henneaux-Teitelboim and Beckaert-Henneaux [9,21],
McClain-Wu-Yu [22], Perry-Schwarz [23], Sen [24,25],
and Townsend [26,27].
We will consider a bosonic field ϕ living on a two-

dimensional Lorentzian1 manifold Σ. Starting with the
action for a free nonchiral boson, we may try to incorporate
a gauge symmetry δξϕ ¼ ξ∂−ϕ, such that the only physical
content obeys ∂−ϕ ¼ 0. This can be done by gauging a

chiral conformal symmetry. First, we introduce a gauge
field h transforming as2 δξh ¼ ∂þξþ ξ∂−h − h∂−ξ, and
then we write the action in terms of the would-be-covariant
derivatives ∇þϕ ¼ ∂þϕ − h∂−ϕ and ∇−ϕ ¼ ∂−ϕ. Doing
this, one arrives at Siegel’s gauge invariant action [11],

SS½ϕ� ¼
Z
Σ
d2σ∇þϕ∇−ϕ ¼

Z
Σ
d2σð∂þϕ∂−ϕ − hð∂−ϕÞ2Þ:

ð2:1Þ

A challenge with this approach is that, even after gauge
fixing, the h equation of motion remains as a constraint
to be invoked. While the constraint ð∂−ϕÞ2 ≈ 0 evidently
implies ∂−ϕ ≈ 0, its matrix of first derivatives is degenerate
on the constraint surface making treatment difficult.
Gauge fixing h ¼ 1 leads us to the Floreanini-Jackiw

[FJ] action [12],

SFJ½ϕ� ¼
Z
Σ
d2σð∂σϕ∂−ϕÞ; ð2:2Þ

whose equation of motion, although second order, has the
general solution

∂−ϕ ¼ gðτÞ: ð2:3Þ

By virtue of another gauge symmetry,3

δ̃FJϕ ¼ hðτÞ; ð2:4Þ

the general solution is gauge equivalent to the chirality
condition ∂−ϕ ¼ 0. An evident downside of this approach,
common also to [9,23], is that two-dimensional Lorentz
invariance is not manifest at the Lagrangian level. Although
some one-loop calculations can be done for chiral fields in
such a framework, it becomes rather challenging to extend
to higher loops.
Notice that this action has another symmetry,

δ̂FJϕ ¼ εðσþÞ: ð2:5Þ

At first, we might worry that this kills all of the degrees of
freedom of our chiral boson. Fortunately, we find that its
Noether charge is nonvanishing,4 and this means that we
should not interpret it as a gauge symmetry but rather as a
chiral affine symmetry. This distinction between gauge and
affine symmetries will be discussed in greater detail in
section VI A.

1We choose coordinates ðτ; σÞ and define the metric and
orientation by ds2 ¼ dτ2 − dσ2 and d2σ ¼ dτ ∧ dσ respectively.
In lightcone coordinates σ� ¼ 1

2
ðτ � σÞ, these are given by ds2 ¼

4dσþdσ− and d2σ ¼ −2dσþ ∧ dσ−. The Hodge star acts as
⋆dτ ¼ dσ, ⋆dσ ¼ dτ, and ⋆dσ� ¼ �dσ�. Then, a self-dual
field dϕ ¼ ⋆dϕ is one for which ∂−ϕ ¼ 0. Given a 1-form ω,
we define kωk2 ¼ gαβωαωβ ¼ ωþω−.

2Weights are naturally h≡ hþþ and ξ≡ ξ−. A complementary
perspective is to consider the metric on the world sheet as ds2 ¼
4dσþdσ− þ 4hðdσþÞ2 with the gauge transformation being the
conformal transformations that preserve this metric form.

3The Noether charge corresponding to δ̃FJ is zero.
4The Noether charge corresponding to δ̂FJ is Q ¼ 2

R
dσε∂σϕ.
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Instead of working with the FJ action, one might
introduce auxiliary fields so as to restore Lorentz invari-
ance. This is done in the Pasti-Sorokin-Tonin [PST]
formalism [13] which adopts the action

SPST½ϕ; f� ¼
Z
Σ
d2σ

�
∂þϕ∂−ϕ −

∂þf
∂−f

ð∂−ϕÞ2
�
: ð2:6Þ

Although we have displayed the result with indices explicit,
this action can be cast in a manifestly Lorentz invariant
fashion, and may be extended to higher form fields. The
addition of the field f, which is best thought of as the local
parametrization of a closed 1-form ω ¼ df, is comple-
mented with additional symmetries,

δPSTϕ ¼ ϵ
∂−ϕ

∂−f
; δPSTf ¼ ϵ; ð2:7Þ

δ̃PSTϕ ¼ ΛðfÞ; δ̃PSTf ¼ 0: ð2:8Þ

Commensurate with this symmetry, the equation of motion
for f is automatically satisfied5 given that of ϕ which reads

∂−

�
∂þϕ −

∂þf
∂−f

∂−ϕ

�
¼ 0: ð2:9Þ

To see that this encodes a chiral field, it is convenient to

introduce a 1-form v whose components read v� ¼
ffiffiffiffiffiffi
∂�f
∂∓f

q
and a scalar χ ¼ vþ∂−ϕ. In terms of these, the equation of
motion becomes

dðvχÞ ¼ 0; ð2:10Þ

and the desired self-duality condition now follows as the
homogeneous solution χ ¼ 0. Analogous to the general
solution of the FJ equation of motion, the inhomogeneous
solution vχ ¼ dΓðfÞ is irrelevant as it can be eliminated by
a gauge transformation δ̃PSTðvχÞ ¼ dΛðfÞ.
Upon gauge fixing the δPST-symmetry by setting

fðτ; σÞ ¼ τ, the PSTaction reduces exactly to the FJ action,
with the residual δ̃PST-symmetry becoming δ̃FJ. There are
some evident downsides, however, to the PST approach:
first, the nonpolynomial form of the action requires some
careful consideration; second, at the functional level, one
should restrict to configurations where ω ¼ df is nowhere
vanishing, the existence of which is not a given when
taking this approach beyond Minkowski space; third, the
PST gauge symmetry appears rather exotic.
Resolving the first of these downsides, Mkrtchyan

and collaborators have recently developed an approach
which addresses the nonpolynomial nature of the PST

action [6,10,28]. In the spirit of Hubbard-Stratonovich,
the PST action can be rendered polynomial by the intro-
duction of an additional scalar field α to give the Mkrtchyan
action,

SM½ϕ; f; α� ¼
Z
Σ
d2σð∂þϕ∂−ϕ − 2α∂þf∂−ϕþ α2∂þf∂−fÞ:

ð2:11Þ

Provided that ∂�f ≠ 0, one can eliminate α by its equation
of motion, α ¼ ∂−ϕ

∂−f
, to recover the PST action. Furthermore,

the δPST-symmetry is uplifted to

δMϕ ¼ ϵα; δMf ¼ ϵ; δMα ¼ ϵ
∂þα
∂þf

: ð2:12Þ

In [6,10,28], the gauge parameter of this symmetry is
redefined according to φ ¼ ϵ ∂þα

∂þf
, such that it is viewed as a

shift symmetry on α rather than on f. As we can see, while
the action is now polynomial, dealing with this symmetry
may still prove challenging since it remains nonpolyno-
mial. The second symmetry of the PST action also lifts
easily to the Mkrtchyan action,

δ̃Mϕ ¼ ΛðfÞ; δ̃Mf ¼ 0; δ̃Mα ¼ Λ0ðfÞ: ð2:13Þ

It is useful to define the 1-form μ ¼ dϕ − αdf, whose
self-dual component is gauge invariant,

δMμþ ¼ 0; δMμ− ¼ ϵ

∂þf
ð∂þμ− − ∂−μþÞ; ð2:14Þ

and, in terms of which, the action may be written as

SM½ϕ; f; α� ¼
Z
Σ
ðμ ∧ ⋆μþ 2αdf ∧ dϕÞ: ð2:15Þ

Turning to the equations of motion for the Mkrtchyan
action (denoting on-shell equivalence by ≃), we have

δSM
δα

≃ 0 ⇒ μ−∂þf ≃ 0; ð2:16Þ

δSM
δϕ

≃ 0 ⇒ ∂−μþ ≃ 0; ð2:17Þ

δSM
δf

≃ 0 ⇒ μ−∂þαþ α∂−μ− ≃ 0: ð2:18Þ

Assuming that ∂�f are nowhere zero, the f equation of
motion is redundant, reflecting the δM-symmetry, and the ϕ
and α equations of motion invoke a flatness,

dμ ¼ dðαdfÞ ≃ 0: ð2:19Þ
5Precisely, the f equation of motion is ∂−ϕ

∂−f
∂−ð∂þϕ−

∂þf
∂−f

∂−ϕÞ ¼ 0.
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Solving with αdf ¼ dΓ, and performing a field redefinition
ϕ → ϕ0 ¼ ϕ − Γ, we then have that μ− ¼ 0 invokes the
desired chirality condition,

∂−ϕ
0 ¼ 0: ð2:20Þ

Shortly, we will encounter the structure we see here, a
flatness condition combined with a covariant chirality
condition, from another perspective.

III. THE CHERN-SIMONS APPROACH
TO CHIRAL BOSONS

Chiral bosons famously also emerge as the boundary
dynamics of Chern-Simons [CS] theory [14]. Consider CS
theory on a 3-manifold M ¼ R ×D with the topology of a
solid cylinder (the length of the cylinder viewed as the time
with coordinate τ, and the disk D parametrized by radial
and angular coordinates ρ and σ). To properly define the
action for Abelian CS theory,

SCS½A� ¼ κ

Z
M
A ∧ dA; ð3:1Þ

when the manifoldM has a boundary, one typically imposes
boundary conditions on the connection. These are chosen
such that the boundary term in the variation of the action
vanishes. In [14], they chose to impose the boundary
condition Aτj∂M ¼ 0, whereas we will deviate and instead
impose6 Aτj∂M ¼ Aσj∂M. Splitting the connection as A ¼
Aτdτ þ AD, where AD is a (time-dependent) 1-form on the
diskD, the action may be rewritten (after integrating by parts
and invoking the boundary condition) as

SCS½A� ¼ κ

Z
M
ð2Aτdτ ∧ dDAD þ AD ∧ dτ ∧ ∂τADÞ

þ κ

Z
∂M

d2σAσAσ: ð3:2Þ

The component Aτ serves as a Lagrange multiplier enforcing
the flatness of AD which we solve with AD ¼ dDϕ ¼
∂ρϕdρþ ∂σϕdσ. Subject to this, the action becomes local-
ized on the boundary after integration by parts, and reads

SCS ¼ −κ
Z
∂M

d2σ∂σϕ∂−ϕ; ð3:3Þ

which we recognize as the FJ action. Having demonstrated
that Chern-Simons theory indeed describes chiral bosons,
we will now consider some augmentations of the action.
These will not alter the physical content of the theory, but
simply make it more amenable to our future analysis.

Returning to CS theory, we can obtain the self-duality
relation as a Neumann type boundary condition by adding a
boundary term to the action so that the combined boundary
variation takes the form

R
δA ∧ ðA − ⋆AÞ. (This approach

can also be seen in [[29], Appendix A]. To this end, we
define the new functional S0CS by

S0CS½A� ¼ κ

Z
M
A ∧ dA −

κ

2

Z
∂M

A ∧ ⋆A; ð3:4Þ

the variation of which is

δS0CS½A� ¼ κ

Z
M
2δA ∧ dAþ κ

Z
∂M

δA ∧ ð1 − ⋆ÞA; ð3:5Þ

and we set the boundary term to zero with Aj
∂M ¼ ⋆ðAj

∂MÞ.
Of course, in general, CS theory with a boundary is not
fully gauge invariant, and instead it is only invariant under
those gauge transformations which preserve the boundary
condition. Here, including our boundary term, a gauge
transformation δλA ¼ dλ transforms the action as

δλS0CS½A� ¼ κ

Z
∂M

A ∧ ð1 − ⋆Þdλ; ð3:6Þ

and thus we only have invariance under self-dual gauge
transformations. This may also be understood by consid-
ering the gauge transformation of the boundary condition
directly.
Morally, this breaking of the gauge symmetry means that

would-be pure-gauge modes become propagating edge
modes on the boundary. For an alternative perspective, we
may restore the gauge invariance by coupling the bulk theory
to new boundary degrees of freedom i.e. a classical version
of anomaly inflow, which has been recently considered in the
context of 4d CS theory [30,31]. Let us define χ ∈ C∞ð∂MÞ
as a boundary field with a gauge transformation δλχ ¼ −λ
such that Aχ ≡ Aþ dχ is gauge invariant.7

Evidently, making the replacement A → Aχ in our action
S0CS½A� will result in a manifestly gauge invariant action,
even with a boundary. Less obvious, however, is that the
theory does not depend on the extension of χ into the bulk,
but indeed we find the action

Sinv½A;χ�≡S0CS½Aχ �

¼ SCS½A� þ κ

Z
∂M

�
A∧ dχ −

1

2
Aχ ∧⋆Aχ

�
: ð3:7Þ

The first two contributions here have also been considered
in [32,33] to restore the gauge invariance of CS theory with

6The boundary condition Aτj∂M ¼ Aσ j∂M is a self-duality
condition Aj

∂M ¼ ⋆ðAj
∂MÞ.

7It will be helpful for subsequent generalization to notice that
the combination Aχ ≡ Aþ dχ can also be thought of as the gauge
transformation of the connection where, in the spirit of Stueck-
elberg, the gauge parameter is promoted to a dynamical field.
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a boundary, and the final term is a stand-alone gauge
invariant boundary term. In this larger theory, we have the
full gauge freedom with dλ no longer constrained to be self-
dual on the boundary. We can use part of this larger
symmetry to fix χ ¼ 0 such that Eq. (3.7) abbreviates to
Eq. (3.4) demonstrating that the physical content of these
theories is equivalent.
In this gauge invariant presentation, we recover the chiral

boson equations of motion by varying the action,

δSinv½A; χ� ¼ κ

Z
M
2δA ∧ dAþ κ

Z
∂M

δA ∧ ð1 − ⋆ÞAχ

þ κ

Z
∂M

δχð2dA − dð1 − ⋆ÞAχÞ: ð3:8Þ

The bulk variation of A (i.e., the first term) tells us that A is
on-shell flat (which trivially implies that Aχ is also on-shell
flat). Meanwhile, the boundary variation of A gives us the
desired self-duality relation on the flat field, Aχ j

∂M ¼
⋆ðAχ j

∂MÞ. Solving the flatness as A ¼ dðϕ − χÞ, the boun-
dary equation gives dϕ ¼ ⋆dϕ. Similar to some of the two-
dimensional models, the χ equation of motion is implied by
the other equations of motion, a consequence of the fact
that it is gauge trivial. This ensures that upon gauge fixing
χ ¼ 0 one can also disregard its equation of motion and
return to the pure CS theory.
At this stage, one might wonder where the self-dual

boundary gauge transformations have disappeared to in this
presentation. While it might, at first, seem like they have
been washed out by the introduction of the edge modes, a
simple degrees of freedom counting argument demonstrates
that this must not be true. Indeed, the new action Sinv½A; χ�
actually comes with an additional gauge symmetry which
acts exclusively on the edge modes. Consider the gauge
transformation δθA ¼ 0 and δθχ ¼ θ. Under this, the action
transforms as

δθSinv½A; χ� ¼
Z
∂M

ðA ∧ ðdθ − ⋆dθÞ − dχ ∧ ⋆dθÞ: ð3:9Þ

So, while the action is not generally invariant under this
transformation, if we take dθ ¼ ⋆dθ, then the first term
vanishes and the second is a total derivative which we may
ignore. These self-dual boundary gauge transformations
are precisely the chiral affine symmetries we saw earlier,
but this identification will become clearer in the ensuing
sections.
The benefit of the edge mode presentation is that this

self-dual gauge parameter can be exclusively defined over
the boundary, i.e., θ ∈ C∞ð∂MÞ, and acts trivially on the
gauge field A. Furthermore, the λ gauge symmetry is
completely unconstrained and has exactly the right degrees
of freedom to render A (on-shell) locally trivial everywhere.
Conceptually, this makes the transition from a bulk theory
to a boundary theory much smoother.

IV. FROM CHERN-SIMONS TO PST
AND MKRTCHYAN

Having seen how to obtain the FJ action through
manipulations of CS theory, our next goal is to understand
how the PST and Mkrtchyan actions can also be recovered.
The idea here is not to single out the Aτ component as
auxiliary, but instead to introduce a more general decom-
position of the bulk gauge field.
The arguments we present here are, to a large extent,

independent of dimension, and can equally be applied
to self-dual 2-forms in 6d as to chiral scalars in 2d.
Accordingly, we will leave the dimension fairly general,
and work in (2nþ 1)-dimensional Chern-Simons theory
for an Abelian n-form field A ∈ ΩnðMÞ on a manifold with
a boundary ∂M ≡ Σ. To restore complete gauge invariance
under δλA ¼ dλ for λ ∈ Ωn−1ðMÞ, we again invoke a
Stueckelberg compensator field χ ∈ Ωn−1ð∂MÞ which
transforms with a shift symmetry δλχ ¼ −λ. We then use
the action Sinv½A; χ� (3.7), now understood in this general
setting.
One further comment on the number of dimensions must

be made. When Σ is four-dimensional with Euclidean
signature, the bulk Chern-Simons term A ∧ dA for a
2-form A ∈ Ω2ðMÞ is a total derivative and Eq. (3.7)
immediately simplifies to a boundary action,

κ

2

Z
∂M

ðA ∧ Aþ 2A ∧ dχ − Aχ ∧ ⋆AχÞ: ð4:1Þ

In terms of the (anti)self-dual projections of the field, A� ¼
1
2
ð1� ⋆ÞA and dχ� ¼ 1

2
ð1� ⋆Þdχ, the action becomes

κ

2

Z
∂M

ð2A− ∧ A− þ 4A− ∧ dχ− − dχþ ∧ dχþ þ dχ− ∧ dχ−Þ:

ð4:2Þ

The self-dual component of A has dropped entirely, and
the antiself-dual component is algebraically eliminated as
A− ¼ −dχ−, giving the action

−
κ

2

Z
∂M

dχ ∧ dχ; ð4:3Þ

which evidently carries no degrees of freedom and vanishes
when χ is global. Thus, we continue under the specification
that A is an odd-degree form (i.e., n is odd), and Σ≡ ∂M
is Lorentzian, such that ⋆2ðAj

∂MÞ ¼ Aj
∂M. (Note that we

could also include Euclidean signature when n is odd by
considering imaginary self duality, i.e., ⋆Aj

∂M ¼ iAj
∂M.)

In order to define a more general decomposition of the
gauge field which will not break Lorentz invariance, we
introduce a 1-form ω ∈ Ω1ð∂MÞ and its normalized dual
vector v ¼ ω♯=kωk2 (such that ιvω ¼ 1) and extend them
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to live on the whole manifold M. With this data, we can
decompose the exterior derivative into

d ¼ d⊥ þ dk; dk ¼ ω ∧ Lv; ð4:4Þ

such that ðd⊥Þ2 ¼ 0 and ðdkÞ2 ¼ 0 when dω ¼ 0, which
we shall hence assume. The connection similarly decom-
poses as

A ¼ A⊥ þ ω ∧ ιvA; ιvA⊥ ¼ 0: ð4:5Þ

To make contact with the derivation of the FJ action from
CS in Sec. III, one could specify ω ¼ dτ. Here, however,
we keep ω arbitrary which will allow us to maintain
Lorentz covariance in the resultant boundary theory.
Substituting this decomposition of the gauge field into

our action (3.7), the bulk Chern-Simons term becomes

SCS½A� ¼ κ

Z
M
ð2ω ∧ ιvA ∧ dA⊥ þ A⊥ ∧ dA⊥Þ

þ κ

Z
∂M

ω ∧ ιvA ∧ A⊥; ð4:6Þ

and ιvA acts as a Lagrange multiplier enforcing the
constraint ω ∧ dA⊥ ¼ 0. This has the general solution
A⊥ ¼ dϕ − ω ∧ C [[6], Appendix C] which is further fixed
by the constraint ιvA⊥ ¼ 0, implying C ¼ ιvdϕ. We can
therefore write the total gauge field as

A ¼ dϕ − ω ∧ α; α≡ ιvðdϕ − AÞ; ð4:7Þ

and the gauge invariant combination as Aχ ¼ db − ω ∧ α
where b ¼ ϕþ χ. Notice that this expression for Aχ can be
identified with the combination we called μ in the intro-
duction, and we will henceforth refer to it as such.
Substituting this back into the action (3.7) gives

Sinv ¼ −
κ

2

Z
∂M

ðμ ∧ ⋆μþ 2ω ∧ α ∧ dbÞ; ð4:8Þ

which may be expanded out as

Sinv ¼ −
κ

2

Z
∂M

ðdb ∧ ⋆dbþ 2ω ∧ α ∧ X

þ ω ∧ α ∧ ⋆ðω ∧ αÞÞ; ð4:9Þ

where X ¼ db − ⋆db. We recognise this as the sought-
after Mkrtchyan action for chiral p-forms. We already
know that this action comes equipped with a local sym-
metry, which is the uplift of the PST symmetry to the
Mkrtchyan action,

δϵb ¼ ϵα; δϵω ¼ dϵ; δϵα ¼ ϵιvð1 − ⋆Þdα; ð4:10Þ

under which we have

δϵμ ¼ ϵð1 − ⋆Þιvðω ∧ dαÞ ¼ ϵð1 − ⋆Þιvdμ: ð4:11Þ

Notice that this represents a zilch symmetry: after imposing
the constraint from the parallel component of the CS
connection, we have a new symmetry proportional to dμ≡
dAχ ¼ dA which vanishes on-shell for both the CS and
Mkrtchyan theories. Thus this symmetry can be understood
as a trivial symmetry which arises once auxiliary fields are
integrated out (in much the same way that SUSY closes
only on-shell once auxiliaries are eliminated). To experts on
these formalisms, this may not be particularly surprising as
the PST symmetry is also known to be a zilch symmetry in
the same fashion [20,34].
To go from the Mkrtchyan to the PST action we use the

equation of motion for α,

ω ∧ ðX þ ⋆ðω ∧ αÞÞ ¼ 0: ð4:12Þ

We can partially determine this solution as

α ¼ ιvX þ ιv⋆ðω ∧ ρÞ; ð4:13Þ

where ρ is undetermined, but then, using the general
identity ιv⋆β ¼ ⋆ðβ ∧ v♭Þ and v♭ ≡ ω=kωk2, we conclude
that the second term does not contribute and α ¼ ιvX .
Making use of a further identity ⋆ιvβ ¼ ð−1Þp−1v♭ ∧ ⋆β
for a general p-form β ∈ Ωpð∂MÞ, we can entirely elimi-
nate α from the action (4.9) to recover the p-form version of
the PST action,

Sinv ¼ −
κ

2

Z
∂M

ðdb ∧ ⋆db − kωk2ιvX ∧ ⋆ιvXÞ: ð4:14Þ

V. COMMENTS ON THE DOUBLEWORLD SHEET

Let us return momentarily to the two-dimensional
Mkrtchyan action of Eq. (2.11), which we recast as

SM½ϕ; f; α� ¼
Z
Σ
d2σðð∂þϕ − α∂þfÞð∂−ϕα∂−fÞ

− α∂þf∂−ϕþ α∂−f∂þϕÞ: ð5:1Þ

There is another rather direct way to see the emergence of a
Chern Simons description following the approach of [20].
In [20] a similar first order formalism was obtained (in the
context of nonlinear sigma models) by invoking some
partial gauge fixing of a two-dimensional gauge field
A� ¼ α∂�f. By reverse engineering we are led to consider
an action,

S0M½ϕ; A� ¼
Z
Σ
d2σðð∂þϕ − AþÞð∂−ϕ − A−Þ

− Aþ∂−ϕþ A−∂þϕÞ; ð5:2Þ
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such that upon fixing the aforementioned gauge, returns
the Mkrtchyan Lagrangian. In this way we have arrived at an
action (up to a trivial integration by parts) originally
proposed by Witten [35] in a similar context. This, however,
is not gauge invariant under δϕ ¼ ϵ and δA� ¼ ∂�ϵ as

δS0M½ϕ; A� ¼
Z
Σ
d2σðϵð∂−Aþ − ∂þA−Þ: ð5:3Þ

Thus, now with opposite logic, to restore gauge invariance
we add a Chern-Simons bulk action to arrive again at (3.7).
Let us now consider the case where we have 2n bosonic

fields, denoted by X, that enter in a generalization of the
Mkrtchyan action:

S ¼ 1

2

Z
d2σ

�
ð∂þfA − ∂þXÞHð∂−fA − ∂−XÞ

þ ∂−fAη∂þX − ∂þfAη∂−X
�
:

This is relevant to the doubled world sheet description
of strings on a toroidal background where X ¼ fxi; x̃ig
constitutes the coordinates of the target space together
with their T-duals. The couplings are specified by a split
signature pairing

η ¼
�
0 1

1 0

�
; ð5:4Þ

and a generalized metric encoding the target space metric
and Kalb-Ramond data

H ¼
�
g − bg−1g −bg−1

g−1b g−1

�
: ð5:5Þ

Note that the generalized metric is an element of Oðn; nÞ
(the transformations that preserve η) and so defines an
almost product structure E ¼ Hη−1 that obeys E2 ¼ 1.
Elimination of the scalar fields A from the action yields
a PST formulation of the doubled string, as in [20], from
which twisted self-duality dX ¼ ⋆EdX follows as the
equation of motion. From this twisted self-duality con-
straint one can eliminate half the variables, the x̃i say, to
yield second order equations for the other half, the xi which
reproduce those of the standard string world sheet.
We now follow the same strategy as above and propose

to undo a gauge fixing A� ¼ A∂�f by considering

S½A� ¼ 1

2

Z
d2σ

�
ðAþ − ∂þXÞHðA− − ∂−XÞ

þ ∂þXηA− − ∂−XηAþ
�
: ð5:6Þ

This action is not gauge invariant under the full Uð1Þ2n
symmetry δA ¼ dϵ, δX ¼ ϵ. It is however invariant when

we consider the gauge fields to take values in anUð1Þn sub-
algebra that is isotropic with respect to η, i.e., if we gauge
half the symmetries with ηIJAIAJ ¼ ηIJϵ

IϵJ ¼ ηIJϵ
IAJ ¼ 0.

This idea of gauging an isotropic subalgebra was invoked
by Hull in his approach to the doubled string [3] and
developed in [36]. If instead we wish to restore a full
Uð1Þ2n invariance we add a Chern-Simons term to arrive at
the form

Sinv½A;X� ¼ SCS½A� þ
Z
∂M

η
�
A ∧ dX −

1

2
ðA − dXÞ

∧ ⋆EðA − dXÞ
�
: ð5:7Þ

where Uð1Þ2n algebra indices are contracted with the
product η. This discussion can be expanded to the case
where T-duality acts in an internal space that is a fibration
over some base manifold. To do so one simply allowsH ¼
HðyÞ to depend on the coordinates ya of the base manifold
and couple to a background gauge field B ¼ Badya, an
Oðn; nÞ vector that contains off-diagonal metric and two-
form data (see [20] Eq. 2.3), by making a minimal coupling
substitution dX → ∇X ¼ dX − B.

VI. NON-ABELIAN CHERN-SIMONS

Having seen that our formalism reduces to others found
in the literature, we will now leverage the simplicity of our
approach to provide a novel generalization. By starting
with non-Abelian Chern-Simons theory in 3-dimensions,
we will derive a polynomial action for non-Abelian chiral
bosons. This will be the non-Abelian generalization of the
Mkrtchyan action and integrating out an auxiliary field will
yield the PST action for non-Abelian chiral bosons.
Let G be a Lie group whose algebra g is equipped with

an ad-invariant inner product h•; •i, and consider the
algebra-valued 1-forms A ∈ Ω1ðM; gÞ. The action to con-
sider is

S0CS½A� ¼
Z
M

�
hA ∧ dAi þ 1

3
hA ∧ ½A ∧ A�i

�

−
1

2

Z
∂M

hA ∧ ⋆Ai; ð6:1Þ

which is the non-Abelian CS action plus a boundary term
which renders the boundary condition Aj

∂M ¼ ⋆ðAj
∂MÞ

Neumann.
As in the Abelian case, the presence of a boundary spoils

the gauge invariance under A → Ag ≡ g−1Agþ g−1dg, but
we may restore the invariance of the action by coupling
the bulk CS theory to a boundary edge mode. Let h ∈
C∞ð∂M;GÞ be a boundary field which transforms as h →
g−1h such that Ah ≡ h−1Ahþ h−1dh is invariant. Then, as
before, we simply replace A → Ah in our action to find the
gauge invariant theory,
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Sinv½A; h�≡ S0CS½Ah�

¼ SCS½A� þ SWZ½h� þ
Z
∂M

�
hA ∧ dhh−1i

−
1

2
hAh ∧ ⋆Ahi

�
; ð6:2Þ

where the Wess-Zumino [WZ] term is defined by

SWZ½h� ¼ −
1

6

Z
M
hh−1dh ∧ ½h−1dh ∧ h−1dh�i: ð6:3Þ

As the action (6.2) is now gauge invariant under the bulk
transformation, one might wonder how the quantization of
the CS level arises since the conventional argument about
large gauge transformations is rendered moot. The answer
is simply that we are required to extend the edge mode h
into the bulk to define the WZ term, and, in the standard
fashion, demanding that the path integral is insensitive
to the choice of such an extension invokes the desired
quantization condition.
Following the same recipe, we introduce a 1-form ω ∈

Ω1ð∂MÞ and its normalized dual vector v ¼ ω♯=kωk2 (such
that ιvω ¼ 1), which we extend to live on the whole
manifoldM. With this data, we can decompose the exterior
derivative into

d ¼ d⊥ þ dk; dk ¼ ω ∧ Lv; ð6:4Þ

such that ðd⊥Þ2 ¼ 0 and ðdkÞ2 ¼ 0 when dω ¼ 0, which
we shall hence assume. The connection similarly decom-
poses as

A ¼ A⊥ þ ιvAω; ιvA⊥ ¼ 0; ð6:5Þ

where ιvA ∈ C∞ðM; gÞ is now valued in the algebra.
Under this decomposition, the bulk CS term becomes

SCS½A� ¼
Z
M
ð2ω ∧ hιvA; F⊥i þ hA⊥ ∧ dA⊥iÞ

þ
Z
∂M

ω ∧ hιvA; A⊥i; ð6:6Þ

where F⊥ ¼ dA⊥ þ A⊥ ∧ A⊥, and we see that ιvA is again
acting as a Lagrange multiplier fixing

ω ∧ F⊥ ¼ 0: ð6:7Þ

In order to write the most general solution to this equation
we will need to slightly generalize the argument presented
in [[6], Appendix C] to non-Abelian fields. Let us assume
that the closed 1-form ω is sufficiently nice, meaning ω ∼
df where f is a good global coordinate and we can foliate
our 3-manifold by slices of constant f. On each slice of
constant f, the constraint above reduces to a non-Abelian

flatness condition F⊥ ¼ 0, which we can solve with A⊥ ¼
g−1dg using the non-Abelian Poincaré lemma. We can now
glue these solutions back together to form the solution on
the whole manifold, and the only piece we might have
missed is a component parallel to ω. Thus, the most general
solution is

A⊥ ¼ g−1dg − Cω: ð6:8Þ

We can fix this solution further by imposing the constraint
ιvA⊥ ¼ 0, implying C ¼ ιvðg−1dgÞ. We can therefore write
the total gauge field as

A ¼ g−1dg − hαh−1ω; α≡ h−1ιvðg−1dg − AÞh; ð6:9Þ

and the gauge invariant combination is written as Ah ¼
m−1dm − αω where m ¼ gh. To match notation with the
previous section, we will again relabel this combination
as μ≡ Ah.
Substituting this solution back into the action (6.2), we

find that it may be succinctly expressed as

Sinv ¼ SWZ½m� − 1

2

Z
∂M

ðhμ ∧ ⋆μi þ 2ω ∧ hα; m−1dmiÞ:

ð6:10Þ

It is actually easiest to compute this action by substituting
the expression for μ≡ Ah directly into Eq. (6.1). Defining
X ¼ m−1dm − ⋆ðm−1dmÞ, this may be expanded out as

Sinv ¼ SWZW½m� − 1

2

Z
∂M

ð2ω ∧ hα;Xi þ hα; αiω ∧ ⋆ωÞ;

ð6:11Þ

to provide the non-Abelian generalization of the Mkrtchyan
action (4.9).
This action is invariant under the local transformation

δϵm ¼ ϵmα; δϵω ¼ dϵ; δϵα ¼ ϵιvð1 − ⋆Þ∇α;

ð6:12Þ

where ∇• ¼ d •þ½m−1dm; •�. To demonstrate this invari-
ance, it is helpful to use the action (6.10) and note that
δðαωÞ ¼ ∇ðϵαÞ − δμ and ω ∧ δμ ¼ ϵω ∧ ∇α. Also, the
covariant derivative ∇ is nilpotent, i.e., ∇2 ¼ 0, and
satisfies

Z
∂M

hA1 ∧ ∇A2i ¼ ð−1Þdeg A1þ1

Z
∂M

h∇A1 ∧ A2i ð6:13Þ

for any pair of g-valued forms A1, A2. The calculation
showing that the action is invariant under these trans-
formations is given in more detail in Appendix.
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As in the Abelian case, this symmetry is a zilch
symmetry arising from the elimination of auxiliary fields.
This can be most easily seen by computing

δϵμ ¼ ϵð1 − ⋆Þιvðω ∧ ∇αÞ ¼ ϵð1 − ⋆Þιvðdμþ μ ∧ μÞ;
ð6:14Þ

and the right-hand side is proportional to the field strength
of μ≡ Ah, related to the regular CS field strength by
F½μ�≡ F½Ah� ¼ h−1F½A�h, which vanishes on-shell.
The elimination of α by its equation of motion proceeds

as in the Abelian case, mutatis mutandis, to yield the non-
Abelian PST action,

Sinv ¼ SWZW½m� þ 1

2

Z
∂M

⋆kωk2hιvX ; ιvXi; ð6:15Þ

and settingω ¼ dτ gives the FJ-type action for non-Abelian
chiral bosons [37],

Sinv ¼ −
Z
∂M

d2σhm−1
∂σm;m−1

∂−mi þ SWZ½m�: ð6:16Þ

A. Self-dual gauge transformations as affine
transformations

In the above, we saw that our coupled bulk-boundary
action (6.2) was invariant under the conventional trans-
formation for the gauge field combined with a left action on
the edge mode,

A → Ag ≡ g−1Agþ g−1dg; h → g−1h; Ah → Ah:

ð6:17Þ

We can, however, consider a further set of local trans-
formations which follow from the right action on h leaving
A invariant,

A → A; h → hg; Ah → Ahg ≡ g−1Ahgþ g−1dg:

ð6:18Þ

Under this right action, the action (6.2) transforms as

Sinv½A;h�→ Sinv½A;h� þ SWZ½g� þ
Z
∂M

hAh ∧ ð1−⋆Þdgg−1i

−
1

2

Z
∂M

hdgg−1 ∧ ⋆ðdgg−1Þi: ð6:19Þ

For self-dual “gauge” transformations, i.e., those which
obey dgg−1 ¼ ⋆ðdgg−1Þ, the two boundary terms are zero.
Notice that this condition may also be written as
∂−gg−1 ¼ 0. In order to kill the WZ term, we assume that
the bulk extension of g can be suitably chosen so as to also

obey this constraint. Pushed through to Eq. (6.16) these
transformations correspond to an affine right action,

m → mgðσþÞ; ð6:20Þ

and gives rise to a chiral current algebra [[37], page 18].
To see that these self-dual boundary transformations are

in fact affine transformations and not gauge symmetries,
we should compute their Noether charges. First, working
directly at the level of the chiral WZW model, Eq. (6.16),
we compute the Noether charge for the infinitesimal affine
right action to be

Q ¼ 2

Z
dσεm−1

∂σm: ð6:21Þ

The fact that this charge is nonvanishing implies that these
transformations are not gauge symmetries of the theory.
Furthermore, we can compute the same Noether charge in
the Chern-Simons theory,

Q ¼
Z

dσεðAτ þ AσÞ; ð6:22Þ

which comes from the conserved current J ¼ Aþ ⋆A. If
we impose the boundary condition Aτ ¼ Aσ and substitute
in the solution to the equation of motion, we see that these
Noether charges agree on-shell.
Finally, we observe that this same calculation generalizes

immediately to the case of an Abelian chiral p-form field
(with self-dual (pþ 1)-form field strength in 2ðpþ 1Þ
dimensions) and yields a global “affine” symmetry of the
chiral p-form gauge theory, with (nonvanishing) pþ 1-
form Noether current J ¼ Aþ ⋆A as before.

VII. TWISTED SELF-DUALITY AND PLTD

One further generalization which we wish to consider is
the possibility for a twisted self-duality relation of the form
Aj

∂M ¼ E⋆ðAj
∂MÞ. This boundary condition has been

considered recently in the context of PLTD [38] and 4D
CS theory [31]. Given our choice of boundary Σ ¼ ∂M
such that8 ⋆2ðAj

∂MÞ ¼ Aj
∂M, we have the self-consistency

condition E2 ¼ 1, and therefore we should think of E as an
involution on the algebra. For many purposes we might
take E to be constant (though this is not essential and indeed
there are natural examples in which E could be a function of
other fields in a larger system) and the above relation can be
understood to hold pointwise.
Generalizing our formalism to include twisted self-

duality is actually rather straight forward. Instead of adding
the boundary term A ∧ ⋆A to the CS action, we add the

8Note that we could also include Euclidean signature by
considering imaginary self duality, i.e. ⋆ðAj

∂MÞ ¼ iAj
∂M and

⋆2ðAj
∂MÞ ¼ −Aj

∂M.
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term A ∧ E⋆A, and the rest of the analysis follows through
as before, so long as we impose the condition
h•; E•i ¼ hE•; •i. This can be thought of as a compatibility
condition between the involution E and the inner product
h•; •i, or alternatively as the requirement that ð•; •Þ ¼R
Σh•; E⋆•i is a symmetric inner product on algebra-valued
1-forms.
So, taking this compatibility condition as given, and

starting from the action

Sinv½A; h� ¼ SCS½A� þ SWZ½h� þ
Z
∂M

�
hA ∧ dhh−1i

−
1

2
hAh ∧ E⋆Ahi

�
; ð7:1Þ

our derivation culminates in

Sinv ¼ SWZ½m� − 1

2

Z
∂M

hm−1dm ∧ E⋆ðm−1dmÞi

−
Z
∂M

ω ∧ hα;Xi − 1

2

Z
∂M

hα; Eαiω ∧ ⋆ω; ð7:2Þ

whereX ¼ m−1dm − E⋆ðm−1dmÞ. This is the non-Abelian
Mkrtchyan action, Eq. (6.11), but now with twisted self-
duality.
The elimination of α by its equation of motion proceeds

directly to give the non-Abelian twisted PST action,

Sinv ¼ SWZ½m� − 1

2

Z
∂M

hm−1dm ∧ E⋆ðm−1dmÞi

þ 1

2

Z
∂M

⋆kωk2hιvX ; ιvXi: ð7:3Þ

Introducing projectors P� ¼ 1
2
ð1� EÞ we can write ιvX in

lightcone coordinates as

ιvX ¼ 1

kωk2 ðω−P−ðm−1
∂þmÞþωþPþðm−1

∂−mÞÞ; ð7:4Þ

and substituting this into Eq. (7.3) gives

S ¼ SWZ½m� − 1

2

Z
∂M

d2σhm−1
∂þm ∧ Eðm−1

∂−mÞi

þ 1

2

Z
∂M

d2σ
ωþ
ω−

hm−1
∂−m;Pþðm−1

∂−mÞi

−
1

2

Z
∂M

d2σ
ω−

ωþ
hm−1

∂þm;P−ðm−1
∂þmÞi: ð7:5Þ

This is now easily compared with [[20], Eq. 3.23].
Finally, fixing ω ¼ dτ returns the FJ form with twisted

self-duality,

S ¼ SWZ½m� − 1

2

Z
∂M

d2σ
�
hm−1

∂σm ∧ m−1
∂τmi

− hm−1
∂σm ∧ Eðm−1

∂σmÞi
�
: ð7:6Þ

In the special case where the algebra is a Drinfeld double
d ¼ g⋈ g̃, and the inner product is the natural pairing
η ¼ h•; •i, the compatibility condition h•; E•i ¼ hE•; •i is
precisely that which appears in the context of Poisson-Lie
T-duality. In that context, the FJ form (7.6) is often denoted
the E-model [17–19].
One can now consider the transformations which gave

rise to affine symmetries in the untwisted case. In general,
one expects a nontrivial choice of E to reduce the
symmetries of the theory. Indeed, in order for the action
to be invariant under m → mg, the gauge parameter g is
required to obey

E ¼ Adg∘E∘Adg−1 and dgg−1 ¼ E⋆ðdgg−1Þ: ð7:7Þ

Given these constraints, we can compute the Noether
charge in the Chern-Simons model,

Q ¼
Z

dσεðAτ þ EAσÞ; ð7:8Þ

which comes from the conserved current J ¼ Aþ E⋆A. As
before, the fact that this charge is nonvanishing tells us that
this is not a gauge symmetry for the theory. Instead, we
should interpret it as a twisted affine symmetry.
As an example of the above it is informative to consider

the case where d ¼ g ⊕ g for which isotropic spaces of
h•; •i are the diagonal and antidiagonal subsets (of which
only the diagonal is a Lie subalgebra). This case is relevant
to the construction of the WZW model, and its integrable
λ-deformation [39]. We define ta as generators of g with
fabc the structure constants and κab the Cartan-Killing
metric. A basis of d is formed by Ta ¼ fta;−tag and T̃a ¼
κabfta; tag spanning the two isotropics and we specify
E by setting EðTaÞ ¼ μκabT̃b. In this case the algebraic part
of condition Eq. (7.7), working infinitesimally in the affine
symmetry parameter g ¼ expðλÞ ¼ expðλaTa þ λ̃aT̃aÞ,
yields one nonautomatic constraint

0 ¼ ðμ−1 − μÞfabcλa

which is trivially solved, with no further condition on λ
when μ ¼ 1 (corresponding to the undeformed WZW
model). The differential condition then implies dλa ¼
⋆κabdλ̃b, or equivalently that λ ¼ fξLðσþÞ; ξRðσ−Þg. The
E-model descends to a WZW model, and its lambda-
deformation parametrized by μ, upon reduction to the coset
Gdiagn expðdÞ defined by the equivalence relation fg1; g2g∼
fhg1; hg2g. We choose a coset representative m ¼ f1; hg
for a group element h which will be the field of the WZW
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model. We see that the affine symmetry acts as m ↦
fhLðσþÞ; hhRðσ−Þg ∼ f1; h−1L ðσþÞhhRðσ−Þg. Thus the
twisted chiral affine transformation on the double algebra
descends to the anticipatedGL × GR affine symmetry of the
WZW model.
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APPENDIX: INVARIANCE OF THE
NON-ABELIAN MKRTCHYAN ACTION

In this appendix, we will demonstrate that the action
(6.10),

Sinv ¼ SWZ½m� − 1

2

Z
∂M

�
hμ ∧ ⋆μi þ 2ω ∧ hα; m−1dmi

�
;

ðA1Þ
is invariant under the local transformation (6.12)

δϵm ¼ ϵmα; δϵω ¼ dϵ; δϵα ¼ ϵιvð1 − ⋆Þ∇α; ðA2Þ

where ∇• ¼ d •þ½m−1dm; •� is the covariant derivative
with respect to the flat connection m−1dm. The covariant
derivative ∇ is nilpotent ∇2 ¼ 0 and satisfies

Z
∂M

hA1 ∧ ∇A2i ¼ ð−1Þdeg A1þ1

Z
∂M

h∇A1 ∧ A2i ðA3Þ

for any pair of g-valued forms A1, A2. In terms of this
operator we have a general formula for the variation of
m−1dm:

δϵðm−1dmÞ ¼ ∇ðm−1δmÞ: ðA4Þ

From (6.12) the last formula gives δϵðm−1dmÞ ¼ ∇ðϵαÞ.
We have

δϵSWZ½m� ¼ −
Z
∂M

hϵα;∇ðm−1dmÞi ðA5Þ

and the variation of the remainder—that must cancel
against this—reads

−
Z
∂M

hδϵμ;⋆μi þ hδϵðαωÞ; m−1dmi þ hαω;∇ðϵαÞi ðA6Þ

The expression δϵðαωÞ is terrible and we will cancel it. We
use ⋆δϵμ ¼ −δϵμ to simplify the first term inside the
integral to −hμ; δϵμi. Then the first and last terms together
yield

−μδϵμþ αω∇ðϵαÞ ¼ ðm−1dmÞδϵμ − αωδϵμþ αω∇ðϵαÞ;
ðA7Þ

¼ ðm−1dmÞδϵμ − ϵαω∇αþ αω∇ðϵαÞ;
ðA8Þ

the last two terms vanish by integration by parts (using
∇ω ¼ dω ¼ 0). Therefore

−μδϵμþ αω∇ðϵαÞ ¼ ðm−1dmÞδϵμ
¼ −ðm−1dmÞ∇ðϵαÞ þ ðm−1dmÞδϵðαωÞ:

ðA9Þ

This last term cancels δϵðαωÞm−1dm inside the remainder;
the latter reduces to

þ
Z
∂M

hm−1dmÞ;∇ðϵαÞi ¼ −
Z
∂M

h∇ðϵαÞ;m−1dmi; ðA10Þ

which indeed cancels the variation of SWZ½m�.
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