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Entanglement of spatially separated quantum states is usually defined with respect to a reference frame
provided by some external observer. Thus, if one wishes to localize the quantum information within a
spatially separated entangled state, one must enact an entanglement extraction protocol also defined with
respect to that external frame. Entanglement extraction for Gaussian ground states in such an external frame
construction has been shown to require a minimum energy and is hence an interesting process for
gravitational physics, where examinations of localization vs energy cost have a long history. General
covariance, however, precludes dependence on external frames. In order to enact an extraction protocol in a
generally covariant theory, dependence on the external reference frame must first be removed and the states
made relational. We examine the implementation of an extraction protocol for Gaussian states, whose
center of mass and relational degrees of freedom are entangled, in a relational toy model where translation
invariance stands in for full diffeomorphism invariance. Constructing fully relational states and the
corresponding extraction/localization can, in principle, be done in two ways. External frame position
information can be removed through G-twirling over translations or one can spontaneously break the
translation symmetry via the gradient of an auxiliary field, or Z-model. We determine the energetics of
quantum information localization after the states have been made fully relational via both the G-twirl and
Z-model. We also show one can obtain the G-twirl construction from a Z-model as a limit of positive
operator valued measurements.
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I. INTRODUCTION

In quantum gravity phenomenology, modifications to the
physics of the standard model plus general relativity often
come with a length scale L attached [1]. This scale, perhaps
in conjunction with a second scale in a hierarchy or an
experimental length scale, suppresses the new phenom-
enology so that the effect is either negligible or almost
negligible in our currently achievable experiments. The
exact size of L can come from many places—it may be
the string scale [2], the scale at which the unitarity of the
standard model plus general relativity (treated as an
effective field theory) breaks down [3], or some postulated
scale where there is new, exotic spacetime structure such as
noncommutative spacetime [4]. In many scenarios, the
scale is typically at or near the Planck scale.
Independent of the quantum gravity model underlying

the choice of scale, the Planck scale is often singled out
heuristically by a simple (albeit somewhat flawed) argu-
ment. A massless particle trapped in a box of size L has
roughly an energy of EðLÞ ¼ hc=L in the rest frame of the
box, neglecting dimensionless constants. As L shrinks, the
energy goes up and eventually passes the energy necessary

for a black hole to form in that region, i.e., if RðEÞ is the
Schwarzschild radius for an energy E, RðEÞ ¼ 2GE=c4,
then when L ≈ RðEðLÞÞ black holes will begin to form,
rapid Hawking emission will occur, and one is in the
quantum gravity regime. This occurs at L ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gh=c3

p
, i.e.,

somewhere around the Planck length.
The above argument can be viewed as the breakdown of

locality: one cannot measure distances below the Planck
scale because the act of doing so would disturb spacetime to
the degree that we would form black holes. There is an
energy cost to localizing a particle, and this energy
eventually backreacts on the spacetime.1 This construction,
however, generally assumes the particle is in an energy
eigenstate of some external observer and localized to a
particular region. In other words, the state in the most naive
version is fundamentally assumed to be in a product state:
jΨi ¼ jΨsysi ⊗ jΨenvi, where jΨsysi, the particle, can be
tuned independently.
Quantum mechanics does not, of course, have only

product states in any given Hilbert space—one can have
entangled states as well. In this case, the information
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1See, e.g., [5] for more formal arguments on high energy
physics being dominated by black hole states, or asymptotic
darkness.
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contained in the state can be nonlocal due to the entangle-
ment in addition to any nonlocality inherent in the under-
lying basis states. Since we have many examples of black
hole physics and geometric surfaces being reunderstood in
terms of quantum information processes (e.g., [6] among
many others), and since the above argument on the
breakdown of locality critically relies on black hole
formation, a natural question is then to ask about the
energetics of localizing quantum information in entangled
states and the possible gravitational effects.
Whether or not quantum information can be arbitrarily

localized in gravity is currently a matter of some debate. In
the classical picture, due to diffeomorphism invariance,
energy and momentum cannot be localized and one must
resort to a quasilocal picture. In perturbative quantum
gravity, Donnelly and Giddings have argued that, at least
at first order in Newton’s constant GN , quantum informa-
tion can indeed be localized [7]. However, there are also
arguments stemming from holography, in particular boun-
dary unitarity, that indicate that a purely localized operator
in the bulk would be inconsistent [8]. The question also
comes into play as arguments about the energetics of
entanglement entropy in local regions have also been
used to derive general relativity from more fundamental
principles [9].
In this paper we examine information localization and

energy costs from a quantum information perspective using
nonlocal quantum information contained in bipartite
entangled Gaussian states. In this approach, the question
of localization can be recast as one of entanglement
extraction, where extracting the entanglement corresponds
to localizing the system. Hackl and Jonsson have recently
made progress on calculating the minimum energy neces-
sary to extract such bipartite entanglement from Gaussian
systems, which will provide the tools necessary to derive
the energetics for our quantum information localization
process [10].
There is a complication, however. Besides the issue of

entanglement, the standard naive argument relied on the
existence of an external observer to set the energy scale and
frame. In general relativity of course there are no external
observers and the observables are expected to be relational.
In order to apply Hackl and Jonsson’s approach to a
generally covariant theory, one must also construct a
system where the degrees of freedom are relational and
Gaussian. If not, then one would not be sure whether the
answers are gauge invariant and hence physical. This can
be done in our toy model in twoways. First, one can apply a
procedure known as G-twirling to a set of Gaussian states
in the presence of an external frame. By G-twirling over
translations, we remove the notion of absolute position in
our system, leaving only relational and entangled positional
degrees of freedom [11] (as well as an irrelevant center-of-
mass momentum degree of freedom). As we shall see, the
simplest version of G-twirling implies that the energy cost

from entanglement extraction vanishes. This is consistent
with the implementation of the G-twirl as a simple trans-
formation on the Hilbert space. The underlying translation
invariance and effect on the energy cost is a toy model
equivalent of the effect of diffeomorphism invariance and
the vanishing of the Hamiltonian on physical states in
quantum gravity.
In contrast, one can also implement an external frame as

a dynamical system, thereby also relationalizing the quan-
tum states. We will show that in this case we naturally
recover a nonzero energy cost. To implement this frame, we
introduce a Uð1Þ symmetry and corresponding gauge field
and build a simple Z-model for relational observables in the
language of Giddings et al. [12].
The paper is constructed as follows. In Sec. II, we outline

the fundamental construction of N-particle Gaussian states
centered at different positions in the presence of an external
partition. In Sec. III, we introduce the different fundamental
techniques we will employ for the calculation. In Sec. IV,
we apply these various techniques specifically analyze the
question of entanglement extraction in different relational
constructions. Finally, we conclude in Sec. V. Throughout
this paper we work in ℏ ¼ m ¼ 1 units.

II. GAUSSIAN STATES
WITH EXTERNAL PARTITIONS

A. Correlation functions and Gaussian states

Since we will be working with Gaussian states, we first
provide some background on the mathematics of Gaussian
states and their entanglement. Generally, Gaussian states
provide a versatile analytical tool in many areas of quantum
physics, although we will only use a small subset of their
power herein. Unless explicitly noted we work in one
spatial dimension. We also follow the presentation in [13],
which allows for the treatment of bosons and fermions in a
unified framework.
The standard approach assumes the ability to establish a

canonical pi, qi basis of an N-particle phase space, where i
runs from 1 to N. As such, it implicitly uses an external
partition—the division of the overall phase space into the
subspaces associated with each particle and the labeling of
position and momentum as measured by some external
measurement system. In the language of quantum reference
frames, such an external partition is called a “perfect”
quantum reference frame [11,14]. In such a frame each
single-particle Hilbert space is spanned by some continu-
ous set of kets jgi that are completely distinguishable. In
this case the typical choice is the position basis kets jxi,
with distinguishability implemented as hxjx0i ¼ δðx0 − xÞ
(or equivalently the momentum basis kets). This distin-
guishability is then reflected in the classical p, q phase
space in some associated classical reference frame. For
now, we will utilize such a frame both quantum mechan-
ically and classically, although we return to this point later.
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With such a frame, for a system with N-particle degrees
of freedom, we have the classical phase space V ≃ R2N ,
consisting of the p’s and q’s from above, and its dual
V� ≃ R2N . We quantize the system by promoting the
2N phase space coordinates to operators representing
observables that can be put in an operator valued vector
ξ̂a ¼ ðq̂1; q̂2;…; q̂N; p̂1; p̂2;…; p̂NÞ. A Gaussian state jψi,
whether it is bosonic or fermionic, is completely described
by the one-point2 za ≔ hψ jξ̂ajψi and two-point Cab

2 ≔
hψ jðξ̂ − zÞaðξ̂ − zÞbjψi correlation functions (cf. [15]).
All higher order correlations can be determined from the
one- and two-point correlation functions. The two-point
correlation function can be decomposed into a symmetric
piece Gab and an antisymmetric piece Ωab via

Cab
2 ¼ 1

2
ðGab þ iΩabÞ: ð1Þ

B. Bosonic vs fermionic degrees of freedom

For bosonic and fermionic degrees of freedom, the roles
and behavior of Gab and Ωab differ. Bosonic degrees of
freedom are characterized by the commutation relations

½x̂i; p̂j� ¼ iℏδijÎ; ð2Þ

½x̂i; x̂j� ¼ ½p̂i; p̂j� ¼ 0: ð3Þ

We can isolate the antisymmetric Ωab via

hψ jðξ̂aξ̂b − ξ̂bξ̂aÞjψi ¼ iΩab ð4Þ

and expressing ξ̂a in terms of the phase space operators
shows that Ωab is simply the symplectic form inherited
from the classical Poisson brackets after quantization. In
other words, for bosons

Ωab ¼
�
0 −iI
iI 0

�
ð5Þ

and is not state dependent. On the other hand,

hψ j
�
ξ̂aξ̂b þ ξ̂bξ̂a

�
jψi ¼ Gab ð6Þ

shows that Gab is a state dependent quantity for bosons.
This dependence is one-to-one, i.e., any bosonic Gaussian
state can be uniquely specified (up to a phase) by za

and Gab.
Conversely, for fermionic degrees of freedom the

(anti)commutation relations are

fx̂i; x̂jg ¼ fp̂i; p̂jg ¼ ℏδijÎ; ð7Þ

fx̂i; p̂jg ¼ 0: ð8Þ

For fermionic degrees of freedom, the roles and behavior of
Gab and Ωab are reversed, but determined in the same
manner as their bosonic counterparts. The symmetric Gab

can be isolated via (6). Given the (anti)commuting nature of
fermions, it is clear that Gab is the symmetric, positive-
definite, bilinear form inherited from the classical
(anti)commuting Poisson brackets after quantization.
This implies that Gab takes the form

Gab ¼
�
I 0

0 I

�
ð9Þ

and is state independent. The antisymmetric form Ωab is
determined via (4), however, for fermions Ωab is now a
state dependent quantity and is in one-to-one correspon-
dence with each Gaussian state up to a phase.

C. Combined Kähler structure

While we will concentrate primarily on fermions, it
will be useful to do so in a notation that allows for both
bosonic and fermionic analysis. This can be accomplished
by unifying the mathematical description of bosonic and
fermionic Gaussian states via Kähler structures. A Kähler
space is a real vector space that is equipped with the
following linear operators:

(i) Metric: a symmetric, positive-definite, bilinear form
Gab, with inverse G−1

ab such that GacG−1
cb ¼ δab.

(ii) Symplectic form: an antisymmetric, nondegenerate
form Ωab, with inverse Ω−1

ab such that ΩacΩ−1
cb ¼ δab.

(iii) Complex structure: denoted Jab, satisfies the prop-
erty JacJcb ¼ −δab.

The triple of these three operators ðG;Ω; JÞ is referred to as
a Kähler structure. The three operators are related via

Jab ¼ −GacΩ−1
cb ¼ ΩacG−1

cb : ð10Þ

It is apparent that the bosonic and fermionic Gaussian
state spaces have two of the three required linear operators
for a Kähler structure, particularly a metric Gab and a
symplectic form Ωab. However, this is not enough to imply
that Gab and Ωab are compatible Kähler structures. We
must require that Jab defined by Gab and Ωab via (10)
satisfies the condition J2 ¼ −I for Gab and Ωab to be
compatible Kähler structures.
Bosonic Gaussian states have an associated metric Gab

that is state dependent and a symplectic form Ωab that is
state independent. Assuming both Gab and Ωab are Kähler
compatible, the complex structure Jab, that relates Gab

and Ωab, is therefore a unique state dependent quantity.2Note that za ¼ 0 for fermions.
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Similarly, fermionic Gaussian states have a metric Gab that
is state independent and a symplectic form Ωab that is state
dependent. Again, assuming Gab and Ωab are Kähler
compatible, the complex structure that relates the two is
also state dependent in a similar way. Thus, for both
bosonic and fermionic Gaussian states, the complex struc-
ture Jab is uniquely determined by the state, up to a phase
and we can use Jab as an ideal label for either bosonic or
fermionic Gaussian states.
Furthermore, Jab can be used to explicitly define an

operator that annihilates the associated Gaussian state.
Given a Kähler structure, every Gaussian state jψi asso-
ciated with the specified structure solves the equation

1

2
ðδab þ iJabÞðξ − zÞbjψi ¼ 0: ð11Þ

D. Annihilation and creation operators

While Gaussian states can be described using sets of
phase space operators p̂i, q̂i it is also convenient to describe
Gaussian states using the Fock basis construction and
creation/annihilation operators.
As is familiar from introductory quantum mechanics, a

Hilbert space representation of the algebra of observables in
the Fock basis can be defined by a set of annihilation and
creation operators âi, â

†
i , where i ¼ 1 � � �N for a system

with N particles. For a system of bosonic particles, we
impose the canonical commutation relations on the anni-
hilation and creation operators,

½âi; â†j � ¼ δijÎ; ð12Þ

½âi; âj� ¼ ½â†i ; â†j � ¼ 0: ð13Þ
For a system of fermionic particles, we impose (anti)
commutation relations on the annihilation and creation
operators,

fâi; â†jg ¼ δijÎ; ð14Þ

fâi; âjg ¼ fâ†i ; â†jg ¼ 0: ð15Þ

For both bosons and fermions the vacuum state j0;…; 0i is
the state annihilated by all âi,

âij0;…; 0i ¼ 0: ð16Þ
Orthonormal basis states are given by jn1;…; nNi where

ni ∈ N for bosonic systems and ni ∈ f0; 1g for fermionic
systems. The action of the annihilation and creation
operators on these states satisfies

âijn1;…; nNi ¼
ffiffiffiffi
ni

p jn1;…; ni − 1;…; nNi; ð17Þ

â†i jn1;…; nNi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ni þ 1

p
jn1;…; ni þ 1;…; nNi; ð18Þ

and they can be obtained from the vacuum state via

jn1;…; nNi ¼
YN
i¼1

�ðâ†i Þniffiffiffiffiffiffi
ni!

p
�
j0;…; 0i: ð19Þ

To relate the annihilation and creation operators to the
operator valued vector ξ̂a we need to define transformations
via ∈ V�

C in a complex vector space V�
C such that, for a ξ̂a in

some basis,

âi ¼ viaξ̂
a; ð20Þ

â†i ¼ v�iaξ̂
a: ð21Þ

Given the relation between Gab, Ωab, and ξa from (6) and
(4), respectively, it is easy to see that the ξ̂a associated with
bosonic systems inherits the commutation relations and the
(anti)commutation relations for fermionic systems. Along
with the algebras for bosonic and fermionic annihilation
and creation operators, this implies that there are conditions
that the transformations via must satisfy. For bosons, the via
must satisfy

Ωabviavjb ¼ 0; ð22Þ

Ωabv�iavjb ¼ iδij: ð23Þ

And similarly for fermions the via must satisfy

Gabviavjb ¼ 0; ð24Þ

Gabv�iavjb ¼ δij: ð25Þ

Using these conditions we can define a set of vectors uaj ,
dual to via, that can be used to define a basis transformation
between the Fock basis ðâ1; â†1;…; âN; â

†
NÞ and ξ̂a. The

vectors uai are defined by

uai ¼ iΩabv�ib ð26Þ

for bosons and

uai ¼ Gabv�ib ð27Þ

for fermions. Given a set of uai the transformation between
the Fock basis and ξ̂a is

ξ̂a ¼ za þ
XN
i¼1

ðuai âi þ uai â
†
i Þ; ð28Þ

with za ¼ 0 for fermions. We will move back and forth
between the x̂, p̂ and â, â† bases via
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â ¼
ffiffiffiffi
ω

2

r �
x̂þ i

ω
p̂

�
ð29Þ

in the following discussions—results are, of course, basis
independent.

E. Example construction for a fermionic
Gaussian state

As a simple example, consider the ground state j0i of the
fermionic harmonic oscillator Ĥ¼ iωx̂p̂¼ωðâ†â− ââ†Þ=2.
For the ease of calculation we will be working in the Fock
basis so that the operator valued vector is ξ̂a ¼ ðâ; â†Þ. The
Hamiltonian can be written using the operator valued vector
ξ̂a in the following manner, Ĥ ¼ 1

2
habξ̂

aξ̂b. It follows that
the Hamiltonian matrix hab and the metric Gab for the
system take the form

hab ¼
�

0 iω

−iω 0

�
and Gab ¼

�
0 1

1 0

�
; ð30Þ

respectively. The state dependent symplectic form associ-
ated with the ground state of the fermionic harmonic
oscillator is

Ωab ¼
�
0 −i
i 0

�
: ð31Þ

And thus the linear complex structure is

Jab ¼ ΩacG−1
cb ¼

�−i 0

0 i

�
: ð32Þ

It is easy to see that J2 ¼ −I implying that Gab and Ωab are
Kähler compatible and thus the ground state of the
fermionic harmonic oscillator is Gaussian. Given the form
of the complex structure Jab we can see that the Gaussianity
condition from (11) takes on the form

1

2
ðδab þ iJabÞξ̂bj0i ¼

�
â

0

�
j0i ¼ 0: ð33Þ

By similar means, we can also show that the first excited
state of the fermionic harmonic oscillator j1i with asso-
ciated linear complex structure

Jab ¼
�
i 0

0 −i

�
ð34Þ

is also a Gaussian state.
A general one-particle Gaussian state3 can be con-

structed by acting the squeezing operator

ŜðrÞ ¼ exp ½rðâ â−â†â†Þ� ð35Þ

and the displacement operator

D̂ðαÞ ¼ exp ½â†γ − γ�â� ð36Þ

on either the ground state j0i or the first excited state j1i. The
squeezing operator Ŝ is parametrized by a squeezing param-
eter r ∈ R, where r → ∞ indicates a highly localized state.4

Due to the Grassmann properties of fermionic states, the
squeezing operator preserves both the ground and first
excited state, i.e., ŜðrÞj0i ¼ j0i and ŜðrÞj1i ¼ j1i, respec-
tively, for all values of the squeezing parameters r. The
squeezing operator is a unitary operator satisfying
ŜðrÞŜ†ðrÞ ¼ Ŝ†ðrÞŜðrÞ ¼ Î. The displacement operator D̂
is parametrized by the variable γ, the amount of phase space
displacement. For bosons γ is a complex number and for
fermions γ is Grassmannian. The action of the displacement
operator on, specifically, the fermionic ground state or the
first excited state produces a coherent state,5 i.e., D̂ðγÞj0i ¼
jγi or D̂ðγÞj1i ¼ jγ0i for all values of the displacement
parameter γ [16]. Here, the unprimed coherent state is an
eigenstate of the annihilation operator, while the primed
coherent state is an eigenstate of the creation operator. Like
the squeezing operator, the displacement operator is also
unitary, satisfying D̂ðγÞD̂†ðγÞ ¼ D̂†ðγÞD̂ðγÞ ¼ Î. Given a
fermionic Gaussian state jJi, the action of the squeezing and
displacement operators on the state, i.e., ŜðrÞD̂ðγÞjJi ¼ jJ0i,
produces a new fermionic Gaussian state jJ0i. For the proof
of this statement see [13], particularly Sec. II C 4 and
Proposition 7.

F. Localized states as squeezed Gaussian states

In the position basis of a rigged Hilbert space, basis kets
of the position operator, or states jx0i such that
x̂jx0i ¼ x0jx0i, can be represented as a δ-function:
hxjx0i ¼ δðx − x0Þ. A δ-function is a limit of a sequence
of normalized, narrowing Gaussians. Reducing the width of
a Gaussian is, however, simply squeezing the state in
position. Hence completely localized δ-function states are
equivalently Gaussian squeezed states in the infinite
squeezing limit. As discussed previously, Gaussian states
can be constructed via action of the squeezing operator (35)
and displacement operator (36) on the Fock vacuum, i.e.,
jJi ¼ D̂ðγÞŜðrÞj0i. The position basis equivalence of such
states to Gaussian functions centered around some x0 and
the equivalency between the position eigenkets jx0i and jJi
in the minimal position uncertainty, infinitely squeezed

3We note that the most general Gaussian state can be con-
structed via action of the squeezing and displacement operators
on a thermal state.

4We note that, generally, the squeezing operator is a function
of a complex parameter ζ ¼ reiϕ, where ϕ is an arbitrary phase.
For simplicity we have set ϕ ¼ 0.

5A coherent state can be constructed by acting the displace-
ment operator on the bosonic ground state as well.
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limit is given in detail in Eqs. (18)–(47) of [17]. The
necessary result, which we present here, is

jχx0 i ¼
�
ω

π

�
1=4

exp½−ix0p̂� exp
�
−
1

2
ðâ†Þ2

�
j0i: ð37Þ

The state jχx0 i is the Gaussian state that, in the infinitely
squeezed limit, becomes a position basis state. Since the
momentum basis of a rigged Hilbert space shares the same
properties as its position basis counterpart, the basis kets of
the momentum basis can be written as shifted, squeezed
Gaussian states, as shown in Eq. (48) of [17], which we
present below:

jρp0 i ¼
�

1

πω

�
1=4

exp ½ip0x̂� exp
�
1

2
ðâ†Þ2

�
j0i: ð38Þ

An important consequence of the Gaussian description
of the position basis is the structure of the inner product
between basis kets jχxi and jχx0 i. Given the Gaussian
description of these basis kets in (37), the inner product
may be written as

hχxjχx0 i ¼
�
ω

π

�
1=2

hψ j exp ½−iðx0 − xÞp̂�jψi; ð39Þ

where we have defined the state jψi ¼ exp ½−ðâ†Þ2=2�j0i.
We can simplify the inner product by inserting a resolution
of identity,

hχxjχx0 i ¼
�
ω

π

�
1=2

Z
dpe−iðx0−xÞphψ jpihpjψi: ð40Þ

To determine the projection of jψi onto the momentum
basis states, it is easiest to write the momentum eigenkets as
functions of the annihilation/creation operators acting on
the Fock vacuum. The resulting state has the same form as
(38), i.e., we can make the switch jpi → jρpi. It is a
straightforward calculation to show that hρpjψi ¼
ð1=πωÞ1=2 exp½−p2=4ω�. Substituting this into (40) the
inner product has the expected structure,

hχxjχx0 i ¼
1

b
ffiffiffi
π

p e−ðx−x0Þ2=ð2bÞ2 ; ð41Þ

where b ¼ ð1=2ωÞ1=2 is the width of the distribution. The
inner product is a Gaussian in the difference of positions. In
the limit where the width of the distribution becomes
infinitesimally small, i.e., b → 0, we recover the com-
pletely localized structure of the position basis kets.

III. FUNDAMENTAL FRAMEWORKS

A. Entanglement generation in a relational basis

Given that jxi is the limit of a highly squeezed Gaussian
state, we can use approximate position basis states without
leaving the Gaussian framework. More importantly, we can
investigate how switching to a center of mass/relational
partition affects entanglement of Gaussian states. Let us
first consider two particles 1 and 2, localized at some points
x1 and x2, respectively, with respect to some external
reference frame. We can write this state in an external
partition as jψi ¼ jx1i ⊗ jx2i.6 It is clear this state is a
product state between the two particles without any
entanglement.
In diffeomorphism invariant theories there is, of course,

no external frame dependence. One common approach to
preserving diffeomorphism invariance in quantum mechan-
ics is to move to a relational framework, where outcomes
are defined in relation to others and probabilities become
conditional (for a review, see [18]). In our framework we
can construct a simple toy model that captures the relational
aspect of a fully diffeomorphism invariant system by
requiring that our quantum mechanical system be transla-
tionally invariant. Intuitively, since we are dealing with
position states, forcing a system to be translationally
invariant will erase any absolute position information,
leaving only translationally invariant relational degrees
of freedom, such as x1 − x2, in the reduced Hilbert space.
The first step on this path is to define new operators and a
corresponding basis that capture the center of mass and
relational degrees of freedom. We will refer to this basis as
the relational basis, in contrast to the external or absolute
basis defined by the position states jxi.
The states and operatorswith respect to the relational basis

can be constructed via transformation from the external
frame and partition. In the following, we follow the presen-
tation in [19]. For a system with N degrees of freedom, the
position and momentum operators of the external partition,
fx̂k; p̂kgNk¼1 are fully specified by the center-of-mass posi-
tion and momentum operators fx̂cm; p̂cmg and the relational
position and momentum operators fx̂ij1; p̂ij1gNi¼2. The trans-
formation between thepositions andmomenta of the external
partition and the positions and momenta in the center of
mass/relational partition are given by

x̂cm ¼ 1

M

Xn
k¼1

mkx̂k; ð42aÞ

p̂cm ¼
Xn
k¼1

p̂k; ð42bÞ

6For the rest of this article, we will use jxi as a shorthand to
refer to a highly localized Gaussian state around x, rather than an
exact position eigenstate.

ADAM DUKEHART and DAVID MATTINGLY PHYS. REV. D 107, 126020 (2023)

126020-6



x̂ij1 ¼ x̂i − x̂1 for i ∈ f2; ng; ð42cÞ

p̂ij1 ¼ p̂i − m̃ip̂cm for i ∈ f2; ng; ð42dÞ

where M ¼ P
n
k¼1mk is the total mass of the system and

m̃i ¼ mi=M is the mass fraction of the ith particle. The
canonical commutation relations for the operators in the
center of mass/relational partition follow from the commu-
tation relations between operators of the external partition,
i.e., ½x̂cm; p̂cm� ¼ ½x̂ij1; p̂ij1� ¼ i with all other combinations
vanishing. Notice that the relational position and momen-
tum operators are defined with respect to particle 1,
however, any other particle may be chosen to the same
effect.
Transformations between the external partition and

the center of mass/relational partition may engender entan-
glement if at least one of the particles is in a superposition
in the external partition. As an example, consider a
two-particle composite state where, for simplicity, only
particle 1 is in superposition with respect to the external
partition,7

jψ12i ¼
1ffiffiffi
2

p ðjx1i þ jx01iÞ ⊗ jx2i

¼ 1ffiffiffi
2

p ðjx1i ⊗ jx2i þ jx01i ⊗ jx2iÞ: ð43Þ

Here jx1i; jx01i ∈ H1 are the possible position states of
particle 1 and jx2i ∈ H2 is the position state of particle 2. It
is clear no entanglement exists between degrees of freedom
in the external partition. We now transform into the center
of mass/relational partition, with particle 1 considered the
“reference” particle from which the position of particle 2
will be defined. Now the center of mass and relational
position states for the two components of the superposition
differ and jψi becomes

jψ12i → jψ12;cmi ¼
1ffiffiffi
2

p ðjxcmi ⊗ jx2j1i þ jx0cmi ⊗ jx0
2j1iÞ;

ð44Þ

where the prime denotes the center of mass and relational
position states between jx01i and jx2i. Now there is a
bipartite entanglement between the center of mass and the
relational position states [20].
There is a subtle difference in the n-particle case when

compared to the two-particle case, which we demonstrate
with the three-particle case. Consider a three-particle

composite state in the external frame where, for simplicity,
only the reference particle is placed in superposition,

jψ123i¼
1ffiffiffi
2

p ðjx1iþjx01iÞ⊗ jx2i⊗ jx3i

¼ 1ffiffiffi
2

p ðjx1i⊗ jx2i⊗ jx3iþjx01i⊗ jx2i⊗ jx3iÞ: ð45Þ

As in the previous example jx1i; jx01i ∈ H1 are the possible
position states of particle 1, the reference particle, jx2i ∈
H2 is the position state of particle 2, and jx3i ∈ H3 is the
position state of particle 3. Currently there is no entangle-
ment between any of the degrees of freedom. Different
combinations of the states will generally have different
centers-of-mass positions and different relational positions,
however, we would like to note that there exist cases where
the center of mass and/or relational positions between two
or more combinations are equal. After the transformation
into the center of mass/relational partition, the state jψ123i
is described as

jψ123i→ jψ123;cmi

¼ 1ffiffiffi
2

p ðjxcmi⊗ jx2j1i⊗ jx3j1iþjx0cmi⊗ jx0
2j1i⊗ jx0

3j1iÞ;

ð46Þ

where the primes denote center of mass and relational
position states that utilized jx01i in their definitions. Here
there is tripartite entanglement between both the center of
mass and relational degrees of freedom, which differs from
the two-particle case. In general, with different trans-
formations and n-particles, entanglement can be generated
between various parts of the partitioned Hilbert space—one
is not restricted to center-of-mass/relational bipartite
entanglement.
Below we will extensively use the generalization of (43)

and (45) for calculational simplicity. For a system of N
particles, where one particle is placed in a location super-
position with respect to the external frame, the state is
given by

jψ1;…;Ni ¼
1ffiffiffi
2

p ðjx1i þ jx01iÞjx2i ⊗ � � � ⊗ jxNi

¼ 1ffiffiffi
2

p ðjx1i ⊗ jx2i ⊗ � � � ⊗ jxNi

þ jx01i ⊗ jx2i ⊗ � � � ⊗ jxNiÞ; ð47Þ

where jx1i; jx01i ∈ H1 are the possible position states of
particle 1 and jxii ∈ Hi is the position state of the ith
particle. The state in (47) written in the center of mass/
relational partition is given by

7Note that we have chosen Gaussian states in the highly
squeezed limit to allow for a trivial normalization. Generally, the
Gaussian nature of the states does not allow for such a nontrivial
normalizations since hxjx0i ≠ δðx − x0Þ.
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jψ1;…;Ni → jψ1;…;N;cmi

¼ 1ffiffiffi
2

p ðjxcmi ⊗ jxreli þ jx0cmi ⊗ jx0reliÞ; ð48Þ

where jxreli ¼ jx2j1i ⊗ � � � ⊗ jxNj1i represents the N − 1

remaining relational degrees of freedom. Notice that the
state in (48) is an n-partite entangled state and our
discussion regarding the nature of entanglement within
the two partitions still holds.

B. Removal of the external partition
via a G-twirl over translations

The entangled states in the center of mass/relational
partition are not yet fully relational, in that the center-of-
mass coordinate contains degrees of freedom relative to the
external partition. To remove the center-of-mass degree of
freedom we can group average over translations, which will
reduce the state to one containing only relational degrees of
freedom. The procedure from quantum information theory
for group averaging over quantum reference frames is
known as the G-twirl [14].
Consider a quantum state represented by the density

matrix ρ̂ ∈ H in some Hilbert space H, described with
respect to some external reference frame. Changes to the
orientation of the quantum state ρ̂ with respect to the
external reference frame are performed via the action of
some unitary operation ÛðgÞ ∈ H on the state ρ̂. Here,
ÛðgÞ is the unitary representation of a group element
g ∈ G, where G is the group of all possible changes of the
external reference frame. It is important to note that, in the
definition of the G-twirl, G is a compact group [14],
however, as we will see G can be noncompact albeit
yielding slightly more complex results [11]. The result of
the G-twirl is the description of the quantum state that does
not contain any information about the external frame. This
description is achieved by averaging over all possible
orientations of ρ̂ with respect to the external frame, where
every possible orientation is weighted equally,

ρ̂R ¼ G½ρ̂�≡
Z

dgÛðgÞρ̂Û†ðgÞ; ð49Þ

where dg is the Haar measure of the groupG and ρ̂R ∈ H is
the relational description of ρ̂.
Since we are averaging over all elements of the group

that transforms the external frame, we are removing any

relation to the external reference frame that was used to
describe the state ρ̂. Only the relational degrees of freedom
within the system remain, i.e., the information unaffected
by changes in the external reference frame. For example,
suppose ρ̂ describes a composite state of two particles such
that H ¼ H1 ⊗ H2. After a G-twirl is performed, the
remaining information contains the relational degrees of
freedom between the two particles. Note that the
G-twirl is done via the product representation ÛðgÞ ¼
Û1ðgÞ ⊗ Û2ðgÞ, where Û1ðgÞ ∈ H1 and Û2ðgÞ ∈ H2 are
the unitary representations of the group G in each
Hilbert space.
Since we are interested in translation invariant states, we

will focus on the G-twirl operation as it relates to trans-
lations. Our presentation below follows from the work
of [19]. For more details we encourage the reader to review
the original work. Additionally, we encourage the reader to
see the related approach, where G-twirls on physical states
can be understood as group averaging [21–23]. The action
of the three-dimensional translation group g ¼ x ∈ R on
the external frame in the external partitionH ¼⊗N

n¼1 Hn is
given by

ÛðxÞ ¼ ⨂
N

n¼1

e−ixp̂n : ð50Þ

In the center of mass/relational partition Hcm ⊗ HR, the
action of the translation group is given by

ÛðxÞ ¼ e−ixp̂cm ⊗ ÎR: ð51Þ

To carry out theG-twirl over translations we first express
the state ρ̂ in the center of mass/relational partition, in the
momentum basis,

ρ̂ ¼
Z

dpcmdp0
cmdpRdp0

Rρðpcm; p0
cm; pR; p0

RÞjpcmi

× hp0
cmj ⊗ jpRihp0

Rj; ð52Þ

where jpcmi and jp0
cmi are the possible basis states of the

center-of-mass momentum and, similarly, jpRi and jp0
Ri are

the basis states of the N − 1 relational momentum vectors.
It follows that the G-twirl over the possible translations of
the external frame is given by

GT ½ρ̂� ¼
Z

dxÛðxÞ
�Z

dpcmdp0
cmdpRdp0

Rρðpcm; p0
cm; pR; p0

RÞjpcmihp0
cmj ⊗ jpRihp0

Rj
�
Û†ðxÞ

¼
Z

dxdpcmdp0
cmdpRdp0

Rρðpcm; p0
cm; pR; p0

RÞe−ixp̂cm jpcmihp0
cmjeixp̂0

cm ⊗ jpRihp0
Rj

¼ ð2πÞ3
Z

dpcmdpRdp0
Rρðpcm; pcm; pR; p0

RÞjpcmihpcmj ⊗ jpRihp0
Rj: ð53Þ
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Going from the second to the third equality we have used
the definition of the Dirac delta function ð2πÞ3δðp − p0Þ≡R
dxeixðp−p0Þ. It is clear that the G-twirl operation is

effectively the trace over the center-of-mass degrees of
freedom in the center of mass/relational partition, i.e.,
GT ½ρ̂� ¼ ITrcmρ̂, where I denotes a divergent constant
originating from integral over the probability function
ρðpcm; pcm; pR; p0

RÞ in (53). The new state GT ½ρ̂� is not
normalized, since there are infinitely many states to trace
over, due in part to the noncompact nature of the group of
translations. However, the divergent nature of I will be
inconsequential to the physics of interest for reasons we
will discuss below.
As an example, let us perform a G-twirl on the state

in (44) over the set of one-dimensional translations. Since
the relational state has been shown to be GT ½ρ̂� ¼ ITrcmρ̂ it
follows that

GT ½jψ12;cmihψ12;cmj� ¼ ITrcm½jψ12;cmihψ12;cmj�
¼ Iðjx2j1ihx2j1j þ jx0

2j1ihx02j1jÞ: ð54Þ

Here the primes refer to center of mass and relational states
defined with jx01i in (43). We note that any normalization
factors are absorbed into I . Now we have a completely
relational state, one that only contains relational informa-
tion and no information regarding the external frame.
Furthermore, the entanglement between the center of mass
and the relational degrees of freedom has been removed and
the relational degrees of freedom are now in a mixed state.
Notice that the G-twirl destroys the entanglement that
existed between the center of mass and relational degrees of
freedom.
A slightly more interesting example is the G-twirl of the

three-particle state in (46), over the set of one-dimensional
translations. It follows that

GT ½jψ123;cmihψ123;cmj�
¼ ITrcm½jψ123;cmihψ123;cmj�
¼ Iðjx2j1ihx2j1j⊗ jx3j1ihx3j1jþ jx0

2j1ihx02j1j⊗ jx0
3j1ihx03j1jÞ:

ð55Þ

Even though the original pure state was tripartite
entangled, the G-twirl has removed all the entanglement
from the system. This is clear since the post-G-twirl state is
a separable, mixed state over the center of mass/relational
partition. Moreover, this implies that constructing our
purely relational state by discarding information about
the external frame removes any entanglement as well.
As we will demonstrate below, this phenomenon makes for
an interesting case study of the entanglement extraction
protocol as applied to relational degrees of freedom.

C. “Relationalizing” of the external partition
via the Z-model

The labeling of spacetime points provided by an external
frame has no physical meaning. This implies that states in
the external partition do not come from any specific
measurement of an explicitly defined, physical observable,
rather they can be thought of as a choice of a particular
gauge. As we have shown above, the G-twirl effectively
removes this gauge choice by integrating out a state’s
dependence on the external frame, leaving only relational
information behind.
Alternatively, one can put the external partition into a

relational framework by correlating each position state jxi
with some dynamical observable. This will give the
arbitrary labeling meaning since the position states are
now linked to the value of said observable. However, we
must choose such observables carefully. For example, let us
choose the Hamiltonian Ĥ to be our “reference” observ-
able. Since Ĥ is fundamentally a generator of time trans-
lations, it has no intrinsic dependence on position however.
This allows Ĥ to be translationally invariant, which puts us
back into the G-twirl scenario described in the previous
section—in such a case there would be no way to correlate
jxi with a value of H. Instead, we need the values of the
Hamiltonian for some field configuration to be in one-to-
one correspondence with the position states jxi. To give Ĥ
this position dependence we will employ the Z-model
construction. Below we will present a brief overview of the
construction and for more details we encourage the reader
to view the original work [12].
Given a particular quantum state, the Z-model allows us

to define the location of a local observable by specifying it
relative to a structure determined by the expectation value
of a pseudo-local observable. This allows us to give
physical meaning to the labeling provided by the external
partition. The first step is to introduce a dynamical,
massless, auxiliary field Z with local field operator relative
to the external partition ẐðxÞ. The field will be assumed to
be in some state jψZi and the expectation value of ẐðxÞ
with jψZi is given as

ZðxÞ ¼ hψZjẐðxÞjψZi: ð56Þ

Since any coordinate system is monotonically increasing,
jψZi must be chosen such that the expectation value is also
monotonically increasing, implying that the gradient of the
expectation value hẐi over the desired portion of spacetime
is everywhere nonvanishing. Given such a monotonic map,
one can always make a coordinate transformation on the
underlying external frame to define x such that ZðxÞ ¼ x if
one wished. In other words, the coordinate system can now
be completely defined by observations on some dynamical
field in a particular state.
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Note here that our position labeling, even though it
formally involves the quantum state, is an expectation value
which satisfies classical equations of motion. Expectation
values do not automatically follow the classical equations
of motion. In single-particle quantummechanics this can be
seen when the potential V is a polynomial function of x̂.
The expectation value hV̂i ¼ hx̂ni, while what would
appear in the classical equations of motion is hx̂in and
this is only equal for certain states (cf. [24]). In field theory,
a similar discrepancy between expectation values and
classical equations of motion unfolds if the Z field is,
for example, self-interacting. In the Z-model as we imple-
mented it, however, the background Z field is in vacuum
and free, e.g., the electromagnetic potential between two
charged plates. Hence the equations of motion are linear in
Z and the expectation value will follow the classical
equations. Hence while there is some quantum state of
the Z field, the quantum nature of Z can be essentially
ignored in the following. For the moment, let us assume
that such a field and operator exists (we will return to the
necessary configuration shortly).
In the above, the Z field itself was used as an observable

that can be correlated with position. There are other
operators one could use that are linear in Z. In our case,
the most straightforward way to construct a useful operator
is to modify the Hamiltonian to introduce a coupling
between our Gaussian states and the Z field, e.g., Ĥint ¼
ψ̂ Ẑ or Ĥint ¼ ˆ̄ψ ψ̂ Ẑ term, where ψ is a field of the original
model, and Z is the auxiliary field used to define the
external frame. Since the auxiliary field is dynamical and
spontaneously breaks the translation invariance of the
Hamiltonian, the fundamental underlying translational
invariance of the theory remains intact. With such a
construction, the expectation value of the Hamiltonian
for a Gaussian state jχxi localized around x, i.e., the
position eigenstates in the previously mentioned limit gets
correlated with position. In other words,

hχx;ψZjĤjχx;ψZi ¼ H0 þ αZðxÞ; ð57Þ

where H0 is a constant piece from the free part of the
Hamiltonian and the x in ZðxÞ is the position the localized
Gaussian state jχxi is peaked around. The parameter α
contains expectation values of Gaussian operators with
respect to the state jχxi. If we assume these expectation
values are all equal neglecting backreaction (as there is no
underlying violation of translation invariance in the
Gaussian state sector) α is just a constant. Since ZðxÞ is
monotonically increasing by construction and correlated
with position by (56), the expectation value of the
Hamiltonian, our observable, therefore also gets correlated
with the external position. This allows us to define the
external position variable in terms of the expectation value
of the Hamiltonian, thereby making the external position

coordinate relative to a dynamical field, a well-defined
observable.
To concretely implement this idea within our framework,

we need to generate a gradient for the expectation value of
Z. Consider a system within a parallel plate capacitor. A
system of charged particles, with individual charge q
located within the capacitor, will be represented by a
family of Gaussian states. The plates, separated by distance
L and with charge density �σ on the left/right plates,
respectively, will produce an everywhere (inside the plates)
nonvanishing electric field E. The potential field Aμ there-
fore has a nonvanishing gradient everywhere within the
capacitor (in an appropriate gauge). Therefore the Z-model
can be incorporated into our framework via the usual
electromagnetic coupling, which does not affect the
Gaussian nature of the allowed states of the theory due
to the form of the interaction term. Since the potential field
has a nonvanishing gradient between the plates, it will be
monotonic within the capacitor, allowing us to map the
position x to the value of the electric potential of a particle
at point x, i.e., the expectation value of the interaction term
in the Hamiltonian. Particularly, the energy of a Gaussian
state, centered around x is given by

hĤintðxÞi ¼ qσhxi; ð58Þ

the expectation value of the electromagnetic coupling term.
Consider the three-particle state in the center of mass/

relational partition shown in (46). When determining the
energy expectation value of this state in the Z-model, we
find that, while the relational position eigenstate is inde-
pendent of the electric potential, the center-of-mass eigen-
state is not. Hence, there is a one-to-one correspondence
between xcm and the observable ĤintðxcmÞ. Therefore, we
are unable to remove the information about the external
frame. Moreover, since the coupling is with the expectation
value, then as long as we assume there is never entangle-
ment between the auxiliary field and the Gaussian states we
can think about entanglement extraction between the
Gaussian states themselves. In other words, as long as
the auxiliary field is coupled semiclassically, the entangle-
ment extraction analysis for relational systems is still
possible without worrying about Z-field entanglement.
However, we note that this assumption can be relaxed
and investigated further in any future work.

D. Entanglement extraction protocol and energy cost

Fundamentally, the entanglement extraction process
requires a source system S that contains entangled states
and two target systems that are unentangled. While the
location of these systems is generally unimportant, we have
chosen to locate the target systems at spatial infinity. The
source system is composed of two localized subsystems A
and B with associated Hilbert spaces HA and HB, respec-
tively. Similarly, the two target systems 1 and 2 have
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associated Hilbert spaces H1 and H2, respectively. Since
the source system is composed of local subsystem Hilbert
spaces the composite Hilbert space is factorizable, i.e.,
HS ¼ HA ⊗ HB, and similarly for the composite Hilbert
space of the target systems after the extraction of entangle-
ment from the source system to the target systems has
occurred, i.e., HF ¼ H1 ⊗ H2. Factorizability allows one
to define entanglement on the composite Hilbert spaces.
Suppose the source system contains a set of entangled

states and the target systems each contain one state.8

Initially, the total system is in the product state,

ρ̂I ¼ ρ̂1 ⊗ ρ̂2 ⊗ jΨiShΨjS; ð59Þ

where jΨiS is the initial entangled state of the source
system and ρ̂1, ρ̂2 are the initial density matrices of the two
target systems. Entanglement is extracted by “swapping”
the unentangled modes of the target system with the
entangled modes of the source system. Once the swapping
procedure is complete the source subsystems A and B are
unentangled and the target systems 1 and 2 are now
entangled.
Entanglement is extracted from the source system by a

set of “swap” operations—two unitary operations Û1 and
Û2 that map one target mode to one mode inside the source
system [10]. For example, the target modes ðâ1; â†1Þ and
ðâ2; â†2Þ are swapped with one mode inside the source
system ðâA; â†AÞ and ðâB; â†BÞ, using the following relations:

Û†
1â1Û1 ¼ âA; Û†

1âAÛ1 ¼ â1;

Û†
1â

†
1Û1 ¼ â†A; Û†

1â
†
AÛ1 ¼ â†1; ð60Þ

while Û2 swaps ðâ2; â†2Þ and ðâB; â†BÞ. Note that these types
of unitary operations always exist due to bit symmetry [25].
After the swap operations, the two target systems become
entangled. The entanglement content of the state depends
on the type of source and target systems, their couplings,
and resources such as energy available to implement the
extraction. To ensure the entanglement of the two target
modes was preexisting in the system and not created by the
swap operations, the source modes are restricted so they
either commute or anticommute depending on whether the
source system is a set of bosons or fermions, respectively.
For example, suppose the source system is a set of
entangled fermions. It follows that the restrictions on the
fermionic modes are

½âA; âB�þ ¼ ½âA; â†B�þ ¼ ½â†A; âB�þ ¼ ½â†A; â†B�þ ¼ 0: ð61Þ

The conditions like those in (61) ensure that the entangle-
ment of the two target modes was not created by the swap
operations between the target and source modes [26].

An initial configuration can be chosen such that the
source system is a product state between the two modes and
the rest of the system,

jΨiS ¼ jψiAB ⊗ jϕiR; ð62Þ

where jψiAB is the initial entangled state composed of states
localized to Hilbert space HA and HB, and jϕiR is the
ground state for the rest of the system. When the target
modes and source modes are swapped the total system is
placed in the state

ρ̂F ¼ jψihψ j12 ⊗ ρ̂A ⊗ ρ̂B ⊗ jϕihϕjR; ð63Þ

where jψi12 is the final entangled state of the two target
systems, and ρ̂A and ρ̂B are the final states of the two
subsystems A and B that compose the source system.
Notice that the rest of the source system is unaffected by the
extraction process and remains in the ground state jϕiR.
Hackl and Jonsson assume that the initial source system

S possesses entanglement in its ground state. Hence after
any entanglement extraction the states ρ̂A and ρ̂B must be in
a higher energy state. It follows that the energy expectation
value has increased due to the extraction process—this is
the cost [10].
The energy cost of entanglement extraction is given by

the difference between the expectation value of the source
system’s Hamiltonian before and after the extraction, i.e.,

ΔE ¼ Trðρ̂A ⊗ ρ̂B ⊗ jϕihϕjRĤ − jΨihΨjSĤÞ: ð64Þ

The Hamiltonian Ĥ of the source system may be coupling
different modes of the system, however, for the calculation
of the energy cost, only the parts acting on the two modes
A, B are relevant. Therefore, the energy cost of entangle-
ment extraction is solely determined by ĤAB acting on only
the A, B modes,9 i.e.,

ΔE ¼ Trðρ̂A ⊗ ρ̂BĤABÞ − Trðjψihψ jABĤABÞ: ð65Þ

8Such states can be either bosonic or fermionic.

9The values of Ĥ and ĤAB acting on various states may be
related of course. For example, if one started from a fully
diffeomorphism invariant theory then all physical states would
satisfy the Hamiltonian constraint and the energy cost would
vanish. In this case though it is unclear how to define the
entanglement, as there is no natural local partition into sub-
systems. In contrast, our framework starts with a nonrelational
system and rewrites it relationally. We still see a reflection of the
diffeomorphism invariant behavior when analyzing entanglement
extraction under the G-twirl, as twirling over translations in a
situation where translation invariance enforces the equality of the
before and after Hamiltonians also destroys the possibility of
entanglement extraction. For related work that does treat trans-
lation invariance in the language of quantum reference frames and
constrained systems, see [27].
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If one wishes to minimize the extraction energy cost then
two requirements need to be fulfilled. First, one must
choose the source modes to be partner modes, i.e., âB ¼ âĀ
and â†B ¼ â†

Ā
. Such a choice maximizes the extracted

entanglement. If nonpartner modes are chosen, then the
mixed state entanglement between the target modes is never
larger than between the mode and its partner. Second,
the final partner modes of the source system, due to the
swapping process, will be in the ground states of the single-
mode restrictions ĤA and ĤB of Ĥ onto the individual
partner modes. For bosonic and fermionic modes, these
states are Gaussian. For more details see [10], particularly
the discussion in Sec. 3. 2.
For every mode in a given multiparticle Gaussian state

system, there exists a mode that shares all of the first
mode’s entanglement [10]. This implies that one can
always find partner modes within multiparticle Gaussian
systems. Thus, as long as the entanglement extraction
protocol can be performed, one can always choose partner
modes to minimize the energy cost of entanglement
extraction. If one does not choose partner modes, the
energy cost of entanglement extraction is not necessarily
minimized. In the work below, we do not explicitly choose
partner modes when we perform the entanglement extrac-
tion protocol. Thus, our calculated energy cost is not
necessarily minimized. Minimizing the energy cost is
beyond the scope of this work since we merely seek to
demonstrate when there is an energy cost to this process for
various relational approaches. Whether or not that cost is
minimized is left for future work.

IV. ENTANGLEMENT EXTRACTION IN
RELATIONAL SYSTEMS

We now turn to the process of entanglement extraction
for relational systems, using the pieces developed in the
previous section. In particular we show how the entangle-
ment extraction protocol from Sec. III D can be imple-
mented alongside the G-twirl from Sec. III B and the Z-
model from Sec. III C. We also demonstrate how to relate
these concepts.

A. Lack of entanglement extraction in G-twirled
relational partitions

In Sec. III A we demonstrated that a pure, nonentangled
state in some external partition can become entangled by
writing the state in the center of mass/relational parti-
tion [11,19]. By writing the state in the center of mass/
relational partition, we have entanglement between the
center-of-mass degrees of freedom and the relational
degrees of freedom. For examples, see (44), (46), or
(48). However, the transformation into the center of
mass/relational partition does not produce a purely rela-
tional state since the center-of-mass degrees of freedom,
which couple to the external frame, still exist. For our

purposes, we are interested in the energy cost of entangle-
ment extraction for purely relational degrees of freedom.
The absolute position of the center-of-mass degrees of
freedom, in this case xcm, is unknown without specifying
some measurement system (reference frame) that is capable
of differentiating different xcm’s. However, if xcm is trans-
lationally invariant, then such a measurement system
cannot exist. Therefore the center-of-mass degrees of
freedom are not measurable degrees of freedom, rather
they are gauge degrees of freedom. We can remove these
gauge degrees of freedom by G-twirling over the center-of-
mass degrees of freedom. As we showed in Sec. III B theG-
twirl will produce a purely relational state, but at the cost of
destroying the entanglement within the center of mass and
relational degrees of freedom. After the G-twirl is done, the
relational degrees of freedom are left in a mixed state that is
not entangled. Therefore, there is no possibility of an
energy cost of entanglement extraction—the entanglement
extraction protocol cannot even be performed.

B. Entanglement extraction via the Z-model

In Sec. III C we demonstrated that the Z-model tied the
absolute position of a state with the configuration of an
auxiliary field. This implies that the coordinate system used
to define the absolute position is no longer a gauge degree
of freedom. Furthermore, since the coordinate system now
depends on the configuration of auxiliary degree of free-
dom, the external partition has been relationalized. We can
now examine the entanglement extraction protocol from
Sec. III D for our purely relational state. This is in contrast
to the use of theG-twirl, where theG-twirl process creates a
relational state by destroying the entanglement between the
relational and nonrelational parts of the state.
In our framework with the Z-model, the absolute

position of charged particles is given meaning by the
gradient electromagnetic vector potential inside a parallel
plate capacitor. This means that the two location configu-
rations in the superposition found in (43), (45), or (47) will
have different energies. As a simple example, consider the
superposition state found in (43). Since jx1i and jx01i will
interact differently with the Z-model coupling in the
Hamiltonian, the energy for the components of the super-
position state would be

E ¼ hx2j ⊗ hx1jĤ12jx1i ⊗ jx2i; ð66Þ

E0 ¼ hx2j ⊗ hx01jĤ12jx01i ⊗ jx2i: ð67Þ

Since jx1i and jx01i are now physically different states,
E ≠ E0. The same principle is applicable to n particles,
where at least one particle is in a location superposition.
Furthermore, these energy differences are unchanged by the
choice of partition of the Hilbert space. Therefore, we will
see the same effect in the center of mass/relational partition
as well. Since there is entanglement and an energy
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difference we are able to perform the entanglement extrac-
tion protocol as prescribed and find a nonvanishing
energy cost.
Let the n-particle initial state in the center of mass/

relational partition from (48) be the initial entangled state of
the source system,

jψ Ii ¼ jxcmi ⊗ jxreli þ jx0cmi ⊗ jx0reli ð68Þ

is relational. This state written as a density matrix is
ρ̂I ¼ jψ Iihψ Ij. After the extraction process, the system
will be left in a mixed state

ρ̂F ¼ jxcmihxcmj ⊗ jxrelihxrelj
þ jx0cmihx0cmj ⊗ jx0relihx0relj: ð69Þ

In Hackl and Jonsson’s work the final state of the source
system is a statistical mixture of states. As such, the final
energy will be a statistical average of the energy for the
state jxcmi ⊗ jxreli and the state jx0cmi ⊗ jx0reli. Since we are
only considering one state, our final state will not be mixed
but rather be either the primed or the unprimed state.
Unlike the scenario of Hackl and Jonsson, the initial state

is not in the ground state by definition. In order to even run
the Z-model, we needed to correlate the position with
different energies via the Hamiltonian interaction. This
means that any state, other than the single “ground state”
position state at the location of one of the plates, has a
higher energy. Hence the extraction process will not yield a
minimum energy, but instead the energy difference, as that
was the resource we used in the Z-model to establish the
nongauge nature of the external partition. The energy
difference is given by

ΔE ¼ Tr½ρ̂FĤ� − Tr½ρ̂IĤ�: ð70Þ

No matter the final state, the energy difference is non-
vanishing and so there will be a net energy transfer to/from
the target modes for extracting entanglement from this
relational system. Since the final state will be measured in
either the primed or unprimed location, there is hence an
energy change for localizing the relational quantum infor-
mation contained in the state. Importantly, we note the
connection between entanglement extraction and how we
made the system relational. In the first approach, when we
throw out any local information, there is no way to perform
any quantum information process related to localization or
entanglement extraction at the end. And indeed, we saw
that the protocol fails. In the second, when the location is
made relational via the Z-model, the necessary change to
the Hamiltonian also automatically enables the extraction
protocol to occur. The two processes were locked together.
Of course, these results are only possible inside the

capacitor. Outside the capacitor, where the electric field
used for the Z-model does not exist, the entanglement

extraction protocol does not work, since there is no way to
relationalize the states. This implies that there is a limited
domain where the entanglement extraction protocol works.
This is appropriate for a relational setup with finite
experimental configurations. Outside the capacitor it is
required to use the G-twirl to construct relational states,
since there is no auxiliary field with a monotonic gradient
to use for the Z-model. The question then becomes, how
can one relate the Z-model with the entanglement extrac-
tion protocol to the G-twirl without the entanglement
extraction protocol? We show below that the G-twirl can
be obtained as a limit of the Z-model via the framework of
positive operator valued measurements (POVMs).

C. From G to Z via POVMs

Heuristically, from the time-energy uncertainty relation,
we know that the time it takes to make a measurement
scales as Δt ∼ 1=ΔE, where ΔE is the uncertainty in the
energy of the system [28]. Thus, any physically realizable
system has some innate uncertainty in its energy. Therefore,
resolving the position in a finite time has some inherent
inaccuracy, since

hΔxi ∼ hΔĤintðxÞi
qσ

: ð71Þ

The expression in (71) is a result of considering the
uncertainty in position defined in the Z-model, i.e., the
uncertainty of (58). It is clear from the above relationship
that, when the charge on the plates of the capacitor
decreases, the uncertainty in x increases. In other words,
there must be a limit where the Z-model produces complete
uncertainty about the position. If we were to keep only
relational degrees of freedom, this limit should also
reproduce the G-twirl. We can construct the transition
via the framework of POVMs.
As a reminder, POVMs are a set of positive semidefinite

Hermitian matrices fP̂mg, where m is the value of each
measurement, on a Hilbert space H, that sums to the
identity, i.e., for every measurement m,

X
m

P̂m ¼ Î: ð72Þ

Generally, the exact form of each P̂m is unknown, however,
for our purposes it is convenient to assume the operators
describe perfect measurements, i.e., P̂m ¼ jmihmj, where
jmi is a measurement eigenstate with eigenvaluem. Given a
pure state jψi and a set of POVMs P̂m, the probability jψi is
in the jmi state when measured is

pðmÞ ¼ hψ jP̂mjψi ¼ Trðρ̂P̂mÞ; ð73Þ

where ρ̂ ¼ jψihψ j is the density matrix associated with the
state jψi and the trace is over the eigenstates of the POVM
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operator. For mixed states, the probability is solely given by
the trace over the product of the density matrix and the
POVM operators. In the case where the measurement
operator is constructed from continuous variables, the trace
is replaced with an integral over the possible eigenstates of
the POVM operator.
Through the lens of POVMs, the energy expectation

value of the detector, given a particular center of mass of the
particle system is given by

hĤintðxÞi ¼
X
j

EjðxcmÞpðxcmÞ; ð74Þ

where EjðxcmÞ is a map between the center of mass of the
system and the energy read by the detector. We assume that
the detector has a minimum uncertainty. That is, we assume
that when the detector makes an energy measurement, the
true energy of the system is placed into bins EjðxcmÞ. The
true energy of the system is then within the bin energy and
the energy uncertainty, i.e., EjðxcmÞ þ ΔE. In the con-
tinuum limit, the probability of measuring the state with a
center of mass of xcm within one particular bin is given by

pðxcmÞ ¼
Z

xcm;iþΔx

xcm;i

dx00cmhx00cmjψihψ jx00cmi: ð75Þ

The notion of a perfect measurement is given by
P̂x00cm ¼ jx00cmihx00cmj. The state jψi we will take to be the
n-particle entangled state in the center of mass/relational
partition from (48). It follows that the reduced density
matrix containing only relational degrees of freedom,
constructed by tracing over the center-of-mass degrees of
freedom, is represented by

ρ̂rel ¼
Z

xcm;iþΔxcm

xcm;i

dx00cm½hx00cmjxcmihxcmjx00cmijxrelihxrelj

þ hx00cmjxcmihx0cmjx00cmijxrelihx0relj
þ hx00cmjx0cmihxcmjx00cmijx0relihxrelj
þ hx00cmjx0cmihx0cmjx00cmijx0relihx0relj�: ð76Þ

In the limit where the charge on the plates goes to zero,
qσ → 0, the uncertainty of the position measurement
becomes infinite, Δx → ∞. This implies that the integral
in (76) is now over all space instead of two arbitrary bins of
the detector. Since the integral is over all space, the reduced
density matrix simplifies to

ρ̂rel ¼ hxcmjxcmijxrelihxrelj þ hx0cmjxcmijxrelihx0relj
þ hxcmjx0cmijx0relihxrelj þ hx0cmjx0cmijx0relihx0relj: ð77Þ

The results of the inner products are Gaussians given
by (41). If we consider the highly localized limit, i.e.,
b → 0, the inner products become delta functions. It is easy
to see that since xcm ≠ x0cm the second and third terms will
vanish and the first and fourth terms will remain, albeit with
a divergent coefficient. It follows that

ρ̂rel ¼ N ðjxrelihxrelj þ jx0relihx0reljÞ; ð78Þ

whereN is divergent. Notice that this result matches theG-
twirl result from Sec. III B.
In the limit where the charge on the plates becomes

strong qσ → ∞, the uncertainty of the position measure-
ment becomes zero Δx → 0. However, for our purposes is
sufficient to consider Δx to be finite. As a consequence we
cannot utilize the resolution of identity as we did previously
since the integral is over a finite subset of xcm. Using the
inner product from (41) the reduced density matrix
becomes

ρ̂rel ¼
1

b2π

Z
xcm;iþΔxcm

xcm;i

dx00cm½e−ðx0cm−xcmÞ2=2b2 jxrelihxrelj

þ e−ðxcm−x00cmÞ2=4b2e−ðx00cm−x0cmÞ2=4b2 jxrelihx0relj
þ e−ðx0cm−x00cmÞ2=4b2e−ðx00cm−xcmÞ2=4b2 jx0relihxrelj
þ e−ðx00cm−x0cmÞ2=2b2 jx0relihx0relj�: ð79Þ

After integrating, the coefficients are written as

ρ̂rel ¼
1

b
ffiffiffiffiffiffi
2π

p
��

erf

�
xcm − xcm;i

b
ffiffiffi
2

p
�
− erf

�
xcm − xcm;i − Δxcm

b
ffiffiffi
2

p
��

jxrelihxrelj

þ e−ðxcm−x0cmÞ2=8b2
�
erf

�
xcm þ x0cm − 2xcm;i

b
ffiffiffi
8

p
�
− erf

�
xcm þ x0cm − 2ðxcm;i þ ΔxcmÞ

b
ffiffiffi
8

p
��

× ðjxrelihx0relj þ jx0relihxreljÞ

þ
�
erf

�
x0cm − xcm;i

b
ffiffiffi
2

p
�
− erf

�
x0cm − xcm;i − Δxcm

b
ffiffiffi
2

p
��

jx0relihx0relj
�
; ð80Þ
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where erf denotes the error function. When the position
states become highly localized, i.e., b → 0, the uncertainty
of the detector becomes small, i.e., Δx → 0. In this limit,
(80) becomes

ρ̂rel ¼
1

b
½Θðxcm − xcm;iÞ−Θðxcm − xcm;i −ΔxÞ�jxrelihxrelj

þ 1

b
½Θðx0cm − xcm;iÞ−Θðx0cm − xcm;i −ΔxÞ�jx0relihx0relj:

ð81Þ

The cross terms have vanished since the exponential
becomes a delta function in the highly localized limit
and xcm ≠ x0cm. When the measured center-of-mass position
is within a bin of the detector one of the coefficients of (81)
is nonzero. As the energy of the system is increased the
measured result will be close to xcm;i, i.e., Δx → 0. This
means that the Θ-functions will become closer making the
entire coefficient infinitesimally narrow and infinitely tall.
The end result will be a mixed state with density matrix
ρ̂rel ¼ δðxcm − xcm;iÞjxrelihxrelj þ δðx0cm − xcm;iÞjx0relihx0relj,
matching the results from the Z-model in the sense of (69)
after a center-of-mass measurement.

V. CONCLUSIONS

In this paper we have implemented localization of quan-
tum information as an entanglement extraction protocol in
relational systemswithGaussian states.As onemight expect,
when full translation invariance is implemented via the
G-twirl, leaving only relational states, localization cannot
matter and there should be no notion of an entanglement
extraction process. We find that this is indeed the case, as the
G-twirl not onlywipes out information on the external frame,
it also naturally wipes out any entanglement among center-
of-mass and relational degrees of freedom that were present
in the external partition. The resultant mixed state has no
entanglement to extract.
In contrast, if one keeps the external partition informa-

tion but implements it relationally via a Z-model, then there

is entanglement that can be extracted and states can be
localized. In this scenario, however, the implementation of
the Z-model itself creates a Hamiltonian in which there is
an energy difference between the initial (entangled) and
final (localized, unentangled) states. Hence entanglement
extraction procedures as outlined in Hackl can be run as
expected. We expect that a similar outcome would be
present if one used different, otherwise conserved quan-
tities than the energy to label states—entanglement extrac-
tion would always require some net gain or loss of some
resource (for example, charge or angular momentum). We
further found there is a map between the two relational
constructions, which can be implemented in the language
of POVMs.
Our work broke the translation invariance and hence the

degeneracy of the Hamiltonian via a simple dynamical
method we imposed by hand, that of a Z-model, or external
field. However, gravitational self-interactions would also,
in principle, lead to a nondegenerate Hamiltonian for the
initial and final states. In this type of scenario, the
extraction and localization process would result in
(a) the amount of entanglement extracted being propor-
tional to the gravitational self-energy difference of the
two states, and simultaneously (b) the system becoming
more localized in space. This, as one might expect,
qualitatively reflects black hole thermodynamics and other
holographic approaches connecting entanglement and
gravitational dynamics. Whether or not implementing
such a localization/extraction protocol in this framework
quantitatively matches black hole physics we leave for
future work.
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